Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa
Abstract
:1. Introduction
2. Evolution of Metazoa
2.1. Unicellular to Multicellular Transition in the Metazoan Lineage
2.2. The Genetic Toolkit of the Multicellular Body Plan of Metazoa
2.3. The Role of Introns and Exon Shuffling in the Evolution of Metazoa
2.3.1. Introns and Domain Shuffling
2.3.2. Intron Evolution, Intron Invasions, Exon Shuffling and the Rise of Metazoa
2.3.3. The Mysterious Predominance of Class 1–1 Modules
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- King, N. The Unicellular Ancestry of Animal Development. Dev. Cell 2004, 7, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Rokas, A. The Origins of Multicellularity and the Early History of the Genetic Toolkit for Animal Development. Annu. Rev. Genet. 2008, 42, 235–251. [Google Scholar] [CrossRef] [Green Version]
- Knoll, A.H. The Multiple Origins of Complex Multicellularity. Annu. Rev. Earth Planet. Sci. 2011, 39, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J.; Newman, S.A. The origins of multicellular organisms. Evol. Dev. 2013, 15, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, A.M. Independent evolution of complex development in animals and plants: Deep homology and lateral gene transfer. Dev. Genes Evol. 2019, 229, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Grice, L.; Degnan, B. How to Build an Allorecognition System: A Guide for Prospective Multicellular Organisms. In Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics; Ruiz-Trillo, I., Nedelcu, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 2, pp. 395–424. [Google Scholar]
- Naumann, B.; Burkhardt, P. Spatial Cell Disparity in the Colonial Choanoflagellate Salpingoeca rosetta. Front. Cell Dev. Biol. 2019, 7, 231. [Google Scholar] [CrossRef] [Green Version]
- Koehl, M.A.R. Selective factors in the evolution of multicellularity in choanoflagellates. J. Exp. Zool. Part B Mol. Dev. Evol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Libby, E.; Ratcliff, W.C. Ratcheting the evolution of multicellularity. Science 2014, 346, 426–427. [Google Scholar] [CrossRef]
- King, N.; Westbrook, M.J.; Young, S.L.; Kuo, A.; Abedin, M.; Chapman, J.; Fairclough, S.; Hellsten, U.; Isogai, Y.; Letunic, I.; et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 2008, 451, 783–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Trillo, I.; Roger, A.J.; Burger, G.; Gray, M.W.; Lang, B.F. A Phylogenomic Investigation into the Origin of Metazoa. Mol. Biol. Evol. 2008, 25, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Shalchian-Tabrizi, K.; Minge, M.A.; Espelund, M.; Orr, R.; Ruden, T.; Jakobsen, K.S.; Cavalier-Smith, T. Multigene Phylogeny of Choanozoa and the Origin of Animals. PLoS ONE 2008, 3, e2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torruella, G.; de Mendoza, A.; Grau-Bové, X.; Antó, M.; Chaplin, M.A.; del Campo, J.; Eme, L.; Pérez-Cordón, G.; Whipps, C.M.; Nichols, K.M.; et al. Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi. Curr. Biol. 2015, 25, 2404–2410. [Google Scholar] [CrossRef] [Green Version]
- Brunet, T.; King, N. The Origin of Animal Multicellularity and Cell Differentiation. Dev. Cell 2017, 43, 124–140. [Google Scholar] [CrossRef] [Green Version]
- Leadbeater, B.S.C. The Choanoflagellates: Evolution, Biology and Ecology; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Fairclough, S. Choanoflagellates: Perspective on the Origin of Animal Multicellularity. In Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics; Ruiz-Trillo, I., Nedelcu, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 2, pp. 99–116. [Google Scholar]
