Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Birds and DNA Sequencing
2.3. Data Quality and Assessment
2.4. SNP Detection and Analysis
2.5. Bioinformatic Pathway Analysis
2.6. Sorting Intolerant from Tolerant (SIFT) Prediction
3. Results
3.1. Genome Re-Sequencing and Distribution of SNPs
3.2. Bioinformatics and Pathway Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shastry, B.S. SNPs: Impact on gene function and phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef]
- Petersen, G.M.; Parmigiani, G.; Thomas, D. Missense mutations in disease genes: A bayesian approach to evaluate causality. Am. J. Hum. Genet. 1998, 62, 1516–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syvänen, A.-C. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2001, 2, 930–942. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1999, 896, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Shini, S.; Huff, G.R.; Shini, A.; Kaiser, P. Understanding stress-induced immunosuppression: Exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poult. Sci. 2010, 89, 841–851. [Google Scholar] [CrossRef]
- Khatri, B.; Kang, S.; Shouse, S.; Anthony, N.; Kuenzel, W.; Kong, B.C. Copy number variation study in Japanese quail associated with stress related traits using whole genome re-sequencing data. PLoS ONE 2019, 14, e0214543. [Google Scholar] [CrossRef]
- Satterlee, D.G.; Johnson, W.A. Selection of japanese quail for contrasting blood corticosterone response to immobilization. Poult. Sci. 1988, 67, 25–32. [Google Scholar] [CrossRef]
- Satterlee, D.G.; Cadd, G.G.; Jones, R.B. Developmental instability in japanese quail genetically selected for contrasting adrenocortical responsiveness. Poult. Sci. 2000, 79, 1710–1714. [Google Scholar] [CrossRef] [PubMed]
- Satterlee, D.G.; Marin, R.H.; Jonest, R.B. Selection of Japanese quail for reduced adrenocortical responsiveness accelerates puberty in males. Poult. Sci. 2002, 81, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Suhr, C.L.; Schmidt, J.B.; Treese, S.T.; Satterlee, D.G. Short-term spatial memory responses in aged Japanese quail selected for divergent adrenocortical stress re-sponsiveness. Poult. Sci. 2010, 89, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Huff, G.R.; Huff, W.E.; Wesley, I.V.; Anthony, N.B.; Satterlee, D.G. Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge. Poult. Sci. 2013, 92, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.-M.; Erf, G.F.; Rowland, K.C.; Kong, B.-W. Genome resequencing and bioinformatic analysis of SNP containing candidate genes in the autoimmune vitiligo Smyth line chicken model. BMC Genom. 2014, 15, 707. [Google Scholar] [CrossRef] [Green Version]
- Khatri, B.; Hayden, A.M.; Anthony, N.B.; Kong, B.C. Whole Genome Resequencing of Arkansas Progressor and Regressor Line Chickens to Identify SNPs Associated with Tumor Regression. Genes 2018, 9, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.K.; Marszalek, J.R.; Cleveland, D.W. A mutant neurofilament subunit causes massive, selective motor neuron death: Implications for the pathogenesis of human motor neuron disease. Neuron 1994, 13, 975–988. [Google Scholar] [CrossRef]
