Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma
Abstract
:1. Introduction
2. LncRNAs: Amazing Non-Coding RNA Molecules
3. Genomic Position and Origin
4. Biological Roles and Functions
5. LncRNAs in Cancer Hallmark
6. Expression Profile of LncRNA in Glioma and Glioblastoma
7. Drug Resistance in Glioblastoma
8. LncRNAs in Glioblastoma Drug Resistance
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitehead, C.A.; Kaye, A.H.; Drummond, K.J.; Widodo, S.S.; Mantamadiotis, T.; Vella, L.J.; Stylli, S.S. Extracellular vesicles and their role in glioblastoma. Crit. Rev. Clin. Lab. Sci. 2020, 57, 227–252. [Google Scholar] [CrossRef] [PubMed]
- Ferris, S.P.; Hofmann, J.W.; Solomon, D.A.; Perry, A. Characterization of gliomas: From morphology to molecules. Virchows Arch. 2017, 471, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Komori, T.; Muragaki, Y.; Chernov, M.F. Pathology and genetics of gliomas. In Intracranial Gliomas Part II—Adjuvant Therapy; Karger Publishers: Berlin, Germania, 2018; Volume 31, pp. 1–37. [Google Scholar]
- Jackson, C.M.; Choi, J.; Lim, M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat. Immunol. 2019, 20, 1100–1109. [Google Scholar] [CrossRef]
- Grech, N.; Dalli, T.; Mizzi, S.; Meilak, L.; Calleja, N.; Zrinzo, A. Rising incidence of glioblastoma multiforme in a well-defined population. Cureus 2020, 12, e8195. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef]
- Oliver, L.; Lalier, L.; Salaud, C.; Heymann, D.; Cartron, P.F.; Vallette, F. Drug resistance in glioblastoma: Are persisters the key to therapy? Cancer Drug Resist. 2020, 3, 1–15. [Google Scholar] [CrossRef]
- Zahreddine, H.; Borden, K.L. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Sampath, D.; Cortes, J.; Estrov, Z.; Du, M.; Shi, Z.; Andreeff, M.; Gandhi, V.; Plunkett, W. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (ucn-01) in aml blasts in vitro and during a clinical trial. Blood 2006, 107, 2517–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Ghasabi, M.; Mansoori, B.; Mohammadi, A.; Duijf, P.H.; Shomali, N.; Shirafkan, N.; Mokhtarzadeh, A.; Baradaran, B. Micrornas in cancer drug resistance: Basic evidence and clinical applications. J. Cell. Physiol. 2019, 234, 2152–2168. [Google Scholar] [CrossRef]
- Naghizadeh, S.; Mansoori, B.; Mohammadi, A.; Sakhinia, E.; Baradaran, B. Gene silencing strategies in cancer therapy: An update for drug resistance. Curr. Med. Chem. 2019, 26, 6282–6303. [Google Scholar] [CrossRef]
- Yousefi, H.; Maheronnaghsh, M.; Molaei, F.; Mashouri, L.; Aref, A.R.; Momeny, M.; Alahari, S.K. Long noncoding rnas and exosomal lncrnas: Classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene 2019, 39, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fullwood, M.J. Roles, functions, and mechanisms of long non-coding rnas in cancer. Genom. Proteom. Bioinform. 2016, 14, 42–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, S.; Ji, Q.; Li, Q.; Zhou, F.; Li, Y.; Yuan, F.; Liu, J.; Tian, Y.; Zhao, Y. Long non-coding rna epic1 promotes cell proliferation and motility and drug resistance in glioma. Mol. Ther. Oncolytics 2020, 17, 130–137. [Google Scholar] [CrossRef]
- Naderi-Meshkin, H.; Lai, X.; Amirkhah, R.; Vera, J.; Rasko, J.E.; Schmitz, U. Exosomal lncrnas and cancer: Connecting the missing links. Bioinformatics 2019, 35, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Mitra, R.; Zhao, M.-M.; Fan, W.; Eischen, C.M.; Yin, F.; Zhao, Z. The potential roles of long noncoding rnas (lncrna) in glioblastoma development. Mol. Cancer Ther. 2016, 15, 2977–2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prensner, J.R.; Chinnaiyan, A.M. The emergence of lncrnas in cancer biology. Cancer Discov. 2011, 1, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Liz, J.; Esteller, M. Lncrnas and micrornas with a role in cancer development. Biochim. Biophys. Acta Gene Regul. Mech. 2016, 1859, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huarte, M. The emerging role of lncrnas in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Feng, F.Y.; Chinnaiyan, A.M. The bright side of dark matter: Lncrnas in cancer. J. Clin. Investig. 2016, 126, 2775–2782. [Google Scholar] [CrossRef] [Green Version]
- Castro-Oropeza, R.; Melendez-Zajgla, J.; Maldonado, V.; Vazquez-Santillan, K. The emerging role of lncrnas in the regulation of cancer stem cells. Cell. Oncol. 2018, 41, 585–603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xia, L.Q.; Lu, W.W.; Zhang, J.; Zhu, J.S. Lncrnas and cancer. Oncol. Lett. 2016, 12, 1233–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Tian, H.; Yang, J.; Gong, Z. Long noncoding rnas regulate cell growth, proliferation, and apoptosis. DNA Cell Biol. 2016, 35, 459–470. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding rnas. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, R.B.-T.; Ulitsky, I. The functions of long noncoding rnas in development and stem cells. J. Dev. 2016, 143, 3882–3894. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, H.; Wu, C.; Yan, M.; Wu, H.; Wang, J.; Yang, X.; Shao, Q. Construction and investigation of lncrna-associated cerna regulatory network in papillary thyroid cancer. Oncol. Rep. 2018, 39, 1197–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, G. Integrating the roles of long and small non-coding rna in brain function and disease. Mol. Psychiatry 2014, 19, 410–416. [Google Scholar] [CrossRef]
