Identification of Novel Candidate Genes and Variants for Hearing Loss and Temporal Bone Anomalies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Dai, P.; Huang, L.H.; Wang, G.J.; Gao, X.; Qu, C.Y.; Chen, X.W.; Ma, F.R.; Zhang, J.; Xing, W.L.; Xi, S.Y.; et al. Concurrent hearing and genetic screening of 180,469 neonates with follow-up in Beijing, China. Am. J. Hum. Genet. 2019, 105, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Omichi, R.; Shibata, S.B.; Morton, C.C.; Smith, R.J.H. Gene therapy for hearing loss. Hum. Mol. Genet. 2019, 29, R65–R79. [Google Scholar] [CrossRef] [PubMed]
- Azaiez, H.; Booth, K.T.; Ephraim, S.S.; Crone, B.; Black-Ziegelbein, E.A.; Marini, R.J.; Shearer, A.E.; Sloan-Heggen, C.M.; Kolbe, D.; Casavant, T.; et al. Genomic landscape and mutational signatures of deafness-associated genes. Am. J. Hum. Genet. 2018, 103, 484–497. [Google Scholar] [CrossRef] [Green Version]
- Girotto, G.; Morgan, A.; Krishnamoorthy, N.; Cocca, M.; Brumat, M.; Bassani, S.; La Bianca, M.; Di Stazio, M.; Gasparini, P. Next generation sequencing and animal models reveal SLC9A3R1 as a new gene involved in human age-related hearing loss. Front. Genet. 2020, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liu, Y.; Xia, W.; Hu, J.; Ma, Z. Identification of ANLN as a new likely pathogenic gene of branchio-otic syndrome in a three-generation Chinese family. Mol. Genet. Genomic Med. 2019, 7, e00525. [Google Scholar] [CrossRef] [PubMed]
- Bademci, G.; Abad, C.; Incesulu, A.; Elian, F.; Reyahi, A.; Diaz-Horta, O.; Cengiz, F.B.; Sineni, C.J.; Seyhan, S.; Atli, E.I.; et al. FOXF2 is required for cochlear development in humans and mice. Hum. Mol. Genet. 2019, 28, 1286–1297. [Google Scholar] [CrossRef]
- Xia, W.; Hu, J.; Ma, J.; Huang, J.; Jing, T.; Deng, L.; Zhang, J.; Jiang, N.; Ma, D.; Ma, Z. Mutations in TOP2B cause autosomal-dominant hereditary hearing loss via inhibition of the PI3K-Akt signalling pathway. FEBS Lett. 2019, 593, 2008–2018. [Google Scholar] [CrossRef]
- Peter, V.G.; Quinodoz, M.; Pinto-Basto, J.; Sousa, S.B.; Di Gioia, S.A.; Soares, G.; Ferraz Leal, G.; Silva, E.D.; Pescini Gobert, R.; Miyake, N.; et al. The Liberfarb syndrome, a multisystemic disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in the PISD gene. Genet. Med. 2019, 21, 2734–2743. [Google Scholar] [CrossRef] [Green Version]
- Schrauwen, I.; Melegh, B.I.; Chakchouk, I.; Acharya, A.; Nasir, A.; Poston, A.; Cornejo-Sanchez, D.M.; Szabo, Z.; Karosi, T.; Bene, J.; et al. Hearing impairment locus heterogeneity and identification of PLS1 as a new autosomal dominant gene in Hungarian Roma. Eur. J. Hum. Genet. 2019, 27, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.; Koboldt, D.C.; Barrie, E.S.; Crist, E.R.; Garcia, G.G.; Mezzavilla, M.; Faletra, F.; Mosher, T.M.; Wilson, R.K.; Blanchet, C.; et al. Mutations in PLS1, encoding fimbrin, cause autosomal dominant nonsyndromic hearing loss. Hum. Mutat. 2019, 40, 2286–2295. [Google Scholar] [CrossRef]
- Dunbar, L.A.; Patni, P.; Aguilar, C.; Mburu, P.; Corns, L.; Wells, H.R.; Delmaghani, S.; Parker, A.; Johnson, S.; Williams, D.; et al. Clarin-2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Mol. Med. 2019, 11, e10288. [Google Scholar] [CrossRef]
- Boyden, L.M.; Atzmony, L.; Hamilton, C.; Zhou, J.; Lim, Y.H.; Hu, R.; Pappas, J.; Rabin, R.; Ekstien, J.; Hirsch, Y.; et al. Recessive mutations in AP1B1 cause ichthyosis, deafness, and photophobia. Am. J. Hum. Genet. 2019, 105, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, Y.; Chen, L.; Wang, Q.; Zeng, Z.; Dong, C.; Qi, Y.; Liu, Y. Whole exome sequencing identifies SCD5 as a novel causative gene for autosomal dominant nonsyndromic deafness. Eur. J. Med. Genet. 2020, 63, 103855. [Google Scholar] [CrossRef]
