QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Trials
2.2. Phenotypic Evaluation
2.3. Linkage Maps Construction
2.4. QTL Mapping Approaches
2.5. Identification of Putative Candidate Genes
3. Results
3.1. Phenotypic Evaluation and Correlation Analysis between Early and Late Generations
3.2. Construction of F2 and F6 Linkage Maps and Their Colinearity
3.3. QTL Identification for Different Traits
3.4. Candidate Genes and Their Metabolic Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Early Outlook for 2021 Crops. 2021. Available online: http://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 15 April 2021).
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Barrett, B.; Bayram, M.; Kidwell, K.; Weber, W.E. Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed 2002, 121, 400–406. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, M.J.; Slafer, G.A.; Berry, P.; Parry, M.A.; Snape, J.W.; Angus, W.J. Raising yield potential in wheat. J. Exp. Bot. 2009, 60, 1899–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vita, P.; Taranto, T. Durum wheat (Triticum turgidum ssp. durum) breeding to meet the challenge of climate change. In Advances in Plant Breeding Strategies: Cereals; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 471–524. [Google Scholar]
- Peng, J.; Richards, D.E.; Hartley, N.M.; Murphy, G.P.; Devos, K.M.; Flintham, J.E.; Beales, J.; Fish, L.J.; Worland, A.J.; Pelica, F.; et al. Green revolution’genes encode mutant gibberellin response modulators. Nature 1999, 400, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Worland, A.J.; Korzun, V.; Röder, M.S.; Ganal, M.W.; Law, C.N. Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor. Appl. Genet. 1998, 96, 1110–1120. [Google Scholar] [CrossRef]
- Giunta, F.; De Vita, P.; Mastrangelo, A.M.; Sanna, G.; Motzo, R. Environmental and genetic variation for yield-related traits of durum wheat as affected by development. Front. Plant Sci. 2018, 9, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, C.M. The breeding of crop ideotypes. Euphytica 1968, 17, 385–403. [Google Scholar] [CrossRef]
- Taranto, F.; Nicolia, A.; Pavan, S.; De Vita, P.; D’Agostino, N. Biotechnological and digital revolution for climate-smart plant breeding. Agronomy 2018, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Doerge, R.W. Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 2002, 3, 43–52. [Google Scholar] [CrossRef]
- He, P.; Li, J.Z.; Zheng, X.W.; Shen, L.S.; Lu, C.F.; Chen, Y.; Zhu, L.H. DH and RIL Populations Derived from the Same Rice Cross. Distribution 2001, 41, 1240–1246. [Google Scholar]
- Staub, J.E.; Serquen, F.C.; Gupta, M. Genetic markers, map construction, and their application in plant breeding. HortScience 1996, 31, 729–740. [Google Scholar] [CrossRef]
- Ferreira, A.; da Silva, M.F.; da Costa e Silva, L.; Cruz, C.D. Estimating the effects of population size and type on the accuracy of genetic maps. Genet. Mol. Biol. 2006, 29, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, T.; Xie, Q.; Han, S.; Tian, J. Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations. J. Genet. 2010, 89, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.J.; Sarti-Dvorjak, D.; Brown-Guedira, G.; Dong, Y.; Baik, B.K.; Van Sanford, D.A. Identifying rare FHB-resistant segregants in intransigent backcross and F2 winter wheat populations. Front. Microbiol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gill, H.S.; Li, C.; Sidhu, J.S.; Liu, W.; Wilson, D.; Bai, G.; Gill, B.S.; Sehgal, S.K. Fine mapping of the wheat leaf rust resistance gene Lr42. Int. J. Mol. Sci. 2019, 20, 2445. [Google Scholar] [CrossRef] [Green Version]
- Khlestkina, E.K.; Röder, M.S.; Börner, A. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 2010, 171, 65–69. [Google Scholar] [CrossRef]
- Kumar, A.; Sandhu, N.; Venkateshwarlu, C.; Priyadarshi, R.; Yadav, S.; Majumder, R.R.; Singh, V.K. Development of introgression lines in high yielding, semi-dwarf genetic backgrounds to enable improvement of modern rice varieties for tolerance to multiple abiotic stresses free from undesirable linkage drag. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Park, K.J.; Sa, K.J.; Koh, H.J.; Lee, J.K. QTL analysis for eating quality-related traits in an F2:3 population derived from waxy corn × sweet corn cross. Breed. Sci. 2013, 63, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Scheben, A.; Severn-Ellis, A.; Patel, D.; Pradhan, A.; Rae, S.; Batley, J.; Edwards, D. Linkage mapping and QTL analysis of flowering time using ddRAD sequencing with genotype error correction in Brassica napus. BMC Plant Biol. 2020, 20, 546. [Google Scholar] [CrossRef]
- Branham, S.E.; Levi, A.; Wechter, W.P. QTL mapping identifies novel source of resistance to fusarium wilt race 1 in Citrullus amarus. Plant Dis. 2019, 103, 984–989. [Google Scholar] [CrossRef]
- Yogendra, K.N.; Ramanjini Gowda, P.H. Phenotypic and molecular characterization of a tomato (Solanum lycopersicum L.) F2 population segregation for improving shelf life. Genet. Mol. Res. 2013, 12, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, S.; Su, J.; Fan, S.; Pang, C.; Wei, H.; Wang, H.; Gu, L.; Zhang, C.; Liu, G.; et al. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Burr, B.; Burr, F.A.; Thompson, K.H.; Albertson, M.C.; Stuber, C.W. Gene mapping with recombinant inbreds in maize. Genetics 1988, 118, 519–526. [Google Scholar] [CrossRef]
- Cowen, N.M. The use of replicated progenies in marker-based mapping of QTL’s. Theor. Appl. Genet. 1988, 75, 857–862. [Google Scholar] [CrossRef]
- Lander, E.S.; Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Knapp, S.J.; Bridges, W.C. Using molecular markers to estimate quantitative trait locus parameters: Power and genetic variances for unreplicated and replicated progeny. Genetics 1990, 126, 769–777. [Google Scholar] [CrossRef]
