Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cell Culture, Chromosome Preparations and Banding Analyses
2.3. Chromosome Microdissection
2.4. Probe Synthesis and Labelling
2.5. Fluorescence In Situ Hybridization (FISH) and Chromosome Painting
2.6. Microscopy and Image Capture
3. Results and Discussion
3.1. Genomic In Situ Hybridization (GISH)
3.2. Chromosome Painting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zlotina, A.; Dedukh, D.; Krasikova, A. Amphibian and avian karyotype evolution: Insights from lampbrush chromosome studies. Genes 2017, 8, 311. [Google Scholar] [CrossRef] [Green Version]
- Olmo, E. Genome variations in the transition from amphibians to reptiles. J. Mol. Evol. 1991, 33, 68–75. [Google Scholar] [CrossRef]
- Canapa, A.; Barucca, M.; Biscotti, M.A.; Forconi, M.; Olmo, E. Transposons, genome size, and evolutionary insights in animals. Cytogenet. Genome Res. 2016, 147, 217–239. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Evans, B.J.; Bogart, J.P. Polyploidy in Amphibia. Cytogenet. Genome Res. 2015, 145, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.; Arkhipova, I.R. Transposable elements and polyploid evolution in animals. Curr. Opin. Genet. Dev. 2018, 49, 115–123. [Google Scholar] [CrossRef]
- Schmid, M.; Steinlein, C. Chromosome banding in Amphibia XVI. High-resolution replication banding patterns in Xenopus laevis. Chromosoma 1991, 101, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M. Chromosome Banding in Amphibia. II. Constitutive Heterochromatin and Nucleolus Organizer Regions in Ranidae, Microhylidae and Rhacophoridae. Chromosoma 1978, 68, 131–148. [Google Scholar] [CrossRef]
- Schempp, W.; Schmid, M. Chromosome Banding in Amphibia VI. BrdU-Replication Patterns in Anura and Demonstration of XX/XY Sex Chromosomes in Rana esculenta. Chromosoma 1981, 83, 697–710. [Google Scholar] [CrossRef]
- Schmid, M.; Steinlein, C. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae). Cytogenet. Genome Res. 2015, 145, 201–217. [Google Scholar] [CrossRef]
- Ashman, T.-L.; Bachtrog, D.; Blackmon, H.; Goldberg, E.E.; Hahn, M.W.; Kirkpatrick, M.; Kitano, J.; Mank, J.E.; Mayrose, I.; Ming, R.; et al. Tree of sex: A database of sexual systems. Sci. Data 2014, 1, 1–8. [Google Scholar] [CrossRef]
- Schmid, M.; Nanda, I.; Steinlein, C.; Kausch, K.; Haaf, T.; Epplen, J.T. Sex-Determining Mechanisms and Sex Chromosomes in Amphibia. In Amphibian Cytogenetics and Evolution; Academic Press: Cambridge, MA, USA, 1991; pp. 393–430. [Google Scholar]
- Zattera, M.L.; Gazolla, C.B.; de Soares, A.; Gazoni, T.; Pollet, N.; Recco-Pimentel, S.M.; Bruschi, D.P. Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Front. Genet. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- de Paula Bueno, G.; Gatto, K.P.; Gazolla, C.B.; Leivas, P.T.; Struett, M.M.; Moura, M.; Bruschi, D.P. Cytogenetic characterization and mapping of the repetitive DNAs in Cycloramphus bolitoglossus (Werner, 1897): More clues for the chromosome evolution in the genus Cycloramphus (Anura, Cycloramphidae). PLoS ONE 2021, 16, e0245128. [Google Scholar] [CrossRef]
- Charlesworth, D.; Charlesworth, B.; Marais, G.A.B. Steps in the evolution of heteromorphic sex chromosomes. Heredity 2005, 95, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Devi, J.; Ko, J.M.; Seo, B.B. FISH and GISH: Modern cytogenetic techniques. Indian J. Biotechnol. 2005, 4, 307–315. [Google Scholar] [CrossRef]