- Nitsche, A. Tracing the evolution of long non-coding RNAs. University of Leipzig. 2017. [Google Scholar]
- Yu, B.; Wang, S. Angio-lncrs: Lncrnas that regulate angiogenesis and vascular disease. Theranostics 2018, 8, 3654. [Google Scholar] [CrossRef]
- Xiao, J.-H.; Hao, Q.-Y.; Wang, K.; Paul, J.; Wang, Y.-X. Emerging role of micrornas and long noncoding rnas in healthy and diseased lung. In Pulmonary Vasculature Redox Signaling in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2017; pp. 343–359. [Google Scholar]
- Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, J.R.; Zhao, S. The landscape of long noncoding rnas in the human transcriptome. Nat. Genet. 2015, 47, 199–208. [Google Scholar] [CrossRef]
- Chen, H.; Shan, G. The physiological function of long-noncoding rnas. Non-Coding Rna Res. 2020, 5, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, H.Y. Physiological roles of long noncoding rnas: Insight from knockout mice. Trends Cell Biol. 2014, 24, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.C.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long non-coding rnas in the regulation of gene expression: Physiology and disease. J. Non-Coding Rna 2019, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.M.; Chang, H.Y. Long noncoding rnas in cancer pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasool, M.; Malik, A.; Zahid, S.; Ashraf, M.A.B.; Qazi, M.H.; Asif, M.; Zaheer, A.; Arshad, M.; Raza, A.; Jamal, M.S. Non-coding rnas in cancer diagnosis and therapy. Non-Coding Rna Res. 2016, 1, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Niland, C.; Merry, C.; Khalil, A. Emerging roles for long non-coding rnas in cancer and neurological disorders. Front. Genet. 2012, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Bolha, L.; Ravnik-Glavač, M.; Glavač, D. Long noncoding rnas as biomarkers in cancer. Dis. Markers 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Xu, N.; Liu, Y.; Liu, B.; Yang, Z.; Fu, Z.; Lian, C.; Guo, H. Genomic profiling of long non-coding rna and mrna expression associated with acquired temozolomide resistance in glioblastoma cells. Int. J. Oncol. 2017, 51, 445–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding rna and cancer: A new paradigm. Cancer Res. 2017, 77, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Bartonicek, N.; Maag, J.L.; Dinger, M.E. Long noncoding rnas in cancer: Mechanisms of action and technological advancements. Mol. Cancer 2016, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zha, L.; Wang, Z.; Tang, W.; Zhang, N.; Liao, G.; Huang, Z. Genome-wide analysis of hmga2 transcription factor binding sites by chip on chip in gastric carcinoma cells. Mol. Cell. Biochem. 2012, 364, 243–251. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Pu, J.K.S.; Tsang, A.C.O.; Lee, D.; Man, V.O.Y.; Lui, W.M.; Wong, S.T.S.; Leung, G.K.K. Long non-coding rna expression profiles predict clinical phenotypes in glioma. Neurobiol. Dis. 2012, 48, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Murat, A.; Migliavacca, E.; Gorlia, T.; Lambiv, W.L.; Shay, T.; Hamou, M.-F.; De Tribolet, N.; Regli, L.; Wick, W.; Kouwenhoven, M.C. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol. 2008, 26, 3015–3024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Q.; Leung, G.K.-K. Long non-coding rnas in glioma: Functional roles and clinical perspectives. Neurochem. Int. 2014, 77, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Grzmil, M.; Morin, P.; Lino, M.M.; Merlo, A.; Frank, S.; Wang, Y.; Moncayo, G.; Hemmings, B.A. Map kinase-interacting kinase 1 regulates smad2-dependent tgf-β signaling pathway in human glioblastoma. Cancer Res. 2011, 71, 2392–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Jia, H.; Li, H.; Dong, C.; Wang, Y.; Zou, Z. Lncrna and mrna expression profiles of glioblastoma multiforme (gbm) reveal the potential roles of lncrnas in gbm pathogenesis. Tumor Biol. 2016, 37, 14537–14552. [Google Scholar] [CrossRef]
- Wang, W.; Yang, F.; Zhang, L.; Chen, J.; Zhao, Z.; Wang, H.; Wu, F.; Liang, T.; Yan, X.; Li, J. Lncrna profile study reveals four-lncrna signature associated with the prognosis of patients with anaplastic gliomas. Oncotarget 2016, 7, 77225. [Google Scholar] [CrossRef] [Green Version]
- Saenz-Antoñanzas, A.; Auzmendi-Iriarte, J.; Carrasco-Garcia, E.; Moreno-Cugnon, L.; Ruiz, I.; Villanua, J.; Egaña, L.; Otaegui, D.; Samprón, N.; Matheu, A. Liquid biopsy in glioblastoma: Opportunities, applications and challenges. Cancers 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.K.; Pastori, C.; Penas, C.; Komotar, R.J.; Ivan, M.E.; Wahlestedt, C.; Ayad, N.G. Serum long noncoding rna hotair as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol. Cancer 2018, 17, 74. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Hodges, T.R.; Song, R.; Gong, Y.; Calin, G.A.; Heimberger, A.B.; Zhao, H. Serum hotair and gas5 levels as predictors of survival in patients with glioblastoma. Mol. Carcinog. 2018, 57, 137–141. [Google Scholar] [CrossRef]