- Jansen, R.C. Quantitative trait loci in inbred lines. In Handbook of Statistical Genetics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Haley, C.S.; Andersson, L. Linkage mapping of quantitative trait loci in plants and animals. In Genome Mapping: A Practical Approach; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Börner, A.; Schumann, E.; Fürste, A.; Cöster, H.; Leithold, B.; Röder, M.S.; Weber, W.E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002, 105, 921–936. [Google Scholar] [CrossRef]
- Wang, R.X.; Hai, L.; Zhang, X.Y.; You, G.X.; Yan, C.S.; Xiao, S.H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai x Yu8679. Theor. Appl. Genet. 2009, 118, 313–325. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Ren, Q.; Chang, X.; Li, R.; Jing, R. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 2010, 174, 447–458. [Google Scholar] [CrossRef]
- Lin, F.; Xue, S.L.; Tian, D.G.; Li, C.J.; Cao, Y.; Zhang, Z.Z.; Zhang, C.Q.; Ma, Z.Q. Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 2008, 164, 769–777. [Google Scholar] [CrossRef]
- Sourdille, P.; Snape, J.W.; Cadalen, T.; Charmet, G.; Nakata, N.; Bernard, S.; Bernard, M. Detection of QTL for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 2000, 43, 487–494. [Google Scholar] [CrossRef]
- Guedira, M.; Xiong, M.; Hao, Y.F.; Johnson, J.; Harrison, S.; Marshall, D.; Brown-Guedira, G. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLoS ONE 2016, 11, 1–21. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Shi, H.; Mo, H.; Wu, F.; Lin, Y.; Gao, S.; Wang, J.; Wei, Y.; Liu, C.; et al. Identification and validation of novel low-tiller number QTL in common wheat. Theor. Appl. Genet. 2016, 129, 603–612. [Google Scholar] [CrossRef]
- Naruoka, Y.; Talbert, L.E.; Lanning, S.P.; Blake, N.K.; Martin, J.M.; Sherman, J.D. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor. Appl. Genet. 2011, 123, 1043–1053. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, T.; Li, Z.; Tang, Y.; Ren, Z.; Yan, B. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene 2017, 634, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Hu, Y.; Tang, Y.; Li, C.; Yan, B.; Ren, Z.; Tan, F.; Tang, Z.; Fu, S.; Li, Z. Utilization of a Wheat55K SNP array for mapping of major QTL for temporal expression of the tiller number. Front. Plant Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Tang, H.; Qu, X.; Liu, H.; Li, C.; Tu, Y.; Li, S.; Habib, A.; Mu, Y.; Dai, S.; et al. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol. Biol. 2020, 104, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Marone, D.; Rodriguez, M.; Saia, S.; Papa, R.; Rau, D.; Pecorella, I.; Laidò, G.; Pecchioni, N.; Lafferty, J.; Rapp, M.; et al. Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat. Int. J. Mol. Sci. 2020, 21, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, J.N.; Biswas, P.S.; Platten, J.D. Back to the future: Revisiting MAS as a tool for modern plant breeding. Theor. Appl. Genet. 2019, 132, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Asíns, M.J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed. 2002, 121, 281–291. [Google Scholar] [CrossRef]
- Su, Z.; Hao, C.; Wang, L.; Dong, Y.; Zhang, X. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2011, 122, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘corrplot’. Statistician 2017, 56, 24. [Google Scholar]
- Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 1992, 2, 117–119. [Google Scholar] [CrossRef]
- Taylor, J.; Butler, D. R package ASMap: Efficient genetic linkage map construction and diagnosis. J. Stat. Softw. 2017, 79, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Bhat, P.R.; Close, T.J.; Lonardi, S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008, 4, e1000212. [Google Scholar] [CrossRef]
- Wen, W.; He, Z.; Gao, F.; Liu, J.; Jin, H.; Zhai, S.; Qu, Y.; Xia, X. A high-density consensus map of common wheat integrating four mapping populations scanned by the 90k SNP array. Front. Plant Sci. 2017, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Garcia, L.; Covarrubias-Pazaran, G.; Schlautman, B.; Zalapa, J. SOFIA: An R Package for enhancing genetic visualization with circos. J. Hered. 2017, 108, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.W.; Wen, Y.J.; Dunwell, J.M.; Zhang, Y.M. QTL.gCIMapping.GUI v2.0: An R software for detecting small-effect and linked QTL for quantitative traits in bi-parental segregation populations. Comput. Struct. Biotechnol. J. 2020, 18, 59–65. [Google Scholar] [CrossRef]
- Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; Poland, J.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ariza, J.; Brambilla, V.; Vicentini, G.; Landini, M.; Cerise, M.; Carrera, E.; Shrestha, R.; Chiazzotto, R.; Galbiati, F.; Caporali, E.; et al. A transcription factor coordinating internode elongation and photoperiodic signals in rice. Nat. Plants 2019, 5, 358–362. [Google Scholar] [CrossRef]
- Thimm, O.; Bläsing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Krüger, P.; Selbig, J.; Müller, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Zanke, C.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; Hinze, M.; Beier, S.; et al. Genetic architecture of main effect QTL for heading date in European winter wheat. Front. Plant Sci. 2014, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://wheat.pw.usda.gov/cgi-bin/cmap/viewer?mapMenu=1&featureMenu=1&corrMenu=1&displayMenu=1&advancedMenu=1&ref_map_accs=Wheat_Yr_genes_and_QTL_2D&sub=Draw+Selected+Maps&ref_map_set_acc=Wheat,%20Yr%20genes%20and%20QTL%202D&data_source=GrainGenes&highlight=%22Ppd1%22&label_features=all (accessed on 15 April 2021).