- Tucker, E.J.; Rius, R.; Jaillard, S.; Bell, K.; Lamont, P.J.; Travessa, A.; Dupont, J.; Sampaio, L.; Dulon, J.; Vuillaumier-Barrot, S.; et al. Genomic sequencing highlights the diverse molecular causes of Perrault syndrome: A peroxisomal disorder (PEX6), metabolic disorders (CLPP, GGPS1), and mtDNA maintenance/translation disorders (LARS2, TFAM). Hum. Genet. 2020, 139, 1325–1343. [Google Scholar] [CrossRef]
- Reghan Foley, A.; Zou, Y.; Dunford, J.E.; Rooney, J.; Chandra, G.; Xiong, H.; Straub, V.; Voit, T.; Romero, N.; Donkervoort, S.; et al. GGPS1 mutations cause muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Ann. Neurol. 2020, 88, 332–347. [Google Scholar] [CrossRef]
- Mutai, H.; Wasano, K.; Momozawa, Y.; Kamatani, Y.; Miya, F.; Masuda, S.; Morimoto, N.; Nara, K.; Takahashi, S.; Tsunoda, T.; et al. Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet 2020, 16, e1008643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeill, A.; Iovino, E.; Mansard, L.; Vache, C.; Baux, D.; Bedoukian, E.; Cox, H.; Dean, J.; Goudie, D.; Kumar, A.; et al. SLC12A2 variants cause a neurodevelopmental disorder or cochleovestibular defect. Brain 2020, 143, 2380–2387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, Y.; Zhang, R.; Sun, F.; Cheng, C.; Qian, F.; Duan, X.; Wei, G.; Sun, C.; Pang, X.; et al. THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis. PLoS Genet. 2020, 16, e1008953. [Google Scholar] [CrossRef] [PubMed]
- Schrauwen, I.; Kari, E.; Mattox, J.; Llaci, L.; Smeeton, J.; Naymik, M.; Raible, D.W.; Knowles, J.A.; Gage Crump, J.; Huentelman, M.J.; et al. De novo variants in GREB1L are associated with inner ear malformations and deafness. Hum. Genet. 2018, 137, 459–470. [Google Scholar] [CrossRef]
- Kari, E.; Llaci, L.; Go, J.L.; Naymik, M.; Knowles, J.A.; Leal, S.M.; Rangasamy, S.; Huentelman, M.J.; Liang, W.; Friedman, R.A.; et al. Genes implicated in rare congenital inner ear and cochleovestibular nerve malformations. Ear Hear. 2020, 41, 983–989. [Google Scholar] [CrossRef]
- Schrauwen, I.; Liaqat, K.; Schatteman, I.; Bharadwaj, T.; Nasir, A.; Acharya, A.; Ahmad, W.; Van Camp, G.; Leal, S.M. Autosomal dominantly inherited GREB1L variants in individuals with profound sensorineural hearing impairment. Genes 2020, 11, 687. [Google Scholar] [CrossRef]
- Campbell, C.; Cucci, R.A.; Prasad, S.; Green, G.E.; Edeal, J.B.; Galer, C.E.; Karniski, L.P.; Sheffield, V.C.; Smith, R.J. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum. Mutat. 2001, 17, 403–411. [Google Scholar] [CrossRef]
- Noonan, K.Y.; Russo, J.; Shen, J.; Rehm, H.; Halbach, S.; Hopp, E.; Noon, S.; Hoover, J.; Eskey, C.; Saunders, J.E. CDH23 related hearing loss: A new genetic risk factor for semicircular canal dehiscence? Otol. Neurotol. 2016, 37, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Kenna, M.A.; Rehm, H.L.; Frangulov, A.; Feldman, H.A.; Robson, C.D. Temporal bone abnormalities in children with GJB2 mutations. Laryngoscope 2011, 121, 630–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Kok, Y.J.; van der Maarel, S.M.; Bitner-Glindzicz, M.; Huber, I.; Monaco, A.P.; Malcolm, S.; Pembrey, M.E.; Ropers, H.H.; Cremers, F.P. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 1995, 267, 685–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmaleh-Berges, M.; Baumann, C.; Noel-Petroff, N.; Sekkal, A.; Couloigner, V.; Devriendt, K.; Wilson, M.; Marlin, S.; Sebag, G.; Pingault, V. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations. AJNR Am. J. Neuroradiol. 2013, 34, 1257–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kari, E.; Llaci, L.; Go, J.L.; Naymik, M.; Knowles, J.A.; Leal, S.M.; Rangasamy, S.; Huentelman, M.J.; Friedman, R.A.; Schrauwen, I. A de novo SIX1 variant in a patient with a rare nonsyndromic cochleovestibular nerve abnormality, cochlear hypoplasia, and bilateral sensorineural hearing loss. Mol. Genet. Genomic Med. 2019, 7, e995. [Google Scholar] [CrossRef] [PubMed]
- Vesseur, A.C.; Verbist, B.M.; Westerlaan, H.E.; Kloostra, F.J.J.; Admiraal, R.J.C.; van Ravenswaaij-Arts, C.M.A.; Free, R.H.; Mylanus, E.A.M. CT findings of the temporal bone in CHARGE syndrome: Aspects of importance in cochlear implant surgery. Eur. Arch. Otorhinolaryngol. 2016, 273, 4225–4240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papsin, B.C. Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope 2005, 115, 1–26. [Google Scholar] [CrossRef]
- Yoon, P.J.; Sumalde, A.A.M.; Ray, D.C.; Newton, S.; Cass, S.P.; Chan, K.H.; Santos-Cortez, R.L.P. Novel variants in hearing loss genes and associations with audiometric thresholds in a multi-ethnic cohort of US patients with cochlear implants. Otol. Neurotol. 2020, 41, 978–985. [Google Scholar] [CrossRef]
- Chiong, C.M.; Cutiongco-de la Paz, E.M.; Reyes-Quintos, M.R.T.; Tobias, C.A.M.; Hernandez, K.; Santos-Cortez, R.L.P. GJB2 variants and auditory outcomes among Filipino cochlear implantees. Audiol. Neurotol. Extra 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Chiong, C.M.; Reyes-Quintos, M.R.T.; Yarza, T.K.L.; Tobias-Grasso, C.A.M.; Acharya, A.; Leal, S.M.; Mohlke, K.L.; Mayol, N.L.; Cutiongco-de la Paz, E.M.; Santos-Cortez, R.L.P. The SLC26A4 c.706C>G (p.Leu236Val) variant is a frequent cause of nonsyndromic hearing impairment in Filipino cochlear implantees. Otol. Neurotol. 2018, 39, e726–e730. [Google Scholar] [CrossRef] [PubMed]
- Truong, B.T.; Yarza, T.K.L.; Bootpetch Roberts, T.; Roberts, S.; Xu, J.; Steritz, M.J.; Tobias-Grasso, C.A.M.; Azamian, M.; Lalani, S.R.; Mohlke, K.L.; et al. Exome sequencing reveals novel variants and unique allelic spectrum for hearing impairment in Filipino cochlear implantees. Clin. Genet. 2020, 95, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Rodelsperger, C.; Schuelke, M.; Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, E.M.; Halees, A.; Itan, Y.; Spencer, E.G.; He, Y.; Azab, M.A.; Gabriel, S.B.; Belkadi, A.; Boisson, B.; Abel, L.; et al. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nat. Genet. 2016, 48, 1071–1076. [Google Scholar] [CrossRef]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 2011, 32, 894–899. [Google Scholar] [CrossRef]
- GenomeAsia 100 K Consortium. The GenomeAsia 100 K Project enables genetic discoveries across Asia. Nature 2019, 576, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorvaldsdottir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Yu, C.; Chou, X.; Yuan, W.; Wang, Y.; Bu, L.; Fu, G.; Qian, M.; Yang, J.; Shi, Y.; et al. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat. Genet. 2001, 27, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Nam, S.H.; Jang, K.T.; Lee, S.H.; Kim, C.C.; Hahn, S.H.; Hu, J.C.C.; Simmer, J.P. A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type II. Hum. Genet. 2004, 115, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.X.; Peng, H.; Yang, L.; Hao, Q.Q.; Sun, W.; Ji, F.; Guo, W.W.; Yang, S.M. Familial nonsyndromic hearing loss with incomplete partition type II by novel DSPP gene mutations. Acta Otolaryngol. 2018, 138, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Chang, P.Y.; Chang, S.C.; Lu, J.J.; Wu, C.M. Mutation screening in non-syndromic hearing loss patients with cochlear implantation by massive parallel sequencing in Taiwan. PLoS ONE 2019, 14, e0211261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajoghli, B.; Ramialison, M.; Aghaallaei, N.; Czerny, T.; Wittbrodt, J. Identification of starmaker-like in medaka as a putative target gene of Pax2 in the otic vesicle. Dev. Dyn. 2009, 238, 2860–2866. [Google Scholar] [CrossRef]
- Prasad, M.; Zhu, Q.; Sun, Y.; Wang, X.; Kulkarni, A.; Boskey, A.; Feng, J.Q.; Qin, C. Expression of dentin sialophosphoprotein in non-mineralized tissues. J. Histochem. Cytochem. 2011, 59, 1009–1021. [Google Scholar] [CrossRef] [Green Version]
- Kruszka, P.; Hu, T.; Hong, S.; Signer, R.; Cogne, B.; Isidor, B.; Mazzola, S.E.; Giltay, J.C.; van Gassen, K.L.I.; England, E.M.; et al. Phenotype delineation of ZNF462 related syndrome. Am. J. Med. Genet. A 2019, 179, 2075–2082. [Google Scholar] [CrossRef]
- Helou, J.; Otto, E.A.; Attanasio, M.; Allen, S.J.; Parisi, M.A.; Glass, I.; Utsch, B.; Hashmi, S.; Fazzi, E.; Omran, H.; et al. Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior-Loken syndrome. J. Med. Genet. 2007, 44, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesdorp, M.; de Koning Gans, P.A.M.; Schraders, M.; Oostrik, J.; Huynen, M.A.; Venselaar, H.; Beynon, A.J.; van Gaalen, J.; Piai, V.; Voermans, N.; et al. Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. Hum. Genet. 2018, 137, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Schrauwen, I.; Chakchouk, I.; Liaqat, K.; Jan, A.; Nasir, A.; Hussain, S.; Nickerson, D.A.; Bamshad, M.J.; Ullah, A.; Ahmad, W.; et al. A variant in LMX1A causes autosomal recessive severe-to-profound hearing impairment. Hum. Genet. 2018, 137, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Barat-Houari, M.; Sarrabay, G.; Gatinois, V.; Fabre, A.; Dumont, B.; Genevieve, D.; Touitou, I. Mutation update for COL2A1 gene variants associated with type II collagenopathies. Hum. Mutat. 2016, 37, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Steffes, G.; Lorente-Canovas, B.; Pearson, S.; Brooker, R.H.; Spiden, S.; Kiernan, A.E.; Guenet, J.L.; Steel, K.P. Mutanlallemand (mtl) and belly spot and deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS ONE 2012, 7, e051065. [Google Scholar] [CrossRef] [Green Version]
- Nichols, D.H.; Pauley, S.; Jahan, I.; Beisel, K.W.; Millen, K.J.; Fritzsch, B. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res. 2008, 334, 339–358. [Google Scholar] [CrossRef] [Green Version]
- Maddox, B.K.; Garofalo, S.; Horton, W.A.; Richardson, M.D.; Trune, D.R. Craniofacial and otic capsule abnormalities in a transgenic mouse strain with a Col2a1 mutation. J. Craniofac. Genet. Dev. Biol. 1998, 18, 195–201. [Google Scholar]
- Happ, H.; Schilter, K.F.; Weh, E.; Reis, L.M.; Semina, E.V. 8q21.11 microdeletion in two patients with syndromic peters anomaly. Am. J. Med. Genet. A 2016, 170, 2471–2475. [Google Scholar] [CrossRef] [Green Version]
- Palomares, M.; Delicado, A.; Mansilla, E.; de Torres, M.L.; Vallespin, E.; Fernandez, L.; Martinez-Glex, V.; Garcia-Minaur, S.; Nevado, J.; Santos Simarro, F.; et al. Characterization of a 8q21.11 microdeletion syndrome associated with intellectual disability and a recognizable phenotype. Am. J. Hum. Genet. 2011, 89, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Salehi, P.; Ge, M.X.; Gundimeda, U.; Baum, L.M.; Cantu, H.L.; Lavinsky, J.; Tao, L.; Myint, A.; Cruz, C.; Wang, J.; et al. Role of neuropilin-1/semaphoring-3A signaling in the functional and morphological integrity of the cochlea. PLoS Genet. 2017, 13, e1007048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Guo, H.; Ou, M.; Hou, X.; Sun, G.; Gong, W.; Jing, H.; Tan, Q.; Xue, W.; Dai, Y.; et al. ARHGAP4 mutated in a Chinese intellectually challenged family. Gene 2016, 578, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Poke, G.; Gecz, J.; Gibson, K. A novel contiguous gene deletion of AVPR2 and ARHGAP4 genes in male dizygotic twins with nephrogenic diabetes insipidus and intellectual disability. Am. J. Med. Genet. A 2012, 158, 2511–2518. [Google Scholar] [CrossRef]
- Chen, D.Y.; Liu, X.F.; Lin, X.J.; Zhang, D.; Chai, Y.C.; Yu, D.H.; Sun, C.L.; Wang, X.L.; Zhu, W.D.; Chen, Y.; et al. A dominant variant in DMXL2 is linked to nonsyndromic hearing loss. Genet. Med. 2017, 19, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Wonkam-Tingang, E.; Schrauwen, I.; Esoh, K.K.; Bharadwaj, T.; Nouel-Saied, L.M.; Acharya, A.; Nasir, A.; Leal, S.M.; Wonkam, A. A novel variant in DMXL2 gene is associated with autosomal dominant non-syndromic hearing impairment (DFNA71) in a Cameroonian family. Exp. Biol. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Esposito, A.; Falace, A.; Wagner, M.; Gal, M.; Mei, D.; Conti, V.; Pisano, T.; Aprile, D.; Cerullo, M.S.; De Fusco, A.; et al. Biallelic DMXL2 mutations impair autophagy and cause Ohtahara syndrome with progressive course. Brain 2019, 142, 3876–3891. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, N.; Moteki, H.; Azaiez, H.; Booth, K.T.; Takahashi, M.; Arai, Y.; Shearer, A.E.; Sloan, C.M.; Nishio, S.Y.; Kolbe, D.L.; et al. Novel PTPRQ mutations identified in three congenital hearing loss patients with various types of hearing loss. Ann. Otol. Rhinol. Laryngol. 2015, 124, 184S–192S. [Google Scholar] [CrossRef] [Green Version]
- Eisenberger, T.; Di Donato, N.; Decker, C.; Vedove, A.D.; Neuhaus, C.; Nurnberg, G.; Toliat, M.; Nurnberg, P.; Murbe, D.; Bolz, H.J. A C-terminal nonsense mutation links PTPRQ with autosomal-dominant hearing loss, DFNA73. Genet. Med. 2018, 20, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wang, S.; Chen, S.; Wen, Y.Y.; Liu, B.; Xie, W.; Li, D.; Liu, L.; Huang, X.; Sun, Y.; et al. Autosomal recessive congenital sensorineural hearing loss due to a novel compound heterozygous PTPRQ mutation in a Chinese family. Neural. Plast. 2018, 2018, 9425725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vierzen, P.B.; Joosten, F.B.; Marres, H.A.; Cremers, C.W.; Ruijs, J.H. Mandibulofacial dysostosis: CT findings of the temporal bones. Eur. J. Radiol. 1995, 21, 53–57. [Google Scholar] [CrossRef]
- Guan, Y.; Yang, H.; Yao, X.; Xu, H.; Liu, H.; Tang, X.; Hao, C.; Zhang, X.; Zhao, S.; Ge, W.; et al. Clinical and genetic spectrum of children with primary ciliary dyskinesia in China. Chest 2021. [Google Scholar] [CrossRef]
- Blue, E.; Louie, T.L.; Chong, J.X.; Hebbring, S.J.; Barnes, K.C.; Rafaels, N.M.; Knowles, M.R.; Gibson, R.L.; Bamshad, M.J.; Emond, M.J.; et al. Variation in cilia protein genes and progression of lung disease in cystic fibrosis. Ann. Am. Thorac. Soc. 2018, 15, 440–448. [Google Scholar] [CrossRef]