- Fairclough, S.R.; Dayel, M.J.; King, N. Multicellular development in a choanoflagellate. Curr. Biol. 2010, 20, R875–R876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayel, M.J.; Alegado, R.A.; Fairclough, S.R.; Levin, T.C.; Nichols, S.A.; McDonald, K.; King, N. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 2011, 357, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunet, T.; Albert, M.; Roman, W.; Coyle, M.C.; Spitzer, D.C.; King, N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021, 10, e61037. [Google Scholar] [CrossRef] [PubMed]
- Brunet, T.; Larson, B.T.; Linden, T.A.; Vermeij, M.J.A.; McDonald, K.; King, N. Light-regulated collective contractility in a multicellular choanoflagellate. Science 2019, 366, 326–334. [Google Scholar] [CrossRef]
- Sebé-Pedrós, A.; Chomsky, E.; Pang, K.; Lara-Astiaso, D.; Gaiti, F.; Mukamel, Z.; Amit, I.; Hejnol, A.; Degnan, B.M.; Tanay, A. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2018, 2, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.R.; Chen, Z.; Kramer, E.; Zeng, Q.; Young, S.; Robertson, H.M.; Begovic, E.; Richter, D.J.; Russ, C.; Westbrook, M.J.; et al. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 2013, 14, R15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikhailov, K.V.; Konstantinova, A.V.; Nikitin, M.A.; Troshin, P.V.; Rusin, L.Y.; Lyubetsky, V.A.; Panchin, Y.V.; Mylnikov, A.P.; Moroz, L.L.; Kumar, S.; et al. The origin of Metazoa: A transition from temporal to spatial cell differentiation. BioEssays 2009, 31, 758–768. [Google Scholar] [CrossRef]
- Sebé-Pedrós, A.; Degnan, B.M.; Ruiz-Trillo, I. The origin of Metazoa: A unicellular perspective. Nat. Rev. Genet. 2017, 18, 498–512. [Google Scholar] [CrossRef]
- Suga, H.; Ruiz-Trillo, I. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Dev. Biol. 2013, 377, 284–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mendoza, A.; Suga, H.; Permanyer, J.; Irimia, M.; Ruiz-Trillo, I. Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals. eLife 2015, 4, e08904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebé-Pedrós, A.; Irimia, M.; Del Campo, J.; Parra-Acero, H.; Russ, C.; Nusbaum, C.; Blencowe, B.J.; Ruiz-Trillo, I. Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2013, 2, e01287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebé-Pedrós, A.; de Mendoza, A. Transcription Factors and the Origin of Animal Multicellularity. In Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics; Ruiz-Trillo, I., Nedelcu, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 2, pp. 379–394. [Google Scholar]
- Sogabe, S.; Hatleberg, W.L.; Kocot, K.M.; Say, T.E.; Stoupin, D.; Roper, K.E.; Fernandez-Valverde, S.L.; Degnan, S.M.; Degnan, B.M. Pluripotency and the origin of animal multicellularity. Nature 2019, 570, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Takeichi, M. The cadherins: Cell-cell adhesion molecules controlling animal morphogenesis. Development 1988, 102, 639–655. [Google Scholar]
- Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991, 251, 1451–1455. [Google Scholar] [CrossRef]
- Gumbiner, B.M. Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell 1996, 84, 345–357. [Google Scholar] [CrossRef] [Green Version]
- McNeill, H. Sticking together and sorting things out: Adhesion as a force in development. Nat. Rev. Genet. 2000, 1, 100–108. [Google Scholar] [CrossRef]
- Halbleib, J.M.; Nelson, W.J. Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006, 20, 3199–3214. [Google Scholar] [CrossRef] [Green Version]
- Abedin, M.; King, N. The Premetazoan Ancestry of Cadherins. Science 2008, 319, 946–948. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeyer, T.T.; Burkhardt, P. Choanoflagellate models—Monosiga brevicollis and Salpingoeca rosetta. Curr. Opin. Genet. Dev. 2016, 39, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Bürglin, T. Homeodomain Subtypes and Functional Diversity. In A Handbook of Transcription Factors, SE-5; Hughes, T.R., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 95–122. [Google Scholar]