- Lozada, D.N.; Carter, A.H. Insights into the genetic architecture of phenotypic stability traits in winter wheat. Agronomy 2020, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hu, H.; Jiang, X.; Tao, Y.; Lin, Y.; Wu, F.; Hou, S.; Liu, S.; Li, C.; Chen, G.; et al. Identification and Validation of a Novel Major Quantitative Trait Locus for Plant Height in Common Wheat (Triticum aestivum L.). Front. Genet. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Zanke, C.D.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; Hinze, M.; Neumann, K.; et al. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS ONE 2014, 9, e113287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, R.A. A tiller inhibitor gene in wheat and its effect on plant growth. Aust. J. Agric. Res. 1988, 39, 749–757. [Google Scholar] [CrossRef]
- Law, C.N.; Worland, A.J. Genetic analysis of some flowering time and adaptive traits in wheat. New Phytologist. 1997, 13, 19–28. [Google Scholar] [CrossRef]
- Lewis, S.; Faricelli, M.E.; Appendino, M.L.; Valárik, M.; Dubcovsky, J. The chromosome region including the earliness per se locus Eps-A m1 affects the duration of early developmental phases and spikelet number in diploid wheat. J. Exp. Bot. 2008, 59, 3595–3607. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garcia, M.; Bentley, A.R. Global Journeys of Adaptive Wheat Genes. In Applications of Genetic and Genomic Research in Cereals, 1st ed.; Miedaner, T., Korzun, V., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 183–200. [Google Scholar]
- Iqbal, M.; Navabi, A.; Salmon, D.F.; Yang, R.C.; Murdoch, B.M.; Moore, S.S.; Spaner, D. Genetic analysis of flowering and maturity time in high latitude spring wheat: Genetic analysis of earliness in spring wheat. Euphytica 2007, 154, 207–218. [Google Scholar] [CrossRef]
- Abinasa, M.; Ayana, A.; Bultosa, G. Genetic variability, heritability and trait associations in durum wheat (Triticum turgidum L. var. durum) genotypes. African J. Agric. Res. 2011, 6, 3972–3979. [Google Scholar] [CrossRef]
- Seyoum, M.; Alamerew, S.; Bantte, K. Genetic variability, heritability, correlation coefficient and path analysis for yield and yield related traits in upland rice (Oryza sativa L.). J. Plant Sci. 2012, 7, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Shrimali, J.; Shekhawat, A.S.; Kumari, S. Genetic variation and heritability studies for yield and yield components in barley genotypes under normal and limited moisture conditions. J. Pharmacogn. Phytochem. 2017, 6, 233–235. [Google Scholar]
- Bilgrami, S.S.; Ramandi, H.D.; Shariati, V.; Razavi, K.; Tavakol, E.; Fakheri, B.A.; Mahdi Nezhad, N.; Ghaderian, M. Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Berkman, P.J.; Visendi, P.; Lee, H.C.; Stiller, J.; Manoli, S.; Lorenc, M.T.; Lai, K.; Batley, J.; Fleury, D.; Šimková, H.; et al. Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol. J. 2013, 11, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edae, E.A.; Bowden, R.L.; Poland, J. Application of population sequencing (POPSEQ) for ordering and imputing genotyping-by-sequencing markers in hexaploid wheat. G3 Genes Genomes Genet. 2015, 5, 2547–2553. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, A.; Hisam, S.M. Genetics of Drought Tolerance in Hard Red Spring Wheat in the Northern United States of America. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2017. [Google Scholar]
- Price, A.H.; Tomos, A.D. Genetic dissection of root growth in rice (Oryza sativa L.). Ii: Mapping quantitative trait loci using molecular markers. Theor. Appl. Genet. 1997, 95, 143–152. [Google Scholar] [CrossRef]