- Zheng, Q.Y.; Yan, D.; Ouyang, X.M.; Du, L.L.; Yu, H.; Chang, B.; Johnson, K.R.; Liu, X.Z. Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum. Mol. Genet. 2005, 14, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Szymko-Bennett, Y.M.; Mastroianni, M.A.; Shotland, L.I.; Davis, J.; Ondrey, F.G.; Balog, J.Z.; Rudy, S.F.; McCullagh, L.; Levy, H.P.; Liberfarb, R.M.; et al. Auditory dysfunction in Stickler syndrome. Arch. Otolaryngol. Head Neck Surg. 2001, 127, 1061–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahmad, F.; O’Malley, J.; Tranebjaerg, L.; Merchant, S.N. Histopathology of nonsyndromic autosomal dominant midfrequency sensorineural hearing loss. Otol. Neurotol. 2008, 29, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodger, C.; Flex, E.; Allison, R.J.; Sanchis-Juan, A.; Hasenahuer, M.A.; Cecchetti, S.; French, C.E.; Edgar, J.R.; Carpentieri, G.; Ciolfi, A.; et al. De novo VPS4A mutations cause multisystem disease with abnormal neurodevelopment. Am. J. Hum. Genet. 2020, 107, 1129–1148. [Google Scholar] [CrossRef]
- Delpire, E.; Lu, J.; England, R.; Dull, C.; Thorne, T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat. Genet. 1999, 22, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.C.; Vazquez, A.E.; Dou, H.; Wei, D.; Cardell, E.L.; Lingrel, J.; Shull, G.E.; Doyle, K.J.; Yamoah, E.N. Conservation of hearing by simultaneous mutation of Na,K-ATPase and NKCC1. J. Assoc. Res. Otolaryngol. 2007, 8, 422–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenna, M.A.; Irace, A.L.; Strychowsky, J.E.; Kawai, K.; Barrett, D.; Manganella, J.; Cunningham, M.J. Otolaryngologic manifestations of Klippel-Feil syndrome in children. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 238–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildirim, N.; Arslanoglu, A.; Mahirogullari, M.; Sahan, M.; Ozkan, H. Klippel-Feil syndrome and associated ear anomalies. Am. J. Otolaryngol. 2008, 29, 319–325. [Google Scholar] [CrossRef]
- Belfield, J.C.; Witana, J.S.; Connolly, D.J.A. Melnick-Needles syndrome: Report of a case associated with bilateral hypoplasia of the cochlea. AJNR Am. J. Neuroradiol. 2007, 28, 1160–1161. [Google Scholar] [CrossRef] [Green Version]
- Swols, D.M.; Foster, J., 2nd; Tekin, M. KBG syndrome. Orphanet. J. Rare Dis. 2017, 12, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sineni, C.J.; Yildirim-Baylan, M.; Guo, S.; Camarena, V.; Wang, G.; Tokgoz-Yilmaz, S.; Duman, D.; Bademci, G.; Tekin, M. A truncating CLDN9 variant is associated with autosomal recessive nonsyndromic hearing loss. Hum. Genet. 2019, 138, 1071–1075. [Google Scholar] [CrossRef]
- Nakano, Y.; Kim, S.H.; Sanneman, J.D.; Zhang, Y.; Smith, R.J.H.; Marcus, D.C.; Wangemann, P.; Nessler, R.A.; Banfi, B. A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet. 2009, 5, e1000610. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Zuo, J.; Morgan, J.I. Cbln3, a novel member of the precerebellin family that binds specifically to Cbln1. J. Neurosci. 2000, 20, 6333–6339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneeberger, P.E.; Kortum, F.; Korenke, G.C.; Alawi, M.; Santer, R.; Woidy, M.; Buhas, D.; Fox, S.; Juusola, J.; Alfadhel, M.; et al. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020, 143, 2437–2453. [Google Scholar] [CrossRef]
- Winata, S.; Arhya, I.N.; Moeljopawiro, S.; Hinnant, J.T.; Liang, Y.; Friedman, T.B.; Asher, J.H., Jr. Congenital non-syndromal autosomal recessive deafness in Bengkala, an isolated Balinese village. J. Med. Genet. 1995, 32, 336–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Cortez, R.L.P.; Reyes-Quintos, M.R.T.; Tantoco, M.L.C.; Abbe, I.; Llanes, E.G.D.V.; Ajami, N.J.; Hutchinson, D.S.; Petrosino, J.F.; Padilla, C.D.; Villarta, R.L., Jr.; et al. Genetic and environmental determinants of otitis media in an indigenous Filipino population. Otolaryngol. Head Neck Surg. 2016, 155, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Navarro, I.; da Silva, L.R.J.; Blanco-Kelly, F.; Zurita, O.; Sanchez-Bolivar, N.; Villaverde, C.; Lopez-Molina, M.I.; Garcia-Sandoval, B.; Tahsin-Swafiri, S.; Minguez, P.; et al. Combining targeted panel-based resequencing and copy-number variation analysis for the diagnosis of inherited syndromic retinopathies and associated ciliopathies. Sci. Rep. 2018, 8, 5285. [Google Scholar] [CrossRef]
- Rehman, A.U.; Santos-Cortez, R.L.P.; Drummond, M.C.; Shahzad, M.; Lee, K.; Morell, R.J.; Ansar, M.; Jan, A.; Wang, X.; Aziz, A.; et al. Challenges and solutions for gene identification in the presence of familial locus heterogeneity. Eur. J. Hum. Genet. 2015, 23, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
ID | Age at CI (yr) | Sex | Temporal Bone Findings | Clinical History | Gene |
---|---|---|---|---|---|
1 | 3.95 | M | EVA, L | Bilateral small choroidal fissure cysts and a probable neuroepithelial cyst or prominent perivascular space involving the right peri-atrial white matter (MRI). | DSPP |
3 | 2.83 | M | Malformed cochleae with incomplete cochlear turns, B. EVA, L. | Global developmental delay | LMX1A |
5 | 3.84 | F | HJB with dehiscence, L | Prenatal antibiotic use for maternal respiratory infection. Patient used antibiotics in neonatal period for unspecified infection. Has pervasive developmental delay. | DMXL2 |
6 | 10.81 | M | PSCD + HJB, B. EVA, R. | Pneumonia, sinusitis, and progressive hearing loss | PTPRQ |
7 | 8.00 | F | HJB, L. OM, L. | Mild motor delay and hypotonia. History of urinary and upper respiratory tract infections. | MYO7A; PCDH15/CDH23 |
8 | 3.03 | M | SSCD, L | U/R | COL11A1; TECTA |
9 | 8.19 | F | EVA, L | Mother had urinary tract infection and eclampsia during pregnancy | IST1 |
13 | 5.95 | M | Normal | Global developmental delay | SLC12A2 |
18 | 2.77 | M | Normal | Sepsis and antibiotic/amikacin use during neonatal period | MYO7A |
19 | 5.66 | F | Malformed cochleae, vestibules and semi-circular canals, B. Absent cochlear and inferior vestibular nerves, R. | Maternal diabetes at 6 months gestation | MYO18B |
20 | 14.59 | F | Normal | Fluctuating hearing loss with steeply sloping audiogram prior to CI. Turbinate hypertrophy, allergic rhinitis, nasopharyngeal nodule. | CLDN9 |
22 | 4.40 | F | Normal | U/R | GREB1L; CBLN3 |
23 | 4.61 | F | Normal | U/R | CDH23; MYO18B |
24 | 6.10 | M | EVA, B | Fever, jaundice, foul umbilical discharge and apneic episodes with antibiotics and phototherapy in neonatal period | FLNA |
27 | 7.72 | F | EVA, B. OM, L. | U/R | GDPD5 |
ID | Gene | Variant | rsID | gnomAD | GenomeAsia 100k SEA 2 | Scaled CADD | Damaging Results from dbNSFP Tools |
---|---|---|---|---|---|---|---|
1 | DSPP | NM_014208: c.730G>A (p.(Gly244Arg)) | 1044690454 | NA | 0.0014 | 24.3 | FA,mLR,mSVM, MT,PP2,SI |
3 | LMX1A | NM_177398: c.606G>C (p.(Leu202Phe)) | NA | NA | NA | 24.8 | FA,LRT,mLR, mSVM,MT,PP2, PR,SI |
5 | DMXL2 | NM_015263: c.257T>C (p.(Leu86Ser)) | 761692429 | OTH: 0.0005 | NA | 24.1 | LRT,MT,PP2,SI |
6 | PTPRQ | NM_001145026: c.6179T>C (p.(Val2060Ala)) | 375150180 | EAS: 0.00097 | 0.017 | 27.8 | MT,SI |
7 | PCDH15/CDH23 | NM_001354411: c.3787C>T (p.(Pro1263Ser)); NM_022124: c.3262G>A (p.(Val1088Met)) | 775954124; 200632520 | EAS: 0.004; EAS: 0.002 | NA; 0.003 | 24.9; 24.3 | MA,MT,PP2,PR, SI; LRT,MA,mLR, mSVM,MT,PP2,SI |
23 | CDH23 | NM_022124: c.437C>T (p.(Pro146Leu)); c.3262G>A (p.(Val1088Met)); c.6911G>A (p.(Arg2304Gln)) | 765103490; 200632520; 201434373 | NA; EAS: 0.002; EAS: 0.0015 | 0.001; 0.003; 0.007 | 24.7; 24.3; 22.7 | LRT,MT,PP2,PR, SI; LRT,MA,mLR, mSVM,MT,PP2,SI; MT,SI |
7, 18 | MYO7A | NM_000260: c.4921G>A (p.(Glu1741Lys)) | 767975012 | EAS: 0.0002 | 0.003 | 26.2 | LRT,MT,PP2,PR |
8 | COL11A1 | NM_080629: c.4364A>C (p.(Lys1455Thr)) | 769350133 | EAS: 0.0004 | NA | 28.6 | FA,LRT,mLR, mSVM,MT,PP2, PR,SI |
8 | TECTA | NM_005422: c.2967C>A (p.(His989Gln) | 200821009 | EAS: 0.003 | 0.0014 | 20.4 | FA,LRT,mLR, mSVM,MT,PP2, PR,SI |
9 | IST1 | NM_001270976: c.737C>G (p.(Pro246Arg)) | 774343604 | EAS: 0.0002 | NA | 24.0 | LRT,MT,PP2,PR, SI |
13 | SLC12A2 | NM_001046: c.2977G>T (p.(Glu993*)) | NA | NA | NA | 60.0 | MT |
19 | MYO18B | NM_032608: c.2555C>T (p.(Ala852Val)) | NA | NA | NA | 26.1 | FA,LRT,mLR, mSVM,MA,MT, PP2,PR,SI |
23 | MYO18B | NM_032608: c.1982G>A (p.(Trp661*) | 372939044 | AFR: 0.0005 | NA | 44.0 | LRT/MT |
20 | CLDN9 | NM_020982: c.75C>G (p.(Cys25Trp)) | 368045321 | OTH: 0.0005 | 0.004 | 20.6 | FA,LRT,MA,mLR,mSVM,MT,PP2, PR,SI |
20, 24 | FLNA | NM_001110556: c.6350A>G (p.(Asn2117Ser)) | 375205247 | EAS: 0.002 | NA | 20.2 | FA,LRT,MT,PR |
22 | GREB1L | NM_001142966: c.3798C>G (p.(Ser1266Arg)) | 954005555 | EAS: 0.0006 | 0.003 | 16.6 | LRT,MA,MT,PR, SI |
22 | CBLN3 | NM_001039771: c.550C>T (p.(Arg184Cys)) | 562291434 | EAS: 0.0002 | NA | 32.0 | LRT,MT,PP2,PR, SI |
27 | GDPD5 | NM_030792: c.554G>A (p.(Arg185His)); c.404C>T (p.(Thr135Met)) | 745585758; 373413383 | ME: 0.003; AFR: 0.00002 | 0 (South Asia = 0.0007); NA | 23.1; 24.8 | LRT,MT,PP2; LRT,MA,MT,PP2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Cortez, R.L.P.; Yarza, T.K.L.; Bootpetch, T.C.; Tantoco, M.L.C.; Mohlke, K.L.; Cruz, T.L.G.; Chiong Perez, M.E.; Chan, A.L.; Lee, N.R.; Tobias-Grasso, C.A.M.; et al. Identification of Novel Candidate Genes and Variants for Hearing Loss and Temporal Bone Anomalies. Genes 2021, 12, 566. https://doi.org/10.3390/genes12040566
Santos-Cortez RLP, Yarza TKL, Bootpetch TC, Tantoco MLC, Mohlke KL, Cruz TLG, Chiong Perez ME, Chan AL, Lee NR, Tobias-Grasso CAM, et al. Identification of Novel Candidate Genes and Variants for Hearing Loss and Temporal Bone Anomalies. Genes. 2021; 12(4):566. https://doi.org/10.3390/genes12040566
Chicago/Turabian StyleSantos-Cortez, Regie Lyn P., Talitha Karisse L. Yarza, Tori C. Bootpetch, Ma. Leah C. Tantoco, Karen L. Mohlke, Teresa Luisa G. Cruz, Mary Ellen Chiong Perez, Abner L. Chan, Nanette R. Lee, Celina Ann M. Tobias-Grasso, and et al. 2021. "Identification of Novel Candidate Genes and Variants for Hearing Loss and Temporal Bone Anomalies" Genes 12, no. 4: 566. https://doi.org/10.3390/genes12040566
APA StyleSantos-Cortez, R. L. P., Yarza, T. K. L., Bootpetch, T. C., Tantoco, M. L. C., Mohlke, K. L., Cruz, T. L. G., Chiong Perez, M. E., Chan, A. L., Lee, N. R., Tobias-Grasso, C. A. M., Reyes-Quintos, M. R. T., Cutiongco-de la Paz, E. M., & Chiong, C. M. (2021). Identification of Novel Candidate Genes and Variants for Hearing Loss and Temporal Bone Anomalies. Genes, 12(4), 566. https://doi.org/10.3390/genes12040566