- Vassallo, I.; Zinn, P.; Lai, M.; Rajakannu, P.; Hamou, M.; Hegi, M. Wif1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical wnt signaling by downregulating the lncrna malat1. Oncogene 2016, 35, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wu, Z.; Wu, T.; Huang, Y.; Cheng, Z.; Li, X.; Sun, T.; Xie, X.; Zhou, Y.; Du, Z. Tumor-suppressive function of long noncoding rna malat1 in glioma cells by downregulation of mmp2 and inactivation of erk/mapk signaling. J. Cell Death 2016, 7, e2123. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Wang, Y.; Li, J.; Lv, M.; Niu, H.; Tian, Y. Tumor-suppressive function of long noncoding rna malat1 in glioma cells by suppressing mir-155 expression and activating fbxw7 function. Am. J. Cancer Res. 2016, 6, 2561. [Google Scholar] [PubMed]
- Ramalho-Carvalho, J.; Graça, I.; Gomez, A.; Oliveira, J.; Henrique, R.; Esteller, M.; Jerónimo, C. Downregulation of mir-130b~ 301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer. J. Hematol. Oncol. 2017, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Luo, W.; Wang, J.; Peng, T.; Sun, G.; Shi, J.; Li, Z.; Zhang, B. Malat1 activates autophagy and promotes cell proliferation by sponging mir-101 and upregulating stmn1, rab5a and atg4d expression in glioma. Biochem. Biophys. Res. Commun. 2017, 492, 480–486. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, L.; Wang, Q.; Yuan, Y. Lnc rna malat 1/mir-129 axis promotes glioma tumorigenesis by targeting sox 2. J. Cell. Mol. Med. 2018, 22, 3929–3940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sun, X.; Zhou, X.; Han, L.; Chen, L.; Shi, Z.; Zhang, A.; Ye, M.; Wang, Q.; Liu, C. Long non-coding rna hotair promotes glioblastoma cell cycle progression in an ezh2 dependent manner. Oncotarget 2015, 6, 537. [Google Scholar] [CrossRef] [Green Version]
- Ke, J.; Yao, Y.-L.; Zheng, J.; Wang, P.; Liu, Y.-H.; Ma, J.; Li, Z.; Liu, X.-B.; Li, Z.-Q.; Wang, Z.-H. Knockdown of long non-coding rna hotair inhibits malignant biological behaviors of human glioma cells via modulation of mir-326. Oncotarget 2015, 6, 21934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sa, L.; Li, Y.; Zhao, L.; Liu, Y.; Wang, P.; Liu, L.; Li, Z.; Ma, J.; Cai, H.; Xue, Y. The role of hotair/mir-148b-3p/usf1 on regulating the permeability of btb. Front. Mol. Neurosci. 2017, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhao, B.S.; Zhou, A.; Lin, K.; Zheng, S.; Lu, Z.; Chen, Y.; Sulman, E.P.; Xie, K.; Bögler, O. M6a demethylase alkbh5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining foxm1 expression and cell proliferation program. Cancer Cell 2017, 31, 591–606. e596. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.-M.; Chen, L.; Li, F.; Zhang, R.; Li, Z.-y.; Chen, F.-F.; Jiang, X.-D. Over-expression of the long non-coding rna hottip inhibits glioma cell growth by bre. J. Exp. Clin. Cancer Res. 2016, 35, 162. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, W.; Liu, G.; Xie, S.; Li, Q.; Li, Y.; Lin, Z. Long non-coding rna hottip promotes hypoxia-induced epithelial-mesenchymal transition of malignant glioma by regulating the mir-101/zeb1 axis. Biomed. Pharmacother. 2017, 95, 711–720. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Liu, Y.; Zhang, W.; Zhou, J.; Duan, R.; Pu, P.; Kang, C.; Han, L. A novel cell cycle-associated lncrna, hoxa11-as, is transcribed from the 5-prime end of the hoxa transcript and is a biomarker of progression in glioma. Cancer Lett. 2016, 373, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yi, L.; Zhao, J.-Z.; Jiang, Y.-G. Long noncoding rna hoxa11-as functions as mirna sponge to promote the glioma tumorigenesis through targeting mir-140-5p. DNA Cell Biol. 2017, 36, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; He, T.; Li, Z.; Liu, H.; Ding, B. Regulation of hoxa11-as/mir-214-3p/ezh2 axis on the growth, migration and invasion of glioma cells. Biomed. Pharmacother. 2017, 95, 1504–1513. [Google Scholar] [CrossRef]
- Yang, J.; Liu, B.; Yang, B.; Meng, Q. Long non-coding rna homeobox (hox) a11-as promotes malignant progression of glioma by targeting mir-124-3p. Neoplasma 2018, 65, 505. [Google Scholar] [PubMed] [Green Version]
- Deguchi, S.; Katsushima, K.; Hatanaka, A.; Shinjo, K.; Ohka, F.; Wakabayashi, T.; Zong, H.; Natsume, A.; Kondo, Y. Oncogenic effects of evolutionarily conserved noncoding rna econexin on gliomagenesis. Oncogene 2017, 36, 4629–4640. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, P.; Liu, J.; Zheng, J.; Liu, Y.; Chen, J.; Xue, Y. Gas5 exerts tumor-suppressive functions in human glioma cells by targeting mir-222. Mol. Ther. Oncolytics 2015, 23, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Li, Y.; Yang, L.; Ma, Y.; Peng, X.; Yang, S.; Liu, J.; Li, H. Autophagy: A novel mechanism of chemoresistance in cancers. Biomed. Pharmacother. 2019, 119, 109415. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, Y.; Hu, M.; Chen, X.; Wang, Y.; Dai, Y.; Wu, D.; Wang, Y.; Zhuang, Z.; Xia, H. Increased level of h19 long noncoding rna promotes invasion, angiogenesis, and stemness of glioblastoma cells. J. Neurosurg. 2016, 124, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jiang, P.; Sun, X.; Xu, S.; Ma, X.; Zhan, R. Suppressing h19 modulates tumorigenicity and stemness in u251 and u87mg glioma cells. Cell. Mol. Neurobiol. 2016, 36, 1219–1227. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, Y.; Luan, W.; Wang, P.; Tao, T.; Zhang, J.; Qian, J.; Liu, N.; You, Y. Long non-coding rna h19 promotes glioma cell invasion by deriving mir-675. PLoS ONE 2014, 9, e86295. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Cai, H.; Liu, X.; Chen, J.; Ma, J.; Wang, P.; Liu, Y.; Zheng, J.; Xue, Y. Long non-coding rna h19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microrna-29a. Cancer Lett. 2016, 381, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Peng, R.; Liu, Q.; Liu, D.; Du, P.; Yuan, J.; Peng, G.; Liao, Y. The lncrna h19 interacts with mir-140 to modulate glioma growth by targeting iaspp. Arch. Biochem. Biophys. 2016, 610, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Y.; He, J.; Zhang, C.; Chen, J.; Shi, D. Long noncoding rna h19 promotes proliferation and invasion in human glioma cells by downregulating mir-152. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2018, 26, 1419–1428. [Google Scholar] [CrossRef]
- Yao, Y.; Ma, J.; Xue, Y.; Wang, P.; Li, Z.; Liu, J.; Chen, L.; Xi, Z.; Teng, H.; Wang, Z. Knockdown of long non-coding rna xist exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating mir-152. Cancer Lett. 2015, 359, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, J.; Li, L.; Yang, Y.; Xu, X.; Wang, Y. Long non-coding rna xist exerts oncogenic functions in human glioma by targeting mir-137. Am. J. Transl. Res. 2017, 9, 1845. [Google Scholar]
- Cheng, Z.; Li, Z.; Ma, K.; Li, X.; Tian, N.; Duan, J.; Xiao, X.; Wang, Y. Long non-coding rna xist promotes glioma tumorigenicity and angiogenesis by acting as a molecular sponge of mir-429. J. Cancer 2017, 8, 4106. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, J.; Zhang, Y.; Yin, H.; Han, B. Crnde, a long-noncoding rna, promotes glioma cell growth and invasion through mtor signaling. Cancer Lett. 2015, 367, 122–128. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Wang, P.; Xue, Y.; Ma, J.; Qu, C.; Liu, Y. Crnde promotes malignant progression of glioma by attenuating mir-384/piwil4/stat3 axis. Mol. Ther. 2016, 24, 1199–1215. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-X.; Fei, X.-R.; Dong, Y.-F.; Cheng, C.-D.; Yang, Y.; Deng, X.-F.; Huang, H.-L.; Niu, W.-X.; Zhou, C.-X.; Xia, C.-Y. The long non-coding rna crnde acts as a cerna and promotes glioma malignancy by preventing mir-136-5p-mediated downregulation of bcl-2 and wnt2. Oncotarget 2017, 8, 88163. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Cai, J.; Wang, Q.; Wang, Y.; Liu, M.; Yang, J.; Zhou, J.; Kang, C.; Li, M.; Jiang, C. Long noncoding rna neat1, regulated by the egfr pathway, contributes to glioblastoma progression through the wnt/β-catenin pathway by scaffolding ezh2. Clin. Cancer Res. 2018, 24, 684–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, L.; Yun-hui, L.; Hong-yu, D.; Jun, M.; Yi-long, Y. Long noncoding rna neat1 promotes glioma pathogenesis by regulating mir-449b-5p/c-met axis. Tumor Biol. 2016, 37, 673–683. [Google Scholar] [CrossRef]
- Gong, W.; Zheng, J.; Liu, X.; Ma, J.; Liu, Y.; Xue, Y. Knockdown of neat1 restrained the malignant progression of glioma stem cells by activating microrna let-7e. Oncotarget 2016, 7, 62208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Xiao, Z.; Du, X.; Huang, L.; Du, G. Silencing of the long non-coding rna neat1 suppresses glioma stem-like properties through modulation of the mir-107/cdk6 pathway. Oncol. Rep. 2017, 37, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.; Zhang, C.; Yao, H.; Zhang, X.; Zhou, Y.; Che, Y.; Huang, Y. Knockdown of long non-coding rna neat1 inhibits glioma cell migration and invasion via modulation of sox2 targeted by mir-132. Mol. Cancer 2018, 17, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Cai, H.; Zheng, J.; Liu, X.; Liu, Y.; Ma, J.; Que, Z.; Gong, W.; Gao, Y.; Tao, W. Long non-coding rna neat1 regulates permeability of the blood-tumor barrier via mir-181d-5p-mediated expression changes in zo-1, occludin, and claudin-5. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2240–2254. [Google Scholar] [CrossRef]
- Teng, H.; Wang, P.; Xue, Y.; Liu, X.; Ma, J.; Cai, H.; Xi, Z.; Li, Z.; Liu, Y. Role of hcp5-mir-139-runx1 feedback loop in regulating malignant behavior of glioma cells. Mol. Ther. 2016, 24, 1806–1822. [Google Scholar] [CrossRef] [Green Version]
- Mineo, M.; Ricklefs, F.; Rooj, A.K.; Lyons, S.M.; Ivanov, P.; Ansari, K.I.; Nakano, I.; Chiocca, E.A.; Godlewski, J.; Bronisz, A. The long non-coding rna hif1a-as2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 2016, 15, 2500–2509. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Wu, L.; Yang, Q.; Ye, M.; Zhu, X. Functional linc-pou3f3 is overexpressed and contributes to tumorigenesis in glioma. Gene 2015, 554, 114–119. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Y.-H.; Yao, Y.-L.; Li, Z.; Li, Z.-Q.; Ma, J.; Xue, Y.-X. Long non-coding rna casc2 suppresses malignancy in human gliomas by mir-21. Cell. Signal. 2015, 27, 275–282. [Google Scholar] [CrossRef]
- Li, J.; Ji, X.; Wang, H. Targeting long noncoding rna hmmr-as1 suppresses and radiosensitizes glioblastoma. Neoplasia 2018, 20, 456–466. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, W. Long non-coding rna meg3 suppresses the growth of glioma cells by regulating the mir-96-5p/mtss1 signaling pathway. Mol. Med. Rep. 2019, 20, 4215–4225. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Li, H.; Liu, Y.; Zhang, Y.; Zhao, H.; Liu, F. Long non-coding rna flvcr1-as1 promotes glioma cell proliferation and invasion by negatively regulating mir-30b-3p. Mol. Med. Rep. 2020, 22, 723–732. [Google Scholar] [CrossRef]