- Martin, L.J.; Chen, K.; Liu, Z. Adult motor neuron apoptosis is mediated by nitric oxide and fas death receptor linked by dna damage and p53 activation. J. Neurosci. 2005, 25, 6449–6459. [Google Scholar] [CrossRef] [Green Version]
- Chernoff, J.; Vadlamudi, R.K.; Adam, L.; Wang, R.-A.; Mandal, M.; Nguyen, D.; Sahin, A.; Hung, M.-C.; Kumar, R. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J. Biol. Chem. 2000, 275, 36238–36244. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Billault, C.; Avila, J.; Cáceres, A. Evidence for the role of MAP1B in axon formation. Mol. Biol. Cell 2001, 12, 2087–2098. [Google Scholar] [CrossRef] [Green Version]
- Beffert, U.; Dillon, G.M.; Sullivan, J.M.; Stuart, C.E.; Gilbert, J.P.; Kambouris, J.A.; Ho, A. Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function. J. Neurosci. 2012, 32, 13906. [Google Scholar] [CrossRef] [Green Version]
- Pierchala, B.A.; Ahrens, R.C.; Paden, A.J.; Johnson, E.M. Nerve growth factor promotes the survival of sympathetic neurons through the cooperative function of the protein kinase C and phosphatidylinositol 3-kinase pathways. J. Biol. Chem. 2004, 279, 27986–27993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bromberger, T.; Klapproth, S.; Rohwedder, I.; Zhu, L.; Mittmann, L.; Reichel, C.A.; Sperandio, M.; Qin, J.; Moser, M. Direct Rap1/Talin1 interaction regulates platelet and neutrophil integrin activity in mice. Blood 2018, 132, 2754–2762. [Google Scholar] [CrossRef] [Green Version]
- Assefa, Z.; Bultynck, G.; Szlufcik, K.; Kasri, N.N.; Vermassen, E.; Goris, J.; Missiaen, L.; Callewaert, G.; Parys, J.B.; De Smedt, H. Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J. Biol. Chem. 2004, 279, 43227–43236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemetson, J.M.; Polgar, J.; Magnenat, E.; Wells, T.N.; Clemetson, K.J. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to fcαr and the natural killer receptors. J. Biol. Chem. 1999, 274, 29019–29024. [Google Scholar] [CrossRef] [Green Version]
- Gibbins, J.M. Platelet adhesion signalling and the regulation of thrombus formation. J. Cell Sci. 2004, 117, 3415–3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieswandt, B.; Bergmeier, W.; Eckly, A.; Schulte, V.; Ohlmann, P.; Cazenave, J.-P.; Zirngibl, H.; Offermanns, S.; Gachet, C. Evidence for cross-talk between glycoprotein VI and Gi-coupled receptors during collagen-induced platelet aggregation. Blood 2001, 97, 3829–3835. [Google Scholar] [CrossRef] [Green Version]
- Sakariassen, K.S.; Holme, P.A.; Ørvim, U.; Barstad, R.M.; Solum, N.O.; Brosstad, F.R. Shear-induced platelet activation and platelet microparticle formation in native human blood. Thromb. Res. 1998, 92, S33–S41. [Google Scholar] [CrossRef]
- Roberts, D.E.; McNicol, A.; Bose, R. Mechanism of collagen activation in human platelets. J. Biol. Chem. 2004, 279, 19421–19430. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, T.G.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hell. J. Cardiol. 2005, 46, 9–15. [Google Scholar]
- Wilson, N.J.; Boniface, K.; Chan, J.R.; McKenzie, B.S.; Blumenschein, W.M.; Mattson, J.D.; Basham, B.; Smith, K.J.; Chen, T.; Morel, F.; et al. Development, cytokine profile and function of human interleukin 17–producing helper T cells. Nat. Immunol. 2007, 8, 950–957. [Google Scholar] [CrossRef]
- Chen, Z.; Laurence, A.; O’Shea, J.J. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin. Immunol. 2007, 19, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffen, S.L.; Kramer, J.M.; Yu, J.J.; Shen, F. The IL-17 cytokine family. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2006; pp. 255–282. [Google Scholar]
- Eyerich, S.; Eyerich, K.; Cavani, A.; Schmidt-Weber, C. IL-17 and IL-22: Siblings, not twins. Trends Immunol. 2010, 31, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.J.; Wan, C.-K. IL-21 Signaling in Immunity. F1000Research 2016, 5, 224. [Google Scholar] [CrossRef]
- Weaver, B.K.; Kumar, K.P.; Reich, N.C. Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol. Cell. Biol. 1998, 18, 1359–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rickert, P.; Weiner, O.D.; Wang, F.; Bourne, H.R.; Servant, G. Leukocytes navigate by compass: Roles of PI3Kgamma and its lipid products. Trends Cell Biol. 2000, 10, 466–473. [Google Scholar] [CrossRef]
- Aslan, J.E.; Baker, S.M.; Loren, C.P.; Haley, K.M.; Itakura, A.; Pang, J.; Greenberg, D.L.; David, L.L.; Manser, E.; Chernoff, J.; et al. The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation. Am. J. Physiol. Cell Physiol. 2013, 305, C519–C528. [Google Scholar] [CrossRef] [PubMed]
- Arbour, N.; Naniche, D.; Homann, D.; Davis, R.J.; Flavell, R.A.; Oldstone, M.B. c-Jun NH2-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent Roles in CD8+ T Cell–mediated antiviral immunity. J. Exp. Med. 2002, 195, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignais, P.V. The superoxide-generating NADPH oxidase: Structural aspects and activation mechanism. Cell. Mol. Life Sci. 2002, 59, 1428–1459. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus kinases in immune cell signaling. Immunol. Rev. 2009, 228, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cortez, D.; Yazdi, P.; Neff, N.; Elledge, S.J.; Qin, J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000, 14, 927–939. [Google Scholar] [PubMed]
- Bochar, D.A.; Wang, L.; Beniya, H.; Kinev, A.; Xue, Y.; Lane, W.S.; Wang, W.; Kashanchi, F.; Shiekhattar, R. BRCA1 is associated with a human SWI/SNF-related complex: Linking chromatin remodeling to breast cancer. Cell 2000, 102, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Baer, R. Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J. Biol. Chem. 2000, 275, 18541–18549. [Google Scholar] [CrossRef] [Green Version]
- Stegner, D.; Haining, E.J.; Nieswandt, B. Targeting glycoprotein vi and the immunoreceptor tyrosine-based activation motif signaling pathway. Arter. Thromb. Vasc. Biol. 2014, 34, 1615–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuenzel, W.J.; Jurkevich, A. Molecular neuroendocrine events during stress in poultry. Poult. Sci. 2010, 89, 832–840. [Google Scholar] [CrossRef] [PubMed]
Line | Number of SNPs | Coverage |
---|---|---|
HS | 3,492,469 | 41.45x |
LS | 2,872,438 | 42.59x |
