Genome-Wide Association Studies and Prediction of Tan Spot (Pyrenophora tritici-repentis) Infection in European Winter Wheat via Different Marker Platforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Analyses of the Phenotypic Data
2.2. Collection and Analyses of the Genotypic Data
2.3. Genome-Wide Association Studies
2.4. Genome-Wide Predictions
3. Results
3.1. Phenotypic Data Analyses Reveal Significant Genetic Variation and a Strong Negative Correlation of Tan Spot Infection with Plant Height
3.2. GWAS Reveals Medium- to Large-Effect Loci Controlling the Tan Spot
3.3. Genome-Wide Prediction Studies Show That Marker Density, Marker Platform, and Genetic Models Do Not Substantially Influence the Prediction Accuracies
4. Discussion
4.1. A Parallel Exploitation of Genetic Variation and Morphological Escape Traits Can Help Improve the Tan Spot Resistance in Wheat
4.2. The Influence of Rht-D1 and QTs.ipk-7A on the Tan Spot for Marker-Assisted Selection
4.3. Genome-Wide Prediction Accuracy Reveals the Prospects of Genome-Wide Selection for Tan Spot Resistance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMullen, M.; Adhikari, T. Fungal Leaf Spot Diseases of Wheat: Tan Spot, Stagonospora nodorum Blotch and Septoria tritici Blotch; North Dakota State University: Fargo, ND, USA, 2009. [Google Scholar]
- De Wolf, E.; Effertz, R.; Ali, S.; Francl, L. Vistas of tan spot research. Can. J. Plant Pathol. 1998, 20, 349–370. [Google Scholar] [CrossRef]
- Rees, R.; Platz, G.; Mayer, R. Yield losses in wheat from yellow spot: Comparison of estimates derived from single tillers and plots. Aust. J. Agric. Res. 1982, 33, 899–908. [Google Scholar] [CrossRef]
- Rees, R.; Platz, G. Effects of yellow spot on wheat: Comparison of epidemics at different stages of crop development. Aust. J. Agric. Res. 1983, 34, 39–46. [Google Scholar] [CrossRef]
- Shabeer, A.; Bockus, W. Tan spot effects on yield and yield components relative to growth stage in winter wheat. Plant Dis. 1988, 72, 599–602. [Google Scholar] [CrossRef]
- Rees, R.; Platz, G. The occurrence and control of yellow spot of wheat in north-eastern Australia. Aust. J. Exp. Agric. 1979, 19, 369–372. [Google Scholar] [CrossRef]
- Bockus, W.W.; Claassen, M.M. Effects of crop rotation and residue management practices on severity of tan spot of winter wheat. Plant Dis. 1992, 76, 633–636. [Google Scholar] [CrossRef]
- Sutton, J.; Vyn, T. Crop sequences and tillage practices in relation to diseases of winter wheat in Ontario. Can. J. Plant Pathol. 1990, 12, 358–368. [Google Scholar] [CrossRef]
- Ciuffetti, L.M.; Manning, V.A.; Pandelova, I.; Betts, M.F.; Martinez, J.P. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis—Wheat interaction. New Phytol. 2010, 187, 911–919. [Google Scholar] [CrossRef]
- Faris, J.D.; Liu, Z.; Xu, S.S. Genetics of tan spot resistance in wheat. Theor. Appl. Genet. 2013, 126, 2197–2217. [Google Scholar] [CrossRef] [PubMed]
- Strelkov, S.; Lamari, L. Host–parasite interactions in tan spot [Pyrenophora tritici-repentis] of wheat. Can. J. Plant Pathol. 2003, 25, 339–349. [Google Scholar] [CrossRef]
- Faris, J.; Anderson, J.A.; Francl, L.; Jordahl, J. Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 1996, 86, 459–463. [Google Scholar] [CrossRef]
- Effertz, R.; Anderson, J.; Francl, L. Restriction fragment length polymorphism mapping of resistance to two races of Pyrenophora tritici-repentis in adult and seedling wheat. Phytopathology 2001, 91, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Abeysekara, N.S.; Friesen, T.L.; Liu, Z.; McClean, P.E.; Faris, J.D. Marker development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 in hexaploid wheat. Plant Genome 2010, 3. [Google Scholar] [CrossRef]
- Faris, J.D.; Zhang, Z.; Lu, H.; Lu, S.; Reddy, L.; Cloutier, S.; Fellers, J.P.; Meinhardt, S.W.; Rasmussen, J.B.; Xu, S.S. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. USA 2010, 107, 13544–13549. [Google Scholar] [CrossRef]
- Singh, P.; Gonzalez-Hernandez, J.; Mergoum, M.; Ali, S.; Adhikari, T.; Kianian, S.; Elias, E.; Hughes, G. Identification and molecular mapping of a gene conferring resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathology 2006, 96, 885–889. [Google Scholar] [CrossRef]
- Tadesse, W.; Hsam, S.L.; Wenzel, G.; Zeller, F.J. Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. × Aegilops tauschii Coss.). Crop Sci. 2006, 46, 1212–1217. [Google Scholar] [CrossRef]
- Tadesse, W.; Hsam, S.; Zeller, F. Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ‘Salamouni’. Plant Breed. 2006, 125, 318–322. [Google Scholar] [CrossRef]
- Singh, P.; Mergoum, M.; Gonzalez-Hernandez, J.; Ali, S.; Adhikari, T.; Kianian, S.; Elias, E.; Hughes, G. Genetics and molecular mapping of resistance to necrosis inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol. Breed. 2008, 21, 293–304. [Google Scholar] [CrossRef]
- Liu, Y.; Salsman, E.; Wang, R.; Galagedara, N.; Zhang, Q.; Fiedler, J.D.; Liu, Z.; Xu, S.; Faris, J.D.; Li, X. Meta-QTL analysis of tan spot resistance in wheat. Theor. Appl. Genet. 2020, 133, 2363–2375. [Google Scholar] [CrossRef]
- Gurung, S.; Mamidi, S.; Bonman, J.; Jackson, E.; Del Rio, L.; Acevedo, M.; Mergoum, M.; Adhikari, T. Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor. Appl. Genet. 2011, 123, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.S.; Mamidi, S.; Bonman, J.M.; Adhikari, T.B. Identification of QTL in spring wheat associated with resistance to a novel isolate of Pyrenophora tritici-repentis. Crop Sci. 2013, 53, 842–852. [Google Scholar] [CrossRef]
- Kollers, S.; Rodemann, B.; Ling, J.; Korzun, V.; Ebmeyer, E.; Argillier, O.; Hinze, M.; Plieske, J.; Kulosa, D.; Ganal, M.W. Genome-wide association mapping of tan spot resistance (Pyrenophora tritici-repentis) in European winter wheat. Mol. Breed. 2014, 34, 363–371. [Google Scholar] [CrossRef]
- Liu, Z.; El-Basyoni, I.; Kariyawasam, G.; Zhang, G.; Fritz, A.; Hansen, J.; Marais, F.; Friskop, A.; Chao, S.; Akhunov, E.; et al. Evaluation and association mapping of resistance to tan spot and Stagonospora nodorum blotch in adapted winter wheat germplasm. Plant Dis. 2015, 99, 1333–1341. [Google Scholar] [CrossRef]
- Juliana, P.; Singh, R.P.; Singh, P.K.; Poland, J.A.; Bergstrom, G.C.; Huerta-Espino, J.; Bhavani, S.; Crossa, J.; Sorrells, M.E. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor. Appl. Genet. 2018, 131, 1405–1422. [Google Scholar] [CrossRef] [PubMed]
- Dinglasan, E.G.; Singh, D.; Shankar, M.; Afanasenko, O.; Platz, G.; Godwin, I.D.; Voss-Fels, K.P.; Hickey, L.T. Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. Theor. Appl. Genet. 2019, 132, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Galagedara, N.; Liu, Y.; Fiedler, J.; Shi, G.; Chiao, S.; Xu, S.S.; Faris, J.D.; Li, X.; Liu, Z. Genome-wide association mapping of tan spot resistance in a worldwide collection of durum wheat. Theor. Appl. Genet. 2020, 133, 2227–2237. [Google Scholar] [CrossRef] [PubMed]