- Li, C.; Zheng, H.; Hou, W.; Bao, H.; Xiong, J.; Che, W.; Gu, Y.; Sun, H.; Liang, P. Long non-coding rna linc00645 promotes tgf-β-induced epithelial–mesenchymal transition by regulating mir-205-3p-zeb1 axis in glioma. Cell Death Dis. 2019, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Wang, S.; Fritah, S.; Wang, X.; Zhou, W.; Yang, N.; Ni, S.; Huang, B.; Chen, A.; Li, G. Interfering with long non-coding rna mir22hg processing inhibits glioblastoma progression through suppression of wnt/β-catenin signalling. Brain 2020, 143, 512–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zottel, A.; Šamec, N.; Videtič Paska, A.; Jovčevska, I. Coding of glioblastoma progression and therapy resistance through long noncoding rnas. Cancers 2020, 12, 1842. [Google Scholar] [CrossRef] [PubMed]
- Muscat, A.M.; Wong, N.C.; Drummond, K.J.; Algar, E.M.; Khasraw, M.; Verhaak, R.; Field, K.; Rosenthal, M.A.; Ashley, D.M. The evolutionary pattern of mutations in glioblastoma reveals therapy-mediated selection. Oncotarget 2018, 9, 7844. [Google Scholar] [CrossRef] [PubMed]
- Strobel, H.; Baisch, T.; Fitzel, R.; Schilberg, K.; Siegelin, M.D.; Karpel-Massler, G.; Debatin, K.-M.; Westhoff, M.-A. Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016, 3, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.-L.; Liu, J.-F.; Zhang, M.-Y.; Lan, S.; Yang, Z.-Y.; Fang, J.-S. Lncrna neat1 promotes malignant phenotypes and tmz resistance in glioblastoma stem cells by regulating let-7g-5p/map3k1 axis. Biosci Rep. 2020, 40, BSR20201111. [Google Scholar] [CrossRef]
- Van Meir, E.G.; Hadjipanayis, C.G.; Norden, A.D.; Shu, H.K.; Wen, P.Y.; Olson, J.J. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA Cancer J. Clin. 2010, 60, 166–193. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, Y.; Guo, R.; Li, H.; Yang, B. Microarray expression profiles and bioinformatics analysis of mrnas, lncrnas, and circrnas in the secondary temozolomide-resistant glioblastoma. Investig. New Drugs 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Fritah, S.; Muller, A.; Jiang, W.; Mitra, R.; Sarmini, M.; Dieterle, M.; Golebiewska, A.; Ye, T.; Van Dyck, E.; Herold-Mende, C. Temozolomide-induced rna interactome uncovers novel lncrna regulatory loops in glioblastoma. Cancers 2020, 12, 2583. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, X.-K.; Li, J.-L.; Kong, K.-K.; Li, H.; Chen, C.; He, J.; Wang, F.; Li, P.; Ge, X.-S. Malat1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing mir-203 and promoting thymidylate synthase expression. Oncotarget 2017, 8, 22783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Yuan, X.; Yan, D.; Li, D.; Guan, F.; Dong, Y.; Wang, H.; Liu, X.; Yang, B. Long non-coding rna malat1 decreases the sensitivity of resistant glioblastoma cell lines to temozolomide. Cell. Physiol. Biochem. 2017, 42, 1192–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, T.; Liu, Y.; Xiao, J. Long noncoding rna malat 1 knockdown reverses chemoresistance to temozolomide via promoting micro rna-101 in glioblastoma. Cancer Med. 2018, 7, 1404–1415. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-S.; Harford, J.B.; Moghe, M.; Rait, A.; Pirollo, K.F.; Chang, E.H. Targeted nanocomplex carrying sirna against malat1 sensitizes glioblastoma to temozolomide. Nucleic Acids Res. 2018, 46, 1424–1440. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Tian, Y.; Chen, Y.; Zhang, G. The silencing of lncrna-h19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the wnt/β-catenin pathway. Oncotargets Ther. 2018, 11, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, P.; Wang, P.; Sun, X.; Yuan, Z.; Zhan, R.; Ma, X.; Li, W. Knockdown of long noncoding rna h19 sensitizes human glioma cells to temozolomide therapy. Oncotargets Ther. 2016, 9, 3501. [Google Scholar]
- Duan, S.; Li, M.; Wang, Z.; Wang, L.; Liu, Y. H19 induced by oxidative stress confers temozolomide resistance in human glioma cells via activating nf-κb signaling. Oncotargets Ther. 2018, 11, 6395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Wei, Y.; Wang, X.; Zhang, Z.; Yin, J.; Li, W.; Chen, L.; Lyu, X.; Shi, Z.; Yan, W. DNA-methylation-mediated activating of lncrna snhg12 promotes temozolomide resistance in glioblastoma. Mol. Cancer 2020, 19, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yin, J.; Lu, C.; Wei, Y.; Zeng, A.; You, Y. Exosomal transfer of long non-coding rna sbf2-as1 enhances chemoresistance to temozolomide in glioblastoma. J. Exp. Clin. Cancer Res. 2019, 38, 1–16. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, W.; Shang, Z.; Li, W.; Chen, S. Inhibition of lncrna linc00461/mir-216a/aquaporin 4 pathway suppresses cell proliferation, migration, invasion, and chemoresistance in glioma. Open Life Sci. 2020, 15, 532–543. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, L.; Chen, S.; Cao, H.; Xu, C.; Wang, X. Lncrna ccat2 enhanced resistance of glioma cells against chemodrugs by disturbing the normal function of mir-424. Oncotargets Ther. 2020, 13, 1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, P.; Zhao, H.; Peng, R.; Liu, Q.; Yuan, J.; Peng, G.; Liao, Y. Lncrna-xist interacts with mir-29c to modulate the chemoresistance of glioma cell to tmz through DNA mismatch repair pathway. Biosci. Rep. 2017, 37, BSR20170696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Cheng, Y.; Yuan, Z.; Wang, F.; Yang, L.; Zhao, H. Nck1-as1 increases drug resistance of glioma cells to temozolomide by modulating mir-137/trim24. Cancer Biother. Radiopharm. 2020, 35, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Li, X.; Chen, H.; Zeng, A.; Shi, Y.; Tang, Y. The lncrna-dleu2/mir-186-5p/pdk3 axis promotes the progress of glioma cells. Am. J. Transl. Res. 2019, 11, 4922. [Google Scholar]