- Larroux, C.; Luke, G.N.; Koopman, P.; Rokhsar, D.S.; Shimeld, S.M.; Degnan, B.M. Genesis and expansion of metazoan transcription factor gene classes. Mol. Biol. Evol. 2008, 25, 980–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degnan, B.M.; Vervoort, M.; Larroux, C.; Richards, G.S. Early evolution of metazoan transcription factors. Curr. Opin. Genet. Dev. 2009, 19, 591–599. [Google Scholar] [CrossRef]
- Slack, J. Establishment of spatial pattern. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 379–388. [Google Scholar] [CrossRef]
- Rogers, K.W.; Schier, A.F. Morphogen Gradients: From Generation to Interpretation. Annu. Rev. Cell Dev. Biol. 2011, 27, 377–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, D.J.; Fozouni, P.; Eisen, M.B.; King, N. Gene family innovation, conservation and loss on the animal stem lineage. eLife 2018, 7, e34226. [Google Scholar] [CrossRef]
- Williams, F.; Tew, H.A.; Paul, C.E.; Adams, J.C. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix. Matrix Biol. 2014, 37, 60–68. [Google Scholar] [CrossRef]
- López-Escardó, D.; Grau-Bové, X.; Guillaumet-Adkins, A.; Gut, M.; Sieracki, M.E.; Ruiz-Trillo, I. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190088. [Google Scholar] [CrossRef] [PubMed]
- Kerekes, K.; Bányai, L.; Trexler, M.; Patthy, L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019, 37, 29–52. [Google Scholar] [CrossRef] [PubMed]
- Tordai, H.; Nagy, A.; Farkas, K.; Bányai, L.; Patthy, L. Modules, multidomain proteins and organismic complexity. FEBS J. 2005, 272, 5064–5078. [Google Scholar] [CrossRef] [PubMed]
- Patthy, L. Modular assembly of genes and the evolution of new functions. Genetica 2003, 118, 217–231. [Google Scholar] [CrossRef]
- Patthy, L. Introns and exons. Curr. Opin. Struct. Biol. 1994, 4, 383–392. [Google Scholar] [CrossRef]
- Patthy, L. Exon shuffling and other ways of module exchange. Matrix Biol. 1996, 15, 301–310. [Google Scholar] [CrossRef]
- Patthy, L. Genome evolution and the evolution of exon-shuffling—A review. Gene 1999, 238, 103–114. [Google Scholar] [CrossRef]
- Patthy, L. Protein Evolution, 2nd ed.; Blackwell: Oxford, UK, 2008. [Google Scholar]
- Sebé-Pedrós, A.; Ballaré, C.; Parra-Acero, H.; Chiva, C.; Tena, J.J.; Sabidó, E.; Gómez-Skarmeta, J.L.; Di Croce, L.; Ruiz-Trillo, I. The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell 2016, 165, 1224–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bányai, L.; Váradi, A.; Patthy, L. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator. FEBS Lett. 1983, 163, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Patthy, L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 1985, 41, 657–663. [Google Scholar] [CrossRef]
- Patthy, L. Intron-dependent evolution: Preferred types of exons and introns. FEBS Lett. 1987, 214, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Patthy, L. Modular exchange principles in proteins. Curr. Opin. Struct. Biol. 1991, 1, 351–361. [Google Scholar] [CrossRef]
- França, G.S.; Cancherini, D.V.; De Souza, S.J. Evolutionary history of exon shuffling. Genetica 2012, 140, 249–257. [Google Scholar] [CrossRef]
- Rogozin, I.B.; Carmel, L.; Csuros, M.; Koonin, E.V. Origin and evolution of spliceosomal introns. Biol. Direct 2012, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patthy, L. Exons—Original building blocks of proteins? BioEssays 1991, 13, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Rogozin, I.B.; Sverdlov, A.V.; Babenko, V.N.; Koonin, E.V. Analysis of evolution of exon-intron structure of eukaryotic genes. Brief. Bioinform. 2005, 6, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Carmel, L.; Wolf, Y.I.; Rogozin, I.B.; Koonin, E.V. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res. 2007, 17, 1034–1044. [Google Scholar] [CrossRef] [Green Version]
- Csuros, M.; Rogozin, I.B.; Koonin, E.V. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes. PLoS Comput. Biol. 2011, 7, e1002150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grau-Bové, X.; Torruella, G.; Donachie, S.; Suga, H.; Leonard, G.; Richards, T.A.; Ruiz-Trillo, I. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 2017, 6, e26036. [Google Scholar] [CrossRef] [PubMed]