- Price, A.H.; Steele, K.A.; Moore, B.J.; Barraclough, P.B.; Clark, L.J. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTL for root-penetration ability. Theor. Appl. Genet. 2000, 100, 49–56. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Xu, S. Mapping Quantitative Trait Loci in F2 Incorporating Phenotypes of F3 Progeny. Genetics 2004, 166, 1981–1993. [Google Scholar] [CrossRef] [Green Version]
- Stanley, J.D.; Mehring, G.H.; Wiersma, J.J.; Ransom, J.K. A Standardized Method for Determining Tillering Capacity of Wheat Cultivars. Am. J. Plant Sci. 2020, 11, 604. [Google Scholar] [CrossRef]
- Stange, M.; Friedrich Utz, H.; Schrag, T.A.; Melchinger, A.E.; Würschum, T. High-density genotyping: An overkill for QTL mapping? lessons learned from a case study in maize and simulations. Theor. Appl. Genet. 2013, 126, 2563–2574. [Google Scholar] [CrossRef]
- Yi, Q.; Liu, Y.; Zhang, X.; Hou, X.; Zhang, J.; Liu, H.; Hu, Y.; Yu, G.; Huang, Y. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F 2: 3 and RIL populations. J. Genet. 2018, 97, 253–266. [Google Scholar] [CrossRef]
- Mecha, B.; Alamerew, S.; Assefa, A.; Dutamo, D.; Assefa, E. Correlation and path coefficient studies of yield and yield associated traits in bread wheat (Triticum aestivum L.) genotypes. Adv. Plants Agric. Res. 2017, 6, 1–10. [Google Scholar]
- Austin, D.F.; Lee, M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor. Appl. Genet. 1996, 92, 817–826. [Google Scholar] [CrossRef]
- Steinfort, U.; Trevaskis, B.; Fukai, S.; Bell, K.L.; Dreccer, M.F. Vernalisation and photoperiod sensitivity in wheat: Impact on canopy development and yield components. Field Crop. Res. 2017, 201, 108–121. [Google Scholar] [CrossRef]
- Sukumaran, S.; Dreisigacker, S.; Lopes, M.; Chavez, P.; Reynolds, M.P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2015, 128, 353–363. [Google Scholar] [CrossRef]
- Li, W.L.; Nelson, J.C.; Chu, C.Y.; Shi, L.H.; Huang, S.H.; Liu, D.J. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 2002, 125, 357–366. [Google Scholar] [CrossRef]
- Huang, M.; Mheni, N.; Brown-Guedira, G.; McKendry, A.; Griffey, C.; Van Sanford, D.; Costa, J.; Sneller, C. Genetic analysis of heading date in winter and spring wheat. Euphytica 2018, 214. [Google Scholar] [CrossRef]
- Milner, S.G.; Maccaferri, M.; Huang, B.E.; Mantovani, P.; Massi, A.; Frascaroli, E.; Tuberosa, R.; Salvi, S. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnol. J. 2016, 14, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Assanga, S.O.; Fuentealba, M.; Zhang, G.; Tan, C.T.; Dhakal, S.; Rudd, J.C.; Ibrahim, A.M.H.; Xue, Q.; Haley, S.; Chen, J.; et al. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS ONE 2017, 12, 1–21. [Google Scholar] [CrossRef]
- Kidane, Y.G.; Gesesse, C.A.; Hailemariam, B.N.; Desta, E.A.; Mengistu, D.K.; Fadda, C.; Mario Enrico, P.; Dell’Acqua, M. A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. Plant Biotechnol. J. 2019, 17, 1380–1393. [Google Scholar] [CrossRef]
- Chen, G.F.; Wu, R.G.; Li, D.M.; Yu, H.X.; Deng, Z.; Tian, J.C. Genomewide association study for seeding emergence and tiller number using SNP markers in an elite winter wheat population. J. Genet. 2017, 96, 177–186. [Google Scholar] [CrossRef]
- Kertesz, Z.; Flintham, J.E.; Gale, M.D. Effects of Rht dwarfing genes on wheat grain yield and its components under Eastern European conditions. Cereal Res. Commun. 1991, 19, 297–304. [Google Scholar]
- Lanning, S.P.; Martin, J.M.; Stougaard, R.N.; Guillen-Portal, F.R.; Blake, N.K.; Sherman, J.D.; Robbins, A.M.; Kephart, K.D.; Lamb, P.; Carlson, G.R.; et al. Evaluation of near-isogenic lines for three height-reducing genes in hard red spring wheat. Crop Sci. 2012, 52, 1145–1152. [Google Scholar] [CrossRef]