- Gu, N.; Wang, X.; Di, Z.; Xiong, J.; Ma, Y.; Yan, Y.E.; Qian, Y.; Zhang, Q.; Yu, J. Silencing lncrna foxd2-as1 inhibits proliferation, migration, invasion and drug resistance of drug-resistant glioma cells and promotes their apoptosis via microrna-98-5p/cpeb4 axis. Aging 2019, 11, 10266. [Google Scholar] [CrossRef]
- Chen, W.-L.; Chen, H.-J.; Hou, G.-Q.; Zhang, X.-H.; Ge, J.-W. Linc01198 promotes proliferation and temozolomide resistance in a nedd4-1-dependent manner, repressing pten expression in glioma. Aging 2019, 11, 6053. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sheng, J.; Yu, W.; Wang, K.; Zhu, S.; Liu, Q. Lncrna mir155hg promotes temozolomide resistance by activating the wnt/β-catenin pathway via binding to ptbp1 in glioma. Cell. Mol. Neurobiol. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhou, J.; Wang, C.; Chi, Y.; Wei, Q.; Fu, Z.; Lian, C.; Huang, Q.; Liao, C.; Yang, Z. Lncrna sox2ot promotes temozolomide resistance by elevating sox2 expression via alkbh5-mediated epigenetic regulation in glioblastoma. Cell Death Dis. 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Gao, Y.; Liang, H. Hotair/mir-125 axis-mediated hexokinase 2 expression promotes chemoresistance in human glioblastoma. J. Cell. Mol. Med. 2020, 24, 5707–5717. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Liu, B.; Lian, C.; Doycheva, D.M.; Fu, Z.; Liu, Y.; Zhou, J.; He, Z.; Yang, Z.; Huang, Q. Long noncoding rna ac003092. 1 promotes temozolomide chemosensitivity through mir-195/tfpi-2 signaling modulation in glioblastoma. Cell Death Dis. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Shang, C.; Tang, W.; Pan, C.; Hu, X.; Hong, Y. Long non-coding rna tusc7 inhibits temozolomide resistance by targeting mir-10a in glioblastoma. Cancer Chemother. Pharmacol. 2018, 81, 671–678. [Google Scholar] [CrossRef]
- Baspinar, Y.; Elmaci, I.; Ozpinar, A.; Altinoz, M.A. Long non-coding rna malat1 as a key target in pathogenesis of glioblastoma. Janus faces or achilles’ heal? Gene 2020, 739, 144518. [Google Scholar] [CrossRef]
- Voce, D.J.; Bernal, G.M.; Wu, L.; Crawley, C.D.; Zhang, W.; Mansour, N.M.; Cahill, K.E.; Szymura, S.J.; Uppal, A.; Raleigh, D.R. Temozolomide treatment induces lncrna malat1 in an nf-κb and p53 codependent manner in glioblastoma. Cancer Res. 2019, 79, 2536–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafouri-Fard, S.; Esmaeili, M.; Taheri, M. H19 lncrna: Roles in tumorigenesis. Biomed. Pharmacother. 2020, 123, 109774. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xu, Z.; Chen, X.; Wang, X.; Zeng, S.; Zhao, Z.; Qian, L.; Li, Z.; Wei, J.; Huo, L. Novel function of lncrna adamts9-as2 in promoting temozolomide resistance in glioblastoma via upregulating the fus/mdm2 ubiquitination axis. Front. Cell Dev. Biol. 2019, 7, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shangguan, W.; Lv, X.; Tian, N. Foxd2-as1 is a prognostic factor in glioma and promotes temozolomide resistance in a o6-methylguanine-DNA methyltransferase-dependent manner. Korean J. Physiol. Pharmacol. 2019, 23, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.-L.; Xu, Q.-S.; Wu, Z.-X.; Xu, S.-J.; Shen, J. Lncrna neat1 is involved in temozolomide resistance by regulating mgmt in glioblastoma multiforme. Clin. Surg. Res. Commun. 2018, 2, 24–30. [Google Scholar] [CrossRef]
lncRNA | Full Name | Expression Pattern | Targets | Major Finding | Ref. |
---|---|---|---|---|---|
MALAT1 | Metastasis-associated lung adenocarcinoma transcript 1 | Upregulated | Wnt signaling | Promotes cell migration, but not proliferation, in glioblastoma cell lines LN-229, LN-18, and LN-428. | [54] |
Downregulated | Erk/MAPK signaling MMP2 | Knockdown of MALAT1 promotes cell proliferation and invasion, whereas overexpression of MALAT1 induces reductions in cell proliferation and invasion in U87 and U251 cells and tumorigenicity in both subcutaneous and intracranial human glioma xenograft models. | [55] | ||
Downregulated | miR-155 FBXW7 | Suppression of cell proliferation in U87 and SHG139 cells. | [56] | ||
Upregulated | Rap1B miR-101 | Promotes proliferation and suppresses apoptosis. | [57] | ||
Upregulated | miR-101 STMN1 RAB5A ATG4D | Activates autophagy and promotes cell proliferation. | [58] | ||
Upregulated | miR-129 SOX2 | Promotes glioma tumorigenesis. | [59] | ||
HOTAIR | Hox transcript antisense intergenic RNA | Upregulated | PRC2 | Promotes cell cycle. | [60] |
Upregulated | miR-326 FGF1 | Knockdown of HOTAIR was found to exert a suppressive function on cellular proliferation in vitro and in vivo. | [61] | ||
Upregulated | miR-148b-3p USF1 | Knockdown of HOTAIR can also increase the permeability of the blood-tumor barrier (BTB) in glioma microvascular endothelial cells facilitating the delivery of antineoplastic drugs. | [62] | ||
FOXM1-AS | Forkhead box M1 lncRNA | Upregulated | ALKBH5 FOXM1 | Promotes tumorigenesis through the FOXM1 axis in vitro and in a mouse intracranial xenograft model. | [63] |
HOTTIP | HOXA distal transcript antisense RNA | Downregulated | BRE | Inhibits cell proliferation and cell cycle progression, and it promotes apoptosis. | [64] |
Upregulated | HIF-1α miR-101 ZEB1 | In glioma cells treated by hypoxia, HOTTIP is significantly upregulated and associated with the epithelial-mesenchymal transition (EMT) process and metastasis. | [65] | ||
HOXA11-AS | Homeobox A11-AS | Upregulated | HOXA | Promotes cell proliferation by the regulation of cell cycle progression in vitro and in vivo. | [66] |
Upregulated | miR-140-5p | Promotes the glioma tumorigenesis. | [67] | ||
Upregulated | miR-214-3p EZH2 | Promotes growth, migration, and invasion of glioma cells. | [68] | ||
Upregulated | miR-124-3p | Promotes malignant progression of glioma. | [69] | ||
ECONEXIN | LINC00461 | Downregulated | miR-411-5p TOP2A | Decreased cell proliferation. | [70] |
GAS5 | Growth Arrest-Specific 5 | Downregulated | Bm Plexin C1 miR-222 | Inhibits cell proliferation. Gas5 knockdown suppresses glioma growth and prolongs the survival of tumor-bearing nude mice in vivo. | [71] |
Downregulated | miR-196a-5p FOXO1 | Inhibits glioma cell proliferation, migration, and invasion. | [72] | ||
H19 | - | Upregulated | - | Promotes invasion, angiogenesis, and stemness of glioblastoma cells. | [73] |
Upregulated | CD133 NANOG Oct4 Sox2 | Increased cellular proliferation and suppressed apoptosis. | [74] | ||
Upregulated | miR-675 CDK6 Cadherin | Promote glioma cell invasion. | [61,75] | ||
Upregulated | miR-29a | Regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells. | [76] | ||
Upregulated | miR-140 iASPP | Modulates glioma growth. | [77] | ||
Upregulated | miR-152 | Promotes proliferation and invasion in human glioma cells. | [78] | ||
XIST | X-inactive specific transcript | Upregulated | miR-152 | Knockdown exerts tumor-suppressive functions in human glioblastoma stem cells. | [79] |
Upregulated | miR-137 | Knockdown of long non-coding RNA XIST increases blood-tumor barrier permeability and inhibits glioma angiogenesis. | [67] | ||
Upregulated | miR-137 | Exerts oncogenic functions. | [80] | ||
Upregulated | miR-429 | Promotes glioma tumorigenicity and angiogenesis. | [81] | ||
CRNDE | - | Upregulated | mTOR signaling | Promotes glioma cell growth and invasion. | [82] |
Upregulated | miR-186 | Affects the malignant biological characteristics of human glioma stem cells. | [71] | ||
Upregulated | miR-384 PIWIL4 STAT3 | Promotes malignant progression of glioma. | [83] | ||
Upregulated | miR-136-5p Bcl-2 Wnt2 | Acts as a ceRNA and promotes glioma malignancy. | [84] | ||
NEAT1 | Nuclear-enriched abundant transcript 1 | Upregulated | ICAT GSK3B Axin2 EZH2 | Promotes glioma cell growth and invasion. | [85] |
Upregulated | miR-449b-5p c-Met | Promotes glioma pathogenesis. | [86] | ||
Upregulated | let-7e | Knockdown of NEAT1 restrains the malignant progression of glioma stem cells. | [87] | ||
Upregulated | miR-107 CDK6 | Promotes glioma stem-like properties. | [88] | ||
Upregulated | SOX2 miR-132 | Promotes glioma cell migration and invasion. | [89] | ||
Upregulated | miR-181d-5p ZO-1 occludin claudin-5 | Regulates permeability of the blood-tumor barrier. | [90] | ||
HCP5 | Histocompatibility leukocyte antigen (HLA) complex P5 | Upregulated | microRNA-139 RUNX1 | Promotes the malignant behaviour of glioma cells. | [91] |
HIF1A-AS2 | Hypoxia-inducible factor 1 alpha-antisense RNA 2 | Upregulated | - | Controls cellular fate and the molecular landscape of mesenchymal (Glioma stem cells) GSCs maintain the function of mesenchymal GSCs in tumorigenicity and contribute to GSCs’ speciation and adaptation to hypoxic stress. | [92] |
RAMP2-AS1 | Downregulated | DHC10 NOTCH3 HES1 | Cell growth suppression. | [18] | |
linc-POU3F3 | Long intergenic noncoding RNA POU3F3 | Upregulated | POU3F3 | Promotes cell viability and proliferation. | [93] |
CASC2 | Cancer susceptibility candidate 2 | Downregulated | miR-21 | Inhibition of glioma growth, migration, and invasion and promotion of cell apoptosis. | [94] |
HMMR-AS1 | - | Upregulated | c-Myc | Promotes cell migration, invasion, and mesenchymal phenotypes. | [95] |
MEG3 | Maternally expressed gene 3 | Downregulated | miR-96-5p MTSS1 | Suppresses the growth of glioma cells. | [96] |
FLVCR1-AS1 | Feline leukemia virus subgroup C cellular Receptor 1 Antisense RNA 1 | Upregulated | miR-30b-3p | Promotes glioma cell proliferation and invasion. | [97] |
MIR22HG | MIR22 host gene | Upregulated | Wnt/β-catenin signalling | Increase cell proliferation, invasion, and in vivo tumor growth. | [98] |
linc00645 | Long intergenic non-protein coding RNA 645 | Upregulated | miR-205-3p | Modulates (Transforming growth factor beta) TGF-β-induced glioma cell migration and invasion. | [99] |