Line | Chr | Ref Pos | Ref Base | Called Base | Impact | SNP % | Feature Name | DNA Change | Amino Acid Change | Depth | A Cnt | C Cnt | G Cnt | T Cnt | Deletion |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HS | 21 | 5131174 | AC | GT | Non-synonymous | 0.99 | LOC107323251 | c.528_529 > AC | p.W177R | 68 | - | 0 | 67 | 0 | 0 |
HS | 22 | 2387923 | G | A | Non-synonymous | 1 | R3HCC1 | c.1837C > T | p.P613S | 56 | 56 | 0 | - | 0 | 0 |
HS | 8 | 9560343 | - | GCTCAAACAC | Frameshift | 1 | RNPC3 | c.945_946ins | p.N316fs | 50 | 0 | 0 | 50 | 0 | 0 |
HS | 5 | 34813334 | AT | GC | Non-synonymous | 1 | TTLL5 | c.2643_2644 > GC | p.S882P | 50 | - | 0 | 50 | 0 | 0 |
HS | 8 | 21795021 | A | T | Non-synonymous | 1 | ZCCHC11 | c.2277T > A | p.F759L | 49 | - | 0 | 0 | 49 | 0 |
HS | 12 | 14314737 | A | C | Non-synonymous | 0.94 | CNTN3 | c.966T > G | p.H322Q | 48 | - | 45 | 0 | 0 | 0 |
HS | 1 | 1.5 × 108 | A | G | Non-synonymous | 1 | LACC1 | c.1099A > G | p.T367A | 48 | - | 0 | 48 | 0 | 0 |
HS | 3 | 91429204 | T | A | Non-synonymous | 0.94 | LOC107312240 | c.2044A > T | p.N682Y | 47 | 44 | 3 | 0 | - | 0 |
HS | 7 | 15772589 | A | G | Non-synonymous | 1 | LOC107316692 | c.1156A > G | p.S386G | 47 | - | 0 | 47 | 0 | 0 |
HS | 4 | 56633029 | CC | TT | Non-synonymous | 1 | PCM1 | c.1849_1850 > AA | p.G617N | 47 | 0 | - | 0 | 47 | 0 |
HS | 2 | 31086012 | T | C | Non-synonymous | 0.91 | PLEKHA8 | c.1304T > C | p.L435S | 47 | 0 | 43 | 0 | - | 0 |
HS | 1 | 70128156 | C | G | No-stop | 1 | EPHB6 | c.2447G > C | p..816Sext.? | 45 | 0 | - | 45 | 0 | 0 |
HS | 21 | 2172350 | T | C | Non-synonymous | 1 | LOC107323499 | c.719A > G | p.Q240R | 44 | 0 | 44 | 0 | - | 0 |
HS | 3 | 60212158 | T | C | Non-synonymous | 1 | REV3L | c.4339T > C | p.S1447P | 44 | 0 | 44 | 0 | - | 0 |
HS | 12 | 8367256 | C | G | Non-synonymous | 1 | XPC | c.310G > C | p.V104L | 44 | 0 | - | 44 | 0 | 0 |
HS | 7 | 18690075 | T | G | Non-synonymous | 0.97 | C7H2orf76 | c.12A > C | p.L4F | 43 | 0 | 0 | 42 | - | 0 |
HS | 11 | 9853879 | G | A | Non-synonymous | 0.93 | CCDC79 | c.820G > A | p.A274T | 43 | 40 | 0 | - | 0 | 0 |
HS | 3 | 43357143 | A | C | Non-synonymous | 1 | KATNA1 | c.711T > G | p.D237E | 43 | - | 43 | 0 | 0 | 0 |
HS | 2 | 68425475 | A | G | Non-synonymous | 1 | KIF13A | c.5806T > C | p.W1936R | 43 | - | 0 | 43 | 0 | 0 |
HS | 17 | 6369984 | C | G | Non-synonymous | 0.95 | INPP5E | c.744C > G | p.F248L | 42 | 0 | - | 40 | 0 | 0 |
Line | Chr | Ref Pos | Ref Base | Called Base | Impact | SNP % | Feature Name | DNA Change | Amino Acid Change | Depth | A Cnt | C Cnt | G Cnt | T Cnt | Deletion |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LS | 2 | 32838673 | A | G | Non-synonymous | 1 | PP2D1 | c.1616T > C | p.V539A | 54 | - | 0 | 54 | 0 | 0 |
LS | 9 | 8491817 | C | T | Nonsense | 1 | TRIP12 | c.4974G > A | p.W1658. | 52 | 0 | - | 0 | 52 | 0 |
LS | 7 | 9557668 | G | A | Non-synonymous | 1 | C7H2orf69 | c.964G > A | p.V322I | 49 | 49 | 0 | - | 0 | 0 |
LS | 4 | 2143170 | T | C | Non-synonymous | 0.91 | ACRC | c.242A > G | p.D81G | 47 | 0 | 43 | 0 | - | 0 |
LS | 1 | 110870115 | T | C | Non-synonymous | 1 | EGFL6 | c.401A > G | p.K134R | 47 | 0 | 47 | 0 | - | 0 |
LS | 1 | 53603348 | C | A | Non-synonymous | 0.96 | PKP2 | c.1840G > T | p.V614L | 47 | 45 | - | 0 | 0 | 0 |
LS | 1 | 64715297 | GC | AT | Non-synonymous | 0.93 | LOC107317569 | c.401_402 > AT | p.R134H | 45 | 42 | 0 | - | 0 | 0 |
LS | 6 | 13674979 | A | G | Non-synonymous | 0.98 | USP54 | c.3248A > G | p.E1083G | 44 | - | 0 | 43 | 0 | 0 |
LS | 18 | 3018090 | - | TTG | Inframe insertion | 0.93 | HEXDC | c.1174insCAA | p.S392del | 43 | 0 | 0 | 0 | 40 | 3 |
LS | 1 | 120607492 | A | C | Non-synonymous | 0.98 | LOC107306797 | c.374A > C | p.K125T | 43 | - | 42 | 0 | 0 | 0 |
LS | 11 | 8576282 | C | T | Non-synonymous | 0.93 | TDRD12 | c.794C > T | p.S265F | 43 | 0 | - | 0 | 40 | 0 |
LS | 4 | 30750477 | C | G | Non-synonymous | 0.95 | FRAS1 | c.1649G > C | p.R550T | 42 | 0 | - | 40 | 0 | 0 |
LS | Z | 44293804 | G | A | Non-synonymous | 1 | PDZPH1P | c.136G > A | p.A46T | 42 | 42 | 0 | - | 0 | 0 |
LS | 1 | 19982878 | A | T | Non-synonymous | 0.98 | IQUB | c.1246T > A | p.S416T | 41 | - | 0 | 0 | 40 | 0 |
LS | 1 | 72163526 | A | G | Non-synonymous | 1 | LOC107319872 | c.1789A > G | p.I597V | 40 | - | 0 | 40 | 0 | 0 |
LS | 7 | 29069125 | A | T | Non-synonymous | 1 | LRP1B | c.6537T > A | p.D2179E | 40 | - | 0 | 0 | 40 | 0 |
LS | 13 | 4497924 | A | G | Non-synonymous | 1 | RUFY1 | c.1657A > G | p.T553A | 40 | - | 0 | 40 | 0 | 0 |
LS | 3 | 69683334 | A | T | Non-synonymous | 1 | SMIM8 | c.29T > A | p.I10N | 40 | - | 0 | 0 | 40 | 0 |
LS | LGE64 | 150066 | T | C | Non-synonymous | 1 | LOC107325885 | c.47T > C | p.V16A | 39 | 0 | 39 | 0 | - | 0 |
LS | 4 | 66305765 | C | T | Non-synonymous | 0.97 | RBPJ | c.29G > A | p.R10Q | 39 | 0 | - | 0 | 38 | 0 |
Impact | Number of SNPs | Percentage |
---|---|---|
HS Line: | ||
Frameshift | 46 | 0.702% |
Inframe deletion, conservative | 5 | 0.076% |
Inframe deletion, disruptive | 5 | 0.076% |
Inframe insertion, conservative | 2 | 0.031% |
Inframe insertion, disruptive | 4 | 0.061% |
Nonsense | 8 | 0.122% |
Non-synonymous | 1746 | 26.652% |
No-start | 11 | 0.168% |
No-stop | 11 | 0.061% |
Synonymous | 4720 | 72.050% |
Total | 6551 | |
LS Line: | ||
Frameshift | 33 | 0.87% |
Inframe deletion, conservative | 4 | 0.11% |
Inframe deletion, disruptive | 3 | 0.08% |
Inframe insertion, conservative | 0 | 0.00% |
Inframe insertion, disruptive | 4 | 0.11% |
Nonsense | 5 | 0.13% |
Non-synonymous | 1004 | 26.56% |
No-start | 2 | 0.05% |
No-stop | 0 | 0.00% |
Synonymous | 2758 | 72.96% |
Total | 3780 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shumaker, S.; Khatri, B.; Shouse, S.; Seo, D.; Kang, S.; Kuenzel, W.; Kong, B. Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail. Genes 2021, 12, 405. https://doi.org/10.3390/genes12030405
Shumaker S, Khatri B, Shouse S, Seo D, Kang S, Kuenzel W, Kong B. Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail. Genes. 2021; 12(3):405. https://doi.org/10.3390/genes12030405
Chicago/Turabian StyleShumaker, Steven, Bhuwan Khatri, Stephanie Shouse, Dongwon Seo, Seong Kang, Wayne Kuenzel, and Byungwhi Kong. 2021. "Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail" Genes 12, no. 3: 405. https://doi.org/10.3390/genes12030405
APA StyleShumaker, S., Khatri, B., Shouse, S., Seo, D., Kang, S., Kuenzel, W., & Kong, B. (2021). Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail. Genes, 12(3), 405. https://doi.org/10.3390/genes12030405