Appropriate Reference Genes for RT-qPCR Normalization in Various Organs of Anemone flaccida Fr. Schmidt at Different Growing Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Total RNA Isolation and Quality Control
2.2. Candidate Reference Gene Selections
2.3. Primer Design and Amplification Efficiency Test
2.4. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
2.5. Statistical Analysis on Gene Expression Stability
3. Results
3.1. Validating Expression Levels of Candidate Reference Genes
3.2. Expression Stability of Candidate Reference Genes
3.2.1. geNorm Analysis
3.2.2. NormFinder Analysis
3.2.3. BestKeeper Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, X.Y.; Yang, Y.; Wu, W.B.; Li, X.M.; Zhong, M.C.; Su, X.H.; Jia, S.W.; Lin, N. Triterpenoid saponin W3 from Anemone flaccida suppresses osteoclast differentiation through inhibiting activation of MAPKs and NF-kappa B pathways. Int. J. Biol. Sci. 2015, 11, 1204–1214. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.Y.; Wu, W.B.; Yang, Y.; Wan, H.Y.; Li, X.M.; Zhong, M.C.; Zhao, H.Y.; Su, X.H.; Jia, S.W.; Ju, D.H.; et al. Total saponin from Anemone flaccida Fr. Schmidt abrogates osteoclast differentiation and bone resorption via the inhibition of RANKL-induced NF-kappa B.; JNK and p38 MAPKs activation. J. Transl. Med. 2015, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bing, F.H.; Zhang, G.B. National five class of new drugs-Diwu rheumatic analgesic capsule. Hubei J. Tradit. Chin. Med. 2005, 27, 48–49. [Google Scholar]
- Zhang, Z.C.; Geng, M.J.; Yang, T.W.; Liu, W.; Wang, J.; Xin, L.; Liu, B.C.; Zhu, D.W. Studies on tissue culture of Anemone flaccida. Chin. Tradit. Herbal Drugs 2010, 41, 1168–1172. [Google Scholar]
- Wang, J.; Zhu, D.W.; Yang, T.W.; Liu, B.C.; Yang, R.W.; Geng, M.J. Optimization of multiplication medium for adventitious bud of Anemone flaccida. Pharm. Biotechnol. 2012, 19, 45–48. [Google Scholar]
- Xin, L. Effects of Mineral Nutrition on Growth and Medicinal Ingredients of Anemone flaccida Fr. Schmidt. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar]
- Batista, D.S.; Moreira, V.S.; Felipe, S.H.S.; Fortini, E.A.; Silva, T.D.; Chagas, K.; Louback, E.; Romanel, E.; Costa, M.G.C.; Otoni, W.C. Reference gene selection for qPCR in Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] as affected by various abiotic factors. Plant Cell Tissue Organ Cult. 2019, 138, 97–107. [Google Scholar] [CrossRef]
- Zhan, C.S.; Li, X.H.; Zhao, Z.Y.; Yang, T.W.; Wang, X.K.; Luo, B.B.; Zhang, Q.Y.; Hu, Y.R.; Hu, X.B. Comprehensive analysis of the triterpenoid saponins biosynthetic pathway in Anemone flaccida by transcriptome and proteome profiling. Front. Plant Sci. 2016, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.C.; Chen, Z.L.; Ju, Y.Q.; Zhang, H.; Cai, M.; Pan, H.T.; Zhang, Q.X. Reference gene selection for qPCR analysis of flower development in Lagerstroemia indica and L. speciosa. PLoS ONE 2018, 13, e0195004. [Google Scholar]
- Libault, M.; Thibivilliers, S.; Bilgin, D.D.; Radwan, O.; Benitez, M.; Clough, S.J.; Stacey, G. Identification of four soybean reference genes for gene expression normalization. Plant Genome 2008, 1, 44–54. [Google Scholar] [CrossRef]
- Mo, X.L.; Zhou, Z.W.; Ba, Y.C.; Wu, Q.Y.; Lai, Z.X.; Sun, Y. Bioinformatics of phytochrome gene family members of tea, its expression and correlation with flavonoid content. J. South. Agric. 2019, 50, 1173–1182. [Google Scholar]