- Grau-Bové, X.; Ruiz-Trillo, I.; Irimia, M. Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol. 2018, 19, 135. [Google Scholar] [CrossRef]
- Kim, E.; Magen, A.; Ast, G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2007, 35, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Patthy, L. Alternative Splicing: Evolution. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2008. [Google Scholar]
- Patthy, L. Exon skipping-rich transcriptomes of animals reflect the significance of exon-shuffling in metazoan proteome evolution. Biol. Direct. 2019, 14, 2. [Google Scholar] [CrossRef]
- Yenerall, P.; Zhou, L. Identifying the mechanisms of intron gain: Progress and trends. Biol. Direct 2012, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Sharp, P.A. On the origin of RNA splicing and introns. Cell 1985, 42, 397–400. [Google Scholar] [CrossRef]
- Belfort, M. An expanding universe of introns. Science 1993, 262, 1009–1010. [Google Scholar] [CrossRef]
- Patthy, L. Protein Evolution by Exon-Shuffling. In Molecular Biology Intelligence Unit; R.G. Landes Company: Georgetown, TX, USA; Springer: New York, NY, USA, 1995. [Google Scholar]
- Bhattacharya, D.; Lutzoni, F.; Reeb, V.; Simon, D.; Nason, J.; Fernandez, F. Widespread Occurrence of Spliceosomal Introns in the rDNA Genes of Ascomycetes. Mol. Biol. Evol. 2000, 17, 1971–1984. [Google Scholar] [CrossRef]
- Bonen, L.; Vogel, J. The ins and outs of group II introns. Trends Genet. 2001, 17, 322–331. [Google Scholar] [CrossRef]
- Verhelst, B.; Van De Peer, Y.; Rouzé, P. The complex intron landscape and massive intron invasion in a picoeukaryote provides insights into intron evolution. Genome Biol. Evol. 2013, 5, 2393–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibb, N.J.; Newman, A.J. Evidence that introns arose at proto-splice sites. EMBO J. 1989, 8, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.-G.; Schisler, N.; Stoltzfus, A. The Evolutionary Gain of Spliceosomal Introns: Sequence and Phase Preferences. Mol. Biol. Evol. 2004, 21, 1252–1263. [Google Scholar] [CrossRef] [Green Version]
- Coghlan, A.; Wolfe, K.H. Origins of recently gained introns in Caenorhabditis. Proc. Natl. Acad. Sci. USA 2004, 101, 11362–11367. [Google Scholar] [CrossRef] [Green Version]
- Tordai, H.; Patthy, L. Insertion of spliceosomal introns in proto-splice sites: The case of secretory signal peptides. FEBS Lett. 2004, 575, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Walch, H.; Wu, S.; Grigoriev, A. Significant expansion of exon-bordering protein domains during animal proteome evolution. Nucleic Acids Res. 2005, 33, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trexler, M.; Patthy, L. Folding autonomy of the kringle 4 fragment of human plasminogen. Proc. Natl. Acad. Sci. USA 1983, 80, 2457–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patthy, L. Fold class and evolutionary mobility of protein modules. Proc. Natl. Acad. Sci. USA 2020, 117, 22652. [Google Scholar] [CrossRef]
- Martin, A.C.; Orengo, C.A.; Hutchinson, E.G.; Jones, S.; Karmirantzou, M.; Laskowski, R.A.; Mitchell, J.B.; Taroni, C.; Thornton, J.M. Protein folds and functions. Structure 1998, 6, 875–884. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patthy, L. Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes 2021, 12, 382. https://doi.org/10.3390/genes12030382
Patthy L. Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes. 2021; 12(3):382. https://doi.org/10.3390/genes12030382
Chicago/Turabian StylePatthy, Laszlo. 2021. "Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa" Genes 12, no. 3: 382. https://doi.org/10.3390/genes12030382
APA StylePatthy, L. (2021). Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa. Genes, 12(3), 382. https://doi.org/10.3390/genes12030382