- Sherman, J.D.; Martin, J.M.; Blake, N.K.; Lanning, S.P.; Talbert, L.E. Genetic basis of agronomic differences between a modern and a historical spring wheat cultivar. Crop Sci. 2014, 54, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Chu, C.; Zhao, W.; Wheeler, J.; Souza, E.; Zemetra, R. Genetic Dissection of QTL Associated with Grain Yield in Diverse Environments. Agronomy 2014, 4, 556–578. [Google Scholar] [CrossRef] [Green Version]
- Addison, C.K. Genetic Mapping of Yield and Normalized Difference Vegetative Index in Soft Red Winter Wheat (Triticum aestivum L.). Master’s Thesis, University of Arkansas, Fayetteville, NC, USA, 2015. [Google Scholar]
- Colebrook, E.H.; Thomas, S.G.; Phillips, A.L.; Hedden, P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014, 217, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Van De Velde, K.; Ruelens, P.; Geuten, K.; Rohde, A.; Van Der Straeten, D. Exploiting DELLA Signaling in Cereals. Trends Plant Sci. 2017, 22, 880–893. [Google Scholar] [CrossRef]
- Jia, Q.J.; Zhang, J.J.; Westcott, S.; Zhang, X.Q.; Bellgard, M.; Lance, R.; Li, C.D. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct. Integr. Genomics 2009, 9, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Zhang, X.Q.; Westcott, S.; Broughton, S.; Cakir, M.; Yang, J.; Lance, R.; Li, C. Expression level of a gibberellin 20-oxidase gene is associated with multiple agronomic and quality traits in barley. Theor. Appl. Genet. 2011, 122, 1451–1460. [Google Scholar] [CrossRef]
- Jia, Q.; Li, C.; Shang, Y.; Zhu, J.; Hua, W.; Wang, J.; Yang, J.; Zhang, G. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics 2015, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kuczyńska, A.; Mikołajczak, K.; Ćwiek, H. Pleiotropic effects of the sdw1 locus in barley populations representing different rounds of recombination. Electron. J. Biotechnol. 2014, 17, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Li, X.; Liu, F.; Sun, X.; Li, C.; Zhu, Z.; Fu, Y.; Cai, H.; Wang, X.; Xie, D.; et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008, 40, 1360–1364. [Google Scholar] [CrossRef]
- Chen, X.; Lu, S.; Wang, Y.; Zhang, X.; Lv, B.; Luo, L.; Xi, D.; Shen, J.; Ma, H.; Ming, F. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J. 2015, 82, 302–314. [Google Scholar] [CrossRef]
- Mao, C.; Ding, W.; Wu, Y.; Yu, J.; He, X.; Shou, H.; Wu, P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol. 2007, 176, 288–298. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.L.; Park, J.; Tyler, L.; Yusuke, J.; Qiu, K.; Nam, E.A.; Lumba, S.; Desveaux, D.; McCourt, P.; et al. The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiol. 2016, 171, 2760–2770. [Google Scholar] [CrossRef] [Green Version]
- Sakuraba, Y.; Kim, E.Y.; Paek, N.C. Roles of rice PHYTOCHROME-INTERACTING FACTOR-LIKE1 (OsPIL1) in leaf senescence. Plant Signal. Behav. 2017, 12, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Franklin, K.A.; Lee, S.H.; Patel, D.; Kumar, S.V.; Spartz, A.K.; Gu, C.; Ye, S.; Yu, P.; Breen, G.; Cohen, J.D.; et al. Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. USA 2011, 108, 20231–20235. [Google Scholar] [CrossRef] [Green Version]
- Bahuguna, R.N.; Jagadish, K.S.V. Temperature regulation of plant phenological development. Environ. Exp. Bot. 2015, 111, 83–90. [Google Scholar] [CrossRef]
- Cao, X.; Yang, H.; Shang, C.; Ma, S.; Liu, L.; Cheng, J. The roles of auxin biosynthesis YUCCA gene family in plants. Int. J. Mol. Sci. 2019, 20, 6343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahl, V.; Ponnu, J.; Schlereth, A.; Arrivault, S.; Langenecker, T.; Franke, A.; Feil, R.; Lunn, J.E.; Scitt, M.; Schmid, M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 2013, 339, 704–707. [Google Scholar] [CrossRef]