- Kokhmetova, A.; Sehgal, D.; Ali, S.; Atishova, M.; Kumarbayeva, M.; Leonova, I.; Dreisigacker, S. Genome-wide association study of tan spot resistance in a hexaploid wheat collection from Kazakhstan. Front. Genet. 2020, 11, 581214. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Juliana, P.; Singh, R.P.; Singh, P.K.; Crossa, J.; Rutkoski, J.E.; Poland, J.A.; Bergstrom, G.C.; Sorrells, M.E. Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat. Plant Genome 2017, 10. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, Y.; Rodemann, B.; Plieske, J.; Kollers, S.; Korzun, V.; Ebmeyer, E.; Argillier, O.; Hinze, M.; Ling, J.; et al. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity 2015, 114, 318–326. [Google Scholar] [CrossRef]
- Muqaddasi, Q.H.; Zhao, Y.; Rodemann, B.; Plieske, J.; Ganal, M.W.; Röder, M.S. Genome-wide association mapping and prediction of adult stage Septoria tritici blotch infection in European winter wheat via high-density marker arrays. Plant Genome 2019, 12, 180029. [Google Scholar] [CrossRef]
- Srinivasachary; Gosman, N.; Steed, A.; Hollins, T.; Bayles, R.; Jennings, P.; Nicholson, P. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor. Appl. Genet. 2009, 118, 695. [Google Scholar] [CrossRef]
- Zanke, C.D.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; Hinze, M.; Neumann, K.; et al. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS ONE 2014, 9, e113287. [Google Scholar] [CrossRef]
- Zanke, C.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; Hinze, M.; Beier, S.; et al. Genetic architecture of main effect QTL for heading date in European winter wheat. Front. Plant Sci. 2014, 5, 217. [Google Scholar] [CrossRef] [PubMed]
- Sorrells, M.E.; Gustafson, J.P.; Somers, D.; Chao, S.; Benscher, D.; Guedira-Brown, G.; Huttner, E.; Kilian, A.; McGuire, P.E.; Ross, K.; et al. Reconstruction of the Synthetic W7984 × Opata M85 wheat reference population. Genome 2011, 54, 875–882. [Google Scholar] [CrossRef]
- Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203. [Google Scholar] [CrossRef] [PubMed]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Utz, H.F.; Melchinger, A.E.; Schön, C.C. Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 2000, 154, 1839–1849. [Google Scholar]
- Habier, D.; Fernando, R.L.; Dekkers, J.C. The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177, 2389–2397. [Google Scholar] [CrossRef]
- Pérez, P.; de Los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014, 198, 483–495. [Google Scholar] [CrossRef]
- Gianola, D.; Fernando, R.L.; Stella, A. Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 2006, 173, 1761–1776. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Core Team: Diepoldsau, Switzerland, 2013. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 200–255. [Google Scholar] [CrossRef]
- Kollers, S.; Rodemann, B.; Ling, J.; Korzun, V.; Ebmeyer, E.; Argillier, O.; Hinze, M.; Plieske, J.; Kulosa, D.; Ganal, M.W.; et al. Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS ONE 2013, 8, e57500. [Google Scholar] [CrossRef]
- Muqaddasi, Q.H.; Brassac, J.; Koppolu, R.; Plieske, J.; Ganal, M.W.; Röder, M.S. TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Korzun, V.; Röder, M.; Ganal, M.; Worland, A.; Law, C. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 1998, 96, 1104–1109. [Google Scholar] [CrossRef]
- Würschum, T.; Langer, S.M.; Longin, C.F.H.; Tucker, M.R.; Leiser, W.L. A modern Green Revolution gene for reduced height in wheat. Plant J. 2017, 92, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Heslot, N.; Yang, H.P.; Sorrells, M.E.; Jannink, J.L. Genomic selection in plant breeding: A comparison of models. Crop Sci. 2012, 52, 146–160. [Google Scholar] [CrossRef]
Df | Sum Sq | Mean Sq | F-Value | Pr(>F) | Sig. | SD | ||
---|---|---|---|---|---|---|---|---|
Genotype | 371 | 113.03 | 0.3 | 1.49 | 6.48 × 10−5 | *** | 0.050 | 0.224 |
Env. | 1 | 260.42 | 260.4 | 1273.89 | <2.00 × 10−16 | *** | 0.700 | 0.836 |
Residuals | 371 | 75.84 | 0.2 | 0.204 | 0.452 |
QTL | Marker | Chr. | Pos. (bp) | |log10(P)| | MAF | |
---|---|---|---|---|---|---|
QTs.ipk-7A | Ex_c37521_670 | 7A | 246258333 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | wsnp_Ra_c12708_20281439 | 7A | 246258437 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | BS00067759_51 | 7A | 247662756 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | AX_94420810 | 7A | 247662758 | 3.82 | 0.06 | 18.75 |
QTs.ipk-7A | Ex_c6348_1205 | 7A | 249279881 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | Excalibur_c15904_1331 | 7A | 250037145 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | wsnp_Ex_c4819_8600618 | 7A | 252176134 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | RAC875_c109483_523 | 7A | 254386961 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | wsnp_Ex_c26560_35803210 | 7A | 254386961 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | wsnp_be471272A_Ta_2_1 | 7A | 260905626 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | Excalibur_rep_c67182_584 | 7A | 263177287 | 4.25 | 0.07 | 21.23 |
QTs.ipk-7A | Tdurum_contig10174_155 | 7A | 263177287 | 4.25 | 0.07 | 21.23 |
QTs.ipk-7A | RAC875_rep_c81362_344 | 7A | 272339544 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | AX_94706782 | 7A | 272997798 | 3.82 | 0.06 | 18.75 |
QTs.ipk-7A | wsnp_Ex_rep_c102317_87512660 | 7A | 272997798 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | BS00036422_51 | 7A | 275545643 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | wsnp_Ra_c13009_20690735 | 7A | 275919716 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | wsnp_Ex_c5330_9422106 | 7A | 275920469 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7A | BS00066695_51 | 7A | 282368577 | 3.78 | 0.06 | 18.57 |
QTs.ipk-7B | AX_94652561 | 7B | 709082422 | 4.07 | 0.40 | 5.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muqaddasi, Q.H.; Kamal, R.; Mirdita, V.; Rodemann, B.; Ganal, M.W.; Reif, J.C.; Röder, M.S. Genome-Wide Association Studies and Prediction of Tan Spot (Pyrenophora tritici-repentis) Infection in European Winter Wheat via Different Marker Platforms. Genes 2021, 12, 490. https://doi.org/10.3390/genes12040490
Muqaddasi QH, Kamal R, Mirdita V, Rodemann B, Ganal MW, Reif JC, Röder MS. Genome-Wide Association Studies and Prediction of Tan Spot (Pyrenophora tritici-repentis) Infection in European Winter Wheat via Different Marker Platforms. Genes. 2021; 12(4):490. https://doi.org/10.3390/genes12040490
Chicago/Turabian StyleMuqaddasi, Quddoos H., Roop Kamal, Vilson Mirdita, Bernd Rodemann, Martin W. Ganal, Jochen C. Reif, and Marion S. Röder. 2021. "Genome-Wide Association Studies and Prediction of Tan Spot (Pyrenophora tritici-repentis) Infection in European Winter Wheat via Different Marker Platforms" Genes 12, no. 4: 490. https://doi.org/10.3390/genes12040490
APA StyleMuqaddasi, Q. H., Kamal, R., Mirdita, V., Rodemann, B., Ganal, M. W., Reif, J. C., & Röder, M. S. (2021). Genome-Wide Association Studies and Prediction of Tan Spot (Pyrenophora tritici-repentis) Infection in European Winter Wheat via Different Marker Platforms. Genes, 12(4), 490. https://doi.org/10.3390/genes12040490