- Li, J.T.; Han, X.P.; Wang, C.; Qi, W.Z.; Zhang, W.Y.; Tang, L.; Zhao, X.T. Validation of suitable reference genes for RT-qPCR data in Achyranthes bidentata Blume under different experimental conditions. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhao, M.M.; Song, C.; Luo, A.X.; Bai, J.F.; Guo, S.X. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Anoectochilus roxburghii. Mol. Biol. Rep. 2012, 39, 5905–5912. [Google Scholar] [CrossRef] [PubMed]
- Baud, S.; Wuillème, S.; Dubreucq, B.; De Almeida, A.; Vuagnat, C.; Lepiniec, L.; Miquel, M.; Rochat, C. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J. 2007, 52, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.L.; Ma, J.B.; Wang, J.R.; Wu, X.M.; Li, P.B.; Yao, Y.N. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR. Front. Plant Sci. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.L.; Luo, K.C.; Luo, L.P.; Li, E.X.; Guan, B.C.; Xiong, D.J.; Sun, B.T.; Peng, K.; Yang, B.Y. Evaluation of candidate reference genes for gene expression studies in Cymbidium kanran. Sci. Hortic. 2014, 167, 43–48. [Google Scholar] [CrossRef]
- Castro, P.; Castro, P.; Román, B.; Rubio, J.; Die, J. Selection of reference genes for expression studies in Cicer arietinum L.: Analysis of cyp81E3 gene expression against Ascochyta rabiei. Mol. Breed. 2012, 29, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Huis, R.; Hawkins, S.; Neutelings, G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol. 2010, 10, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Goossens, K.; Van, P.M.; Van, S.A.; Vandesompele, J.; Van, Z.A.; Peelman, L.J. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 2005, 5, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, L.; Mauriat, M.; Guénin, S.; Pelloux, J.; Lefebvre, J.F.; Louvet, R.; Rusterucci, C.; Moritz, T.; Guerineau, F.; Bellini, C.; et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 2008, 6, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van, R.N.; De, P.A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 12–13. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes.; differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Czechowski, T.; Stitt, M.; Altmann, T.; Udvardi, M.K.; Scheible, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.R.; Nam, H.Y.; Kim, S.U.; Kim, S.I.; Chang, Y.J. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol. Lett. 2003, 25, 1869–1872. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.T.; Shi, Q.Q.; Yang, T.X.; Fei, Z.X.; Wei, A.Z. Expression stabilities of ten candidate reference genes for RT-qPCR in Zanthoxylum bungeanum Maxim. Molecular 2018, 23, 802. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Q.; Sun, M.Y.; Zhu, L.L.; Yang, M.; Zhao, Y. Selection of reference genes for quantitative real-time PCR normalization in Panax ginseng at different stages of growth and in different organs. PLoS ONE 2014, 9, e112177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhu, C.S.; Huo, Y.B.; Zhang, B.; Ma, Z.Q.; Feng, J.T.; Zhang, X. Validation of suitable reference genes for quantitative gene expression analysis in Tripterygium wilfordii. Mol. Biol. Rep. 2019, 46, 4161–4174. [Google Scholar] [CrossRef]
- Yue, H.; Deng, P.C.; Liu, S.Y.; Wang, M.; Song, W.N.; Nie, X.J. Selection and evaluation of reference genes for quantitative gene expression analysis in broomcorn millet (Panicum miliaceum L.). J. Plant Biol. 2016, 59, 435–439. [Google Scholar] [CrossRef]