- Fichtner, F.; Olas, J.J.; Feil, R.; Watanabe, M.; Krause, U.; Hoefgen, R.; Stitt, M.; Lunn, J.E. Functional features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an essential enzyme in Arabidopsis. Plant Cell 2020, 32, 1949–1972. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Gibson, K.M.; Kiirats, O.; Okita, T.W.; Edwards, G.E. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol. 2002, 130, 1573–1583. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Yanagisawa, S. Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis. Plant Cell Physiol. 2014, 55, 306–319. [Google Scholar] [CrossRef] [Green Version]
Trait | Acronym | Unit | L | R | Min | Max | Mean | St. Dev | CV% | H2 |
---|---|---|---|---|---|---|---|---|---|---|
Heading Date | HD | Day | ||||||||
F2 | 16.0 | 28.0 | 17.0 | 30.0 | 24.36 | 2.91 | 11.93 | 0.74 | ||
F3 | 23.0 | 30.0 | 22.0 | 33.0 | 27.07 | 2.74 | 10.13 | |||
F6 | 19.5 | 25.0 | 17.0 | 34.0 | 23.88 | 3.50 | 14.64 | 0.69 | ||
F7 | 13.5 | 24.0 | 8.0 | 30.0 | 19.98 | 4.90 | 24.50 | |||
Juvenile Growth Habit | GH | Scale | ||||||||
F2 | 1.0 | 6.0 | 1.0 | 7.0 | 2.69 | 1.93 | 71.94 | 0.30 | ||
F3 | 2.0 | 5.0 | 1.0 | 9.0 | 5.70 | 1.77 | 31.10 | |||
F6 | 2.5 | 5.0 | 1.4 | 9.0 | 5.45 | 1.42 | 26.11 | 0.82 | ||
F7 | 2.5 | 5.5 | 2.0 | 9.0 | 5.74 | 1.51 | 26.38 | |||
Plant Height | PH | cm | ||||||||
F2 | 49.0 | 75.0 | 35.0 | 110.0 | 66.14 | 12.68 | 19.18 | 0.76 | ||
F3 | 56.0 | 64.0 | 30.0 | 90.0 | 63.43 | 13.71 | 21.61 | |||
F6 | 57.0 | 67.0 | 30.0 | 110.0 | 67.46 | 14.62 | 21.66 | 0.83 | ||
F7 | 54.5 | 60.5 | 30.0 | 100.0 | 67.67 | 13.32 | 19.68 | |||
Total Tiller Number | TTN | number | ||||||||
F2 | 17.0 | 42.0 | 10.0 | 56.0 | 30.25 | 10.17 | 33.61 | 0.17 | ||
F3 | 13.0 | 37.0 | 10.0 | 43.0 | 22.82 | 5.32 | 23.30 | |||
F6 | 17.0 | 41.0 | 11.0 | 49.0 | 27.02 | 8.03 | 29.70 | 0.37 | ||
F7 | 12.0 | 29.4 | 8.33 | 41.0 | 22.94 | 6.52 | 28.44 | |||
Fertile tiller number | FTN | number | ||||||||
F2 | 15.0 | 36.0 | 7.0 | 54.0 | 28.10 | 9.81 | 34.90 | 0.20 | ||
F3 | 10.0 | 34.0 | 10.0 | 36.0 | 20.39 | 4.74 | 23.25 | |||
F6 | 16.0 | 37.0 | 7.0 | 46.0 | 23.81 | 7.56 | 31.77 | 0.46 | ||
F7 | 9.6 | 16.2 | 3.0 | 37.5 | 18.23 | 6.92 | 37.93 |
Trait | QTL | Chr. | Flanking Marker | Position (cM) | Pop | LOD a | R2 (%) b | Add c | Dom d | Gene | Gene Reference e |
---|---|---|---|---|---|---|---|---|---|---|---|
HD | QHd-2B.1 | 2B | TG0015-IWB43273 | 42.72–44.25 | F2 | 5.60 | 3.82 | 0.80 | 0.00 | Ppd-B1 | [61] |
LEA | TraesCS2B01G158600 | ||||||||||
QHd-2B.2 | 2B | AX-95186189-IWB55936 | 28.37–50.93 | F7 | 5.10 | 9.92 | −1.44 | - | Ppd-B1 | [61] | |
NAC | TraesCS2B01G075900 | ||||||||||
RUBISCO | TraesCS2B01G079100 | ||||||||||
QHd-2D | 2D | IWB3771-IWB7001 | 9.17–24.99 | F2 | 4.59 | 4.09 | −0.83 | 0.00 | Ppd-D1 | [62] | |
Rht-8 | [63] | ||||||||||
RUBISCO | TraesCS2D01G065100 | ||||||||||
GA2OX2 | TraesCS2D01G049700 | ||||||||||
SLC | TraesCS2D01G055700 | ||||||||||
QHd-4D | 4D | IWB61486-IWB30224 | 13.86–25.95 | F3 | 3.63 | 6.10 | −1.19 | 0.00 | Rht-D1 | [61] | |
QHd-4D | 4D | IWB61486-IWB30224 | 13.86–25.95 | F2 | 3.39 | 1.82 | −0.55 | 0.00 | AP2/ERF | TraesCS4D01G131200 | |
SLC | TraesCS4D01G127800 | ||||||||||
ANT | TraesCS4D01G131200 | ||||||||||
CO | TraesCS4D01G046200 | ||||||||||
PIN | TraesCS4D01G125300 | ||||||||||
QHd-5A | 5A | IWA6961-AX-94636029 | 265.91–273.26 | F6 | 5.53 | 13.17 | −1.00 | - | Vrn-A1 | TraesCS5A01G391700 | |
QHd-5A | 5A | IWA6961-AX-94636029 | 265.91–273.26 | F7 | 18.78 | 30.98 | −2.54 | - | AP2/ERF | TraesCS5A01G398500 | |
GASA1 | TraesCS5A01G405400 | ||||||||||
QHd-7D | 7D | IWA2545-AX-94418300 | 38.27–51.76 | F6 | 3.07 | 6.48 | −0.70 | - | AGL | TraesCS7D01G107000 | |
QHd-7D | 7D | IWA2545-AX-94418300 | 38.27–51.76 | F7 | 12.55 | 16.68 | −1.87 | - | ERF | TraesCS7D01G107400 | |
SAUR | TraesCS7D01G160000 | ||||||||||
AMY2 | TraesCS7D01G160200 | ||||||||||
ARF | TraesCS7D01G161900 | ||||||||||
GRF | TraesCS7D01G166400 | ||||||||||
GH | QGh-1B.1 | 1B | IWB60063-IWB9661 | 126.01–128.22 | F6 | 6.42 | 12.37 | 0.43 | - | CO | TraesCS1B01G300300 |
ZC3H | TraesCS1B01G302100 | ||||||||||
QGh-1B.2 | 1B | AX-94639048-IWB2222 | 117.28–118.88 | F7 | 5.70 | 9.31 | 0.42 | - | GID1a | TraesCS1B01G265900 | |
Os20ox2 | TraesCS1B02G274200 | ||||||||||
QGh-2D.1 | 2D | IWB38687-IWB53594 | 94.78–100.55 | F3 | 3.31 | 3.65 | 0.49 | 0.00 | SLC | TraesCS2D01G055700 | |
QGh-2D.1 | 2D | IWB38687-IWB53594 | 75.17–82.24 | F6 | 4.29 | 6.24 | 0.30 | - | RAA1 | TraesCS2D01G113700 | |
ZC3H | TraesCS2D01G115400 | ||||||||||
CO | TraesCS2D01G121400 | ||||||||||
QGh-2D.2 | 2D | IWB37711-IWB32004 | 10.76–17.87 | F6 | 3.33 | 8.48 | −0.36 | - | Ppd-D1 | [61] | |
NAC | TraesCS2D01G061500 | ||||||||||
NPF2.2 | TraesCS2D01G044000 | ||||||||||
RAA1 | TraesCS2D01G046600 | ||||||||||
GA2OX2 | TraesCS2D01G049700 | ||||||||||
SWEET | TraesCS4B01G339600 | ||||||||||
QGh-4B | 4B | IWA7566-IWB12188 | 80.00–83.07 | F3 | 5.35 | 3.33 | 0.00 | −0.67 | PINE1 | TraesCS4B01G342300 | |
SD1 | TraesCS4B02G344800 | ||||||||||
Os20ox | TraesCS4B02G344900 | ||||||||||
SWEET | TraesCS4B01G339600 | ||||||||||
CO | TraesCS4B01G340600 | ||||||||||
QGh-5A | 5A | IWA6961-AX-94636029 | 265.91–273.26 | F6 | 7.23 | 13.10 | −0.44 | - | Vrn-A1 | TraesCS5A01G391700 | |
QGh-5A | 5A | IWA6961-AX-94636029 | 265.91–273.26 | F7 | 10.21 | 22.60 | −0.66 | - | NPF1.2 | TraesCS5A01G388000 | |
TRN1 | TraesCS5A01G390900 | ||||||||||
GASA1 | TraesCS5A01G398500 | ||||||||||
AP2/ERF | TraesCS5A01G405400 | ||||||||||
PH | QPh-2D | 2D | IWB3771-IWB7001 | 9.17–24.99 | F2 | 3.06 | 2.28 | 2.91 | 0.00 | Ppd-D1, | [62] |
Rht-8 | [63] | ||||||||||
SWEET | TraesCS2D01G052100 | ||||||||||
SCL | TraesCS2D01G055700 | ||||||||||
RUBISCO | TraesCS2D01G065100 | ||||||||||
QPh-4B.1 | 4B | IWB30623-IWB331 | 47.88–48.45 | F2 | 14.17 | 16.39 | −7.80 | 0.00 | Rht-B1b | [64] | |
GAI | TraesCS4B01G043100 | ||||||||||
CO | TraesCS4B01G045700 | ||||||||||
QPh-4B.2 | 4B | AX-94545917-IWB25207 | 55.96–75.56 | F6 | 8.65 | 26.41 | 7.02 | - | LEA | TraesCS4B01G327400 | |
QPh-4B.2 | 4B | AX-94545917-IWB25207 | 55.96–75.56 | F7 | 5.81 | 21.00 | 6.39 | - | AMY2 | TraesCS4B01G328000 | |
NAC | TraesCS4B01G328900 | ||||||||||
QPh-4D | 4D | IWB12054-IWB61486 | 7.80–13.86 | F2 | 17.53 | 30.32 | 10.61 | 0.00 | Rht-D1 | [65] | |
QPh-4D | 4D | IWB12054-IWB61486 | 7.80–13.86 | F3 | 9.92 | 20.65 | 9.33 | 0.00 | Rht-D1 | [65] | |
ZC3H | TraesCS4D01G000900 | ||||||||||
ERF | TraesCS4D01G001200 | ||||||||||
CO | TraesCS4D01G046200 | ||||||||||
SLC | TraesCS4D01G054000 | ||||||||||
QPh-5A | 5A | IWB48095-IWB2075 | 149.90–150.76 | F3 | 3.45 | 1.79 | 0.00 | −3.89 | TEM1 | [57] | |
CLV3 | TraesCS5A01G495600 | ||||||||||
TTN | QTtn-1A.1 | 1A | IWA6644-IWA6644 | 1.14–1.14 | F2 | 3.29 | 0.53 | 0.00 | 1.52 | Gli-A1 | TraesCS1A01G007200 |
Glu-A3 | TraesCS1A01G008000 | ||||||||||
QTtn-1A.2 | 1A | IWA6553-IWA6553 | 90.06–90.06 | F2 | 11.77 | 2.42 | 0.00 | 3.24 | n.a. | n.a. | |
QTtn-1B.1 | 1B | IWA6294-IWA6294 | 137.25–137.25 | F2 | 10.60 | 4.22 | 3.03 | 0.00 | LEA | TraesCS1B01G381200 | |
QTtn-2B.1 | 2B | IWA571-IWA571 | 122.08–122.08 | F2 | 7.06 | 1.48 | 0.00 | −2.53 | GA3OX2 | TraesCS2B01G570800 | |
LEA | TraesCS2B01G571900 | ||||||||||
ERF | TraesCS2B01G572500 | ||||||||||
QTtn-2B.2 | 2B | IWB36228-IWB36228 | 138.76–138.76 | F2 | 4.29 | 1.47 | 1.78 | 0.00 | SWEET | TraesCS2B01G593500 | |
YUCCA | TraesCS2B01G595700 | ||||||||||
QTtn-3A | 3A | IWB72078-IWB72078 | 44.14–44.14 | F2 | 17.91 | 4.06 | 0.00 | 4.20 | TPS6 | TraesCS3A01G289300 | |
PTST | TraesCS3A01G289800 | ||||||||||
QTtn-3D | 3D | IWB42792-IWB42792 | 5.01–5.01 | F2 | 3.57 | 1.24 | 1.64 | 0.00 | LEA | TraesCS3D01G525900 | |
ERF | TraesCS3D01G521500 | ||||||||||
QTtn-4A | 4A | IWB60703-IWB60703 | 62.63–62.63 | F2 | 7.22 | 2.67 | 2.41 | 0.00 | SUT | TraesCS4A01G334500 | |
QTtn-4B.1 | 4B | IWB6048-IWA7566 | 74.12–80.00 | F2 | 12.46 | 2.53 | 0.00 | −3.32 | LEA | TraesCS4B01G327400 | |
AMY2 | TraesCS4B01G328000 | ||||||||||
NAC | TraesCS4B01G328900 | ||||||||||
QTtn-4B.2 | 4B | AX-94545917-IWB25207 | 55.96–75.56 | F6 | 3.74 | 10.49 | −1.84 | - | LEA | TraesCS4B01G327400 | |
AMY2 | TraesCS4B01G328000 | ||||||||||
NAC | TraesCS4B01G328900 | ||||||||||
QTtn-4D | 4D | IWB61486-IWB30224 | 13.86–25.95 | F2 | 5.05 | 1.03 | 0.00 | 2.12 | Rht-D1 | [65] | |
AP2/ERF | TraesCS4D01G131200 | ||||||||||
SLC | TraesCS4D01G127800 | ||||||||||
ANT | TraesCS4D01G131200 | ||||||||||
CO | TraesCS4D01G046200 | ||||||||||
PIN | TraesCS4D01G125300 | ||||||||||
QTtn-5A | 5A | IWA3100-IWA3100 | 7.28–7.28 | F2 | 6.10 | 2.36 | 2.26 | 0.00 | PIF4 | TraesCS5A02G049600 | |
QTtn-5B | 5B | IWB47364-IWB21455 | 157.44–158.92 | F2 | 3.84 | 0.61 | 0.00 | −1.63 | YUCCA | TraesCS5B01G530900 | |
LEA | TraesCS5B01G531400 | ||||||||||
QTtn-7A.1 | 7A | IWB10707-IWB38357 | 0.28–15.90 | F2 | 6.92 | 1.52 | 0.00 | 2.57 | NPF4.4 | TraesCS7A01G073000 | |
YUCCA | TraesCS7A01G075400 | ||||||||||
NR | TraesCS7A01G078500 | ||||||||||
ERF | TraesCS7A01G128800 | ||||||||||
SAUR | TraesCS7A01G129000 | ||||||||||
CO | TraesCS7A01G132100 | ||||||||||
QTtn-7A.2 | 7A | IWA6802-IWA3719 | 48.30–59.76 | F2 | 10.07 | 2.31 | 0.00 | 3.17 | SuS1 | TraesCS7A01G158900 | |
SAUR | TraesCS7A01G159100 | ||||||||||
SWEET | TraesCS7A01G159800 | ||||||||||
ARF | TraesCS7A01G160800 | ||||||||||
GRF | TraesCS7A01G163400 | ||||||||||
FRL1 | TraesCS7A01G165600 | ||||||||||
QTtn-7A.3 | 7A | IWA179-IWA7005 | 176.19–192.55 | F2 | 4.81 | 1.93 | −2.05 | 0.00 | YUCCA | TraesCS7A01G551000 | |
AGL | TraesCS7A01G552000 | ||||||||||
QTtn-7B | 7B | IWA2568-IWA4092 | 7.50–12.06 | F2 | 5.12 | 1.05 | 0.00 | −2.13 | LEA | TraesCS7B01G022400 | |
NPF5.5 | TraesCS7B01G040100 | ||||||||||
FTN | QFtn-1B | 1B | IWA6294-IWA6294 | 137.25–137.25 | F2 | 3.78 | 2.67 | 2.32 | 0.00 | LEA | TraesCS1B01G381200 |
QFtn-4B | 4B | IWB7078-IWB30623 | 38.80–47.88 | F2 | 3.04 | 2.67 | 2.32 | 0.00 | LEA | TraesCS4B01G035600 | |
QFtn-7A | 7A | IWA6802-IWA3719 | 48.30–59.76 | F3 | 6.25 | 4.10 | 0.00 | 4.06 | SuS1 | TraesCS7A01G158900 | |
SAUR | TraesCS7A01G159100 | ||||||||||
SWEET | TraesCS7A01G159800 | ||||||||||
ARF | TraesCS7A01G160800 | ||||||||||
GRF | TraesCS7A01G163400 | ||||||||||
FRL1 | TraesCS7A01G165600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitale, P.; Fania, F.; Esposito, S.; Pecorella, I.; Pecchioni, N.; Palombieri, S.; Sestili, F.; Lafiandra, D.; Taranto, F.; De Vita, P. QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents. Genes 2021, 12, 604. https://doi.org/10.3390/genes12040604
Vitale P, Fania F, Esposito S, Pecorella I, Pecchioni N, Palombieri S, Sestili F, Lafiandra D, Taranto F, De Vita P. QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents. Genes. 2021; 12(4):604. https://doi.org/10.3390/genes12040604
Chicago/Turabian StyleVitale, Paolo, Fabio Fania, Salvatore Esposito, Ivano Pecorella, Nicola Pecchioni, Samuela Palombieri, Francesco Sestili, Domenico Lafiandra, Francesca Taranto, and Pasquale De Vita. 2021. "QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents" Genes 12, no. 4: 604. https://doi.org/10.3390/genes12040604
APA StyleVitale, P., Fania, F., Esposito, S., Pecorella, I., Pecchioni, N., Palombieri, S., Sestili, F., Lafiandra, D., Taranto, F., & De Vita, P. (2021). QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents. Genes, 12(4), 604. https://doi.org/10.3390/genes12040604