lncRNAs | Expression Pattern in Glioblastoma | Roles in Drug Resistance | Mechanism of Action | Ref. |
---|---|---|---|---|
MALAT1 | Upregulated | Temozolomide treatment-induced lncRNA MALAT1. MALAT1 was a target for chemosensitization of glioblastoma. | It was dependent on NF-κB and p53. | [108] |
MALAT1 | Upregulated | MALAT-1 was upregulated in temozolomide-resistant glioblastoma patients’ tissues. | MALAT-1 inhibited miR-203 expression, hence leading to MDR development. | [108] |
MALAT1 | Upregulated | siRNA mediated silencing of MALAT-1 in temozolomide-resistant cells reversed MDR. | Downregulating MALAT-1 resulted in the significant inhibition of the expression levels of major drug transporters and modulation of EMT. | [109] |
MALAT1 | Upregulated | MALAT1 overcame the temozolomide-MDR in cells. | MALAT-1 knockdown resulted in the upregulation of miR-101 and downregulation of glycogen synthase kinase. | [110] |
MALAT1 | Upregulated | The silencing of MALAT-1 increased the sensitivity of glioblastoma cells to temozolomide. | siRNA significantly decreased the growth, motility, and stemness of glioblastoma cells. | [111] |
H19 | Upregulated | H19 downregulation resulted in significant reversing of MDR in resistant cells. | H19 downregulation inhibits the expression of EMT markers and suppresses Wnt/β-catenin signaling. | [112] |
H19 | Upregulated | H19 was upregulated in temozolomide-resistant glioblastoma cells. | Downregulating H19 significantly suppresses the expression levels of major drug transporters. | [113] |
H19 | Upregulated | H19 was overexpressed in resistant cells. | Activation of the NF-κB signaling pathway was a mechanism for H19-mediated MDR in glioblastoma. | [114] |
SNHG12 | Upregulated | SNHG12 promoted the development of temozolomide resistance in glioblastoma cells. SNHG12 knockdown led to chemosensitization in resistant cells. | SNHG12 acted as a sponge for miR-129-5p. It increased the expression levels of MAPK1 and E2F7, led to upregulation of MAPK1 and E2F7, hence promoted cell proliferation and suppressing apoptosis. | [115] |
SBF2-AS1 | Upregulated | SBF2-AS1 enhanced temozolomide-MDR in glioblastoma cells. | It increased DNA repair capacity. SBF2-AS1 serves as a ceRNA for miR-151a-3p. | [116] |
LINC00461 | Upregulated | It promoted cell proliferation, migration, invasion, in glioblastoma, as well as temozolomide resistance. | LINC00461 was a ceRNA for miR-216a. | [117] |
CCAT2 | Upregulated | It promoted cell proliferation and invasion and developed MDR against temozolomide in glioblastoma cells. | Sponged miR-424. | [118] |
XIST | Upregulated | It promoted cell proliferation and invasion and developed MDR against temozolomide in glioblastoma cells. | Targeted miR-29c. | [119] |
NCK1-AS1 | Upregulated | It promoted cell proliferation and invasion and developed MDR against temozolomide in glioblastoma cells. | Targeted miR-137. | [120] |
SNHG15 | Upregulated | It promoted cell proliferation and invasion and developed MDR against temozolomide in glioblastoma cells. | Targeted miR-627. | [106] |
DLEU2 | Upregulated | It promoted cell proliferation and invasion and developed MDR against temozolomide in glioblastoma cells. | Targeted miR-186-5p. | [121] |
FOXD2 | Upregulated | It promoted cell proliferation and invasion and developed MDR against temozolomide in glioblastoma cells. | Sponged miR-98-5p. | [122] |
LINC01198 | Upregulated | It promoted drug resistance in glioblastoma cells. | Upregulated NEDD4-1 and downregulated PTEN. | [123] |
MIR155HG | Upregulated | MIR155HG-induced temozolomide resistance. | Targeted and activated the Wnt/β-catenin pathway. | [124] |
SOX2OT | Upregulated | SOX2OT is involved in the development of MDR against temozolomide in glioblastoma cells. | Upregulated SOX2 expression, which activated the Wnt5a/β-catenin signaling pathway. | [125] |
EPIC1 | Upregulated | EPIC1 plays a critical role in temozolomide resistance. | It targeted Cdc20. | [16] |
HOTAIR | Downregulated | It had an inhibitory role in developing MDR against temozolomide. | Increased expression levels of Hexokinase 2 by targeting miR-125. | [126] |
AC003092.1 | Downregulated | Overexpression of lncRNA AC003092.1 overcame temozolomide resistance. | Modulated miR-195/TFPI-2 signaling. | [127] |
TUSC7 | Downregulated | TUSC7 is inhibited temozolomide resistance. | Targeted miR-10a in glioblastoma cells. | [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahinfar, P.; Baradaran, B.; Davoudian, S.; Vahidian, F.; Cho, W.C.-S.; Mansoori, B. Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma. Genes 2021, 12, 455. https://doi.org/10.3390/genes12030455
Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WC-S, Mansoori B. Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma. Genes. 2021; 12(3):455. https://doi.org/10.3390/genes12030455
Chicago/Turabian StyleMahinfar, Parvaneh, Behzad Baradaran, Sadaf Davoudian, Fatemeh Vahidian, William Chi-Shing Cho, and Behzad Mansoori. 2021. "Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma" Genes 12, no. 3: 455. https://doi.org/10.3390/genes12030455
APA StyleMahinfar, P., Baradaran, B., Davoudian, S., Vahidian, F., Cho, W. C.-S., & Mansoori, B. (2021). Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma. Genes, 12(3), 455. https://doi.org/10.3390/genes12030455