- Cheng, T.; Zhu, F.L.; Sheng, J.J.; Zhao, L.L.; Zhou, F.S.; Hu, Z.L.; Diao, Y.; Jin, S.R. Selection of suitable reference genes for quantitive real-time PCR normalization in Miscanthus lutarioriparia. Mol. Biol. Rep. 2019, 10, 4545–4553. [Google Scholar] [CrossRef]
- Li, C.Q.; Hu, L.Z.; Wang, X.Q.; Liu, H.Z.; Tian, H.H.; Wang, J.S. Selection of reliable reference genes for gene expression analysis in seeds at different developmental stages and across various tissues in Paeonia ostii. Mol. Biol. Rep. 2019, 46, 6003–6011. [Google Scholar] [CrossRef]
- Gonzalez-Aguilera, K.L.; Saad, C.F.; Montes, R.A.C.; Alves-Ferreira, M.; de Folter, S. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1. Front. Plant Sci. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iskandar, H.M.; Simpson, R.S.; Casu, R.E.; Bonnett, G.D.; Maclean, D.J.; Manners, J.M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane (Saccharum sp.). Plant Mol. Biol. Rep. 2004, 22, 325–337. [Google Scholar] [CrossRef]
- Nicot, N.; Hausman, J.F.; Hoffmann, L.; Evers, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 2005, 56, 2907–2914. [Google Scholar] [CrossRef]
- Zhong, H.Y.; Chen, J.W.; Li, C.Q.; Chen, L.; Wu, J.Y.; Chen, J.Y.; Lu, W.J.; Li, J.G. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep. 2011, 30, 641–653. [Google Scholar] [CrossRef] [PubMed]
Gene | Gene Name | Primer Sequence (5′-3′) | Amplicon Length (bp) | Tm (°C) | Determination Coefficient (R2) | E |
---|---|---|---|---|---|---|
β-tubulin | Beta-tubulin | F: GCCTGCTTGAATGTGGAGAATCT | 129 | 57.8 | 0.980 | 1.84 |
R: CCCTTCACAAATCGCAATCTCAAC | 57.9 | |||||
PUBQ | Polyubiquitin | F: CAAGTGACACCAATGCCCTAAACT | 151 | 57.9 | 0.975 | 1.86 |
R: GATGGCAGGGTATATTTTCCTACGC | 59.6 | |||||
ETIF1a | Eukaryotic translation initation factor 1A | F: TGTTCTTCGGCATGGCTACT | 126 | 55.4 | 0.981 | 2.00 |
R: CCACGGCTCTCGTTCATCTAA | 57.6 | |||||
ubiquitin | Ubiquitin | F: CTCATCACCAGCACCTACATC | 146 | 54.9 | 0.992 | 2.01 |
R: CCGATTCCGCAACCAAGT | 54.9 | |||||
PKII | Pyruvate kinase II | F: GATGATGCTGCGGCTTGAAG | 137 | 57.4 | 0.983 | 2.08 |
R: CCAACAGACGGATTGGATTATCTC | 57.9 | |||||
GAPDH | Glyceraldehyde-3- phosphate dehydrogenase | F: CCGAGTCCTGGATCTGATT | 124 | 55.6 | 0.997 | 2.13 |
R: GGGTGCAAACTAGATAACTGG | 55.2 | |||||
α-tubulin | Alpha-tubulin | F: ACATGCGATGTAATGGCAAGAAGC | 134 | 57.9 | 0.963 | 1.81 |
R: GGTGCTTGTTCTGTTCTCCAGTGA | 59.6 | |||||
EF1A | Elongation Factor 1-α | F: AGGCGGAGAGGCTTATCA | 147 | 54.9 | 0.984 | 1.92 |
R: GAGGTCTACTAATCTGGACTGGTA | 57.9 | |||||
hh2a | Histone H2A | F: TCAGCTTCAGCTCAAGCACTAACATCAG | 145 | 61.1 | 0.905 | 2.00 |
R: GGCGTTCCTGTGGTGTAGTTGTATGG | 62.7 | |||||
28S rRNA | 28S ribosomal RNA | F: TCTAGTAACGGCGAGTGAAG | 156 | 55.4 | 0.984 | 1.94 |
R: GGAACTTAGGTCGGTGGTTA | 55.4 |
Rank | Total | VR | VL | FR | FL | WR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | Stability | Gene | Stability | Gene | Stability | Gene | Stability | Gene | Stability | Gene | Stability | |
1 | PUBQ | 0.094 | EF1A | 0.002 | PUBQ | 0.002 | PUBQ | 0.004 | PUBQ | 0.004 | EF1A | 0.001 |
2 | EF1A | 0.167 | PUBQ | 0.003 | ETIF1a | 0.002 | ETIF1a | 0.004 | EF1A | 0.004 | β-tubulin | 0.001 |
3 | ETIF1a | 0.206 | α-tubulin | 0.004 | EF1A | 0.011 | ubiquitin | 0.031 | ETIF1a | 0.017 | ubiquitin | 0.026 |
4 | β-tubulin | 0.210 | ETIF1a | 0.006 | α-tubulin | 0.078 | hh2a | 0.106 | β-tubulin | 0.018 | PUBQ | 0.046 |
5 | hh2a | 0.316 | hh2a | 0.029 | hh2a | 0.091 | PKII | 0.166 | 28SrRNA | 0.086 | ETIF1a | 0.055 |
6 | ubiquitin | 0.344 | β-tubulin | 0.124 | 28SrRNA | 0.102 | EF1A | 0.173 | α-tubulin | 0.211 | GAPDH | 0.060 |
7 | α-tubulin | 0.372 | ubiquitin | 0.162 | PKII | 0.103 | GAPDH | 0.335 | PKII | 0.212 | α-tubulin | 0.083 |
8 | GAPDH | 0.494 | GAPDH | 0.208 | GAPDH | 0.189 | α-tubulin | 0.441 | ubiquitin | 0.212 | 28SrRNA | 0.091 |
9 | PKII | 0.506 | 28SrRNA | 0.297 | ubiquitin | 0.295 | β-tubulin | 0.519 | hh2a | 0.662 | hh2a | 0.188 |
10 | 28SrRNA | 0.635 | PKII | 0.661 | β-tubulin | 0.299 | 28SrRNA | 0.562 | GAPDH | 0.877 | PKII | 0.208 |
Rank | Total | VR | VL | FR | FL | WR |
---|---|---|---|---|---|---|
1 | PUBQ | PUBQ | PUBQ | ETIF1a | ETIF1a | ETIF1a |
CV ± SD | 0.14 ± 0.04 | 0.27 ± 0.07 | 0.13 ± 0.04 | 0.07 ± 0.02 | 0.04 ± 0.01 | 0.05 ± 0.02 |
2 | EF1A | EF1A | hh2a | PUBQ | PUBQ | PUBQ |
CV ± SD | 0.76 ± 0.18 | 0.35 ± 0.08 | 0.15 ± 0.04 | 0.10 ± 0.03 | 0.07 ± 0.02 | 0.07 ± 0.02 |
3 | hh2a | ETIF1a | ETIF1a | EF1A | β-tubulin | EF1A |
CV ± SD | 0.96 ± 0.25 | 0.31 ± 0.09 | 0.19 ± 0.05 | 0.12 ± 0.03 | 0.11 ± 0.03 | 0.14 ± 0.03 |
4 | ETIF1a | β-tubulin | 28SrRNA | ubiquitin | EF1A | β-tubulin |
CV ± SD | 0.98 ± 0.26 | 0.31 ± 0.09 | 0.47 ± 0.14 | 0.22 ± 0.06 | 0.22 ± 0.06 | 0.12 ± 0.04 |
5 | β-tubulin | α-tubulin | α-tubulin | 28SrRNA | PKII | α-tubulin |
CV ± SD | 1.02 ± 0.29 | 0.42 ± 0.10 | 0.70 ± 0.15 | 0.26 ± 0.07 | 0.78 ± 0.17 | 0.21 ± 0.05 |
6 | ubiquitin | ubiquitin | β-tubulin | β-tubulin | ubiquitin | ubiquitin |
CV ± SD | 2.15 ± 0.52 | 0.47 ± 0.11 | 0.56 ± 0.16 | 0.32 ± 0.09 | 0.79 ± 0.19 | 0.32 ± 0.08 |
7 | GAPDH | hh2a | EF1A | hh2a | 28SrRNA | GAPDH |
CV ± SD | 2.14 ± 0.55 | 0.51 ± 0.14 | 0.70 ± 0.16 | 1.24 ± 0.33 | 0.69 ± 0.19 | 0.38 ± 0.10 |
8 | PKII | GAPDH | PKII | GAPDH | α-tubulin | hh2a |
CV ± SD | 2.47 ± 0.58 | 0.53 ± 0.14 | 0.96 ± 0.23 | 1.71 ± 0.44 | 1.37 ± 0.31 | 0.51 ± 0.14 |
9 | α-tubulin | 28SrRNA | GAPDH | PKII | hh2a | 28SrRNA |
CV ± SD | 2.98 ± 0.69 | 0.91 ± 0.24 | 1.13 ± 0.29 | 2.69 ± 0.65 | 2.19 ± 0.58 | 0.48 ± 0.14 |
10 | 28SrRNA | PKII | ubiquitin | α-tubulin | GAPDH | PKII |
CV ± SD | 2.56 ± 0.71 | 2.61 ± 0.63 | 1.75 ± 0.41 | 2.88 ± 0.67 | 2.99 ± 0.78 | 0.94 ± 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhou, H.; Nie, Z.; Wang, X.; Luo, B.; Yi, Z.; Li, X.; Hu, X.; Yang, T. Appropriate Reference Genes for RT-qPCR Normalization in Various Organs of Anemone flaccida Fr. Schmidt at Different Growing Stages. Genes 2021, 12, 459. https://doi.org/10.3390/genes12030459
Zhao Z, Zhou H, Nie Z, Wang X, Luo B, Yi Z, Li X, Hu X, Yang T. Appropriate Reference Genes for RT-qPCR Normalization in Various Organs of Anemone flaccida Fr. Schmidt at Different Growing Stages. Genes. 2021; 12(3):459. https://doi.org/10.3390/genes12030459
Chicago/Turabian StyleZhao, Zeying, Hanwen Zhou, Zhongnan Nie, Xuekui Wang, Biaobiao Luo, Zhijie Yi, Xinghua Li, Xuebo Hu, and Tewu Yang. 2021. "Appropriate Reference Genes for RT-qPCR Normalization in Various Organs of Anemone flaccida Fr. Schmidt at Different Growing Stages" Genes 12, no. 3: 459. https://doi.org/10.3390/genes12030459
APA StyleZhao, Z., Zhou, H., Nie, Z., Wang, X., Luo, B., Yi, Z., Li, X., Hu, X., & Yang, T. (2021). Appropriate Reference Genes for RT-qPCR Normalization in Various Organs of Anemone flaccida Fr. Schmidt at Different Growing Stages. Genes, 12(3), 459. https://doi.org/10.3390/genes12030459