- Kato, A.; Vega, J.M.; Han, F.; Lamb, J.C.; Birchler, J.A. Advances in plant chromosome identification and cytogenetic techniques. Curr. Opin. Plant Biol. 2005, 8, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Barzotti, R.; Pelliccia, F.; Rocchi, A. Sex chromosome differentiation revealed by genomic in-situ hybridization. Chromosome Res. 2000, 8, 459–464. [Google Scholar] [CrossRef]
- Yoshido, A.; Marec, F.; Sahara, K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma 2005, 114, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traut, W. The evolution of sex chromosomes in insects: Differentiaion of sex chromosomes in flies and moths. Eur. J. Entomol. 1999, 96, 227–235. [Google Scholar]
- Roco, Á.S.; Olmstead, A.W.; Degitz, S.J.; Amano, T.; Zimmerman, L.B.; Bullejos, M. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl. Acad. Sci. USA 2015, 112, E4752–E4761. [Google Scholar] [CrossRef] [Green Version]
- Furman, B.L.S.; Cauret, C.M.S.; Knytl, M.; Song, X.Y.; Premachandra, T.; Ofori-Boateng, C.; Jordan, D.C.; Horb, M.E.; Evans, B.J. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 2020, 16, e1009121. [Google Scholar] [CrossRef]
- Furman, B.L.S.; Evans, B.J. Sequential Turnovers of Sex Chromosomes in African Clawed Frogs (Xenopus) Suggest Some Genomic Regions are Good at Sex Determination. G3 Genes Genomes Genet. 2016, 6, 3625–3633. [Google Scholar] [CrossRef] [Green Version]
- Furman, B.L.S.; Evans, B.J. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems. Genome Biol. Evol. 2018, 10, 742–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, B.J. Genome evolution and speciation genetics of clawed frog (Xenopus and Silurana). Front. Biosci. 2008, 13, 4687–4706. [Google Scholar] [CrossRef] [PubMed]
- Tymowska, J. Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenet. Cell Genet. 1973, 12, 297–304. [Google Scholar] [CrossRef]
- Tymowska, J.; Kobel, H.R. Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. Cytogenet. Genome Res. 1972, 11, 270–278. [Google Scholar] [CrossRef]
- Tymowska, J. Polyploidy and Cytogenetic Variation in Frogs of the Genus Xenopus. In Amphibian Cytogenetics and Evolution; Academic Press: Cambridge, MA, USA, 1991; pp. 259–297. [Google Scholar]
- Uno, Y.; Nishida, C.; Yoshimoto, S.; Ito, M.; Oshima, Y.; Yokoyama, S.; Nakamura, M.; Matsuda, Y. Diversity in the origins of sex chromosomes in anurans inferred from comparative mapping of sexual differentiation genes for three species of the Raninae and Xenopodinae. Chromosome Res. 2008, 16, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Krylov, V.; Kubickova, S.; Rubes, J.; Macha, J.; Tlapakova, T.; Seifertova, E.; Sebkova, N. Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosome Res. 2010, 18, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Khokha, M.K.; Krylov, V.; Reilly, M.J.; Gall, J.G.; Bhattacharya, D.; Cheung, C.Y.J.; Kaufman, S.; Lam, D.K.; Macha, J.; Ngo, C.; et al. Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev. Dyn. 2009, 238, 1398–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, D.E.; Gutierrez, L.; Xu, Z.; Krylov, V.; Macha, J.; Blankenburg, K.P.; Hitchens, M.; Bellot, L.J.; Spivey, M.; Stemple, D.L.; et al. A genetic map of Xenopus tropicalis. Dev. Biol. 2011, 354, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Uno, Y.; Kondo, M.; Gilchrist, M.J.; Zorn, A.M.; Rokhsar, D.S.; Schmid, M.; Taira, M. A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis. Cytogenet. Genome Res. 2015, 145, 187–191. [Google Scholar] [CrossRef]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M.; et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016, 538, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mikamo, K.; Witschi, E. The mitotic chromosomes in Xenopus laevis (Daudin): Normal, sex reversed and female WW. Cytogenetics 1966, 5, 1–19. [Google Scholar] [CrossRef]
- Uno, Y.; Nishida, C.; Takagi, C.; Ueno, N.; Matsuda, Y. Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Olmstead, A.W.; Lindberg-Livingston, A.; Degitz, S.J. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays. Aquat. Toxicol. 2010, 98, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Bewick, A.J.; Chain, F.J.J.; Zimmerman, L.B.; Sesay, A.; Gilchrist, M.J.; Owens, N.D.L.; Seifertova, E.; Krylov, V.; Macha, J.; Tlapakova, T.; et al. A Large Pseudoautosomal Region on the Sex Chromosomes of the Frog Silurana tropicalis. Genome Biol. Evol. 2013, 5, 1087–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, S.; Okada, E.; Umemoto, H.; Tamura, K.; Uno, Y.; Nishida-Umehara, C.; Matsuda, Y.; Takamatsu, N.; Shiba, T.; Ito, M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2008, 105, 2469–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tymowska, J.; Fischberg, M. A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae). Cytogenet. Cell Genet. 1982, 34, 149–157. [Google Scholar] [CrossRef]
- Schmid, M.; Haaf, T.; Geile, B.; Sims, S. Chromosome banding in Amphibia VIII. An unusual XY[XX-sex chromosome system in Gastrotheca riobambae (Anura, Hylidae). Chromosoma 1983, 88, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Green, D.M. Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: Extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 1988, 97, 55–70. [Google Scholar] [CrossRef]
- Schmid, M.; Steinlein, C. Chromosome banding in Amphibia: XXIX. The primitive XY/XX sex chromosomes of Hyla femoralis (Anura, Hylidae). Cytogenet. Genome Res. 2003, 101, 74–79. [Google Scholar] [CrossRef]
- Schmid, M.; Ohta, S.; Steinlein, C.; Guttenbach, M. Chromosome banding in Amphibia XIX. Primitive ZW/ZZ sex chromosomes in Buergeria buergeri (Anura, Rhacophoridae). Cytogenet. Cell Genet. 1993, 62, 238–246. [Google Scholar] [CrossRef]
- Abramyan, J.; Ezaz, T.; Marshall Graves, J.A.; Koopman, P.A. Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Res. 2009, 17, 1015–1024. [Google Scholar] [CrossRef]
- Sinzelle, L.; Thuret, R.; Hwang, H.-Y.; Herszberg, B.; Paillard, E.; Bronchain, O.J.; Stemple, D.L.; Dhorne-Pollet, S.; Pollet, N. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis 2012, 50, 316–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwkoop, P.D.; Faber, J. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis; Garland Publishing, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Krylov, V.; Tlapakova, T.; Macha, J. Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA. Cytogenet. Genome Res. 2007, 116, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Schnedl, W.; Abraham, R.; Dann, O.; Geber, G.; Schweizer, D. Preferential fluorescent staining of heterochromatic regions in human chromosomes 9, 15, and the Y by D 287/170. Hum. Genet. 1981, 59, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Steinlein, C.; Bogart, J.P.; Feichtinger, W.; León, P.; La Marca, E.; Díaz, L.M.; Sanz, A.; Chen, S.H.; Hedges, S.B. The chromosomes of terraranan frogs: Insights into vertebrate cytogenetics. Cytogenet. Genome Res. 2010, 130–131, 1–568. [Google Scholar] [CrossRef]
- Al-Rikabi, A.; Liehr, L.B.; Liehr, T. Glass needle-based chromosome microdissection—How to set up probes for molecular cytogenetics? Video J. Clin. Res. 2020, 2, 1–6. [Google Scholar] [CrossRef]
- Trifonov, V.; Vorobieva, N.N.; Rens, W. FISH with and Without COT1 DNA. In Fluorescence In Situ Hybridization (FISH)—Application Guide; Liehr, T., Ed.; Springer: Berlin, Germany, 2009; pp. 99–109. [Google Scholar]
- Telenius, H.; Carter, N.P.; Bebb, C.E.; Nordenskjöld, M.; Ponder, B.A.J.; Tunnacliffe, A. Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics 1992, 13, 718–725. [Google Scholar] [CrossRef]
- Endow, S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics 1982, 100, 375–385. [Google Scholar]
- Schweizer, D. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 1976, 58, 307–324. [Google Scholar] [CrossRef]
- Tymowska, J.; Fischberg, M. Chromosome complements of the genus Xenopus. Chromosoma 1973, 44, 335–342. [Google Scholar] [CrossRef]
- Suda, M.; Uno, Y.; Mori, Y.; Matsuda, Y.; Nakamura, M. Molecular cytogenetic characterization of telomere-specific repetitive DNA sequences in Rana rugosa. J. Exp. Zool. A Ecol. Genet. Physiol. 2011, 315, 222–231. [Google Scholar] [CrossRef]
- Spohr, G.; Reith, W.; Sures, I. Organization and sequence analysis of a cluster of repetitive DNA elements from Xenopus laevis. J. Mol. Biol. 1981, 151, 573–592. [Google Scholar] [CrossRef]
- Cioffi, M.B.; Kejnovsky, E.; Bertollo, L.A.C. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet. Genome Res. 2011, 132, 289–296. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, T.D.; Kretschmer, R.; Bertocchi, N.A.; Degrandi, T.M.; De Oliveira, E.H.C.; De Cioffi, M.B.; Garnero, A.D.V.; Gunski, R.J. Genomic organization of repetitive DNA in woodpeckers (Aves, Piciformes): Implications for karyotype and ZW sex chromosome differentiation. PLoS ONE 2017, 12, e0169987. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, S.; Nishihara, Y.; Kugou, K.; Ohta, K.; Kanoh, J. Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis. Nucleic Acids Res. 2017, 45, 10333–10349. [Google Scholar] [CrossRef] [Green Version]
- Kwapisz, M.; Morillon, A. Subtelomeric Transcription and its Regulation. J. Mol. Biol. 2020, 432, 4199–4219. [Google Scholar] [CrossRef]
- Mitros, T.; Lyons, J.B.; Session, A.M.; Jenkins, J.; Shu, S.; Kwon, T.; Lane, M.; Ng, C.; Grammer, T.C.; Khokha, M.K.; et al. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev. Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Steinlein, C.; Bogart, J.P.; Feichtinger, W.; Haaf, T.; Nanda, I.; Del Pino, E.M.; Duellman, W.E.; Hedges, S.B. The hemiphractid frogs: Phylogeny, embryology, life history, and cytogenetics. Cytogenet. Genome Res. 2012, 138, 69–367. [Google Scholar] [CrossRef]
- Mezzasalma, M.; Glaw, F.; Odierna, G.; Petraccioli, A.; Guarino, F.M. Karyological analyses of Pseudhymenochirus merlini and Hymenochirus boettgeri provide new insights into the chromosome evolution in the anuran family Pipidae. Zool. Anz. 2015, 258, 47–53. [Google Scholar] [CrossRef]
- Krylov, V.; Tlapakova, T. Xenopus Cytogenetics and Chromosomal Evolution. Cytogenet. Genome Res. 2015, 145, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Knytl, M.; Smolík, O.; Kubíčková, S.; Tlapáková, T.; Evans, B.J.; Krylov, V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS ONE 2017, 12, e0177087. [Google Scholar] [CrossRef] [PubMed]
XTR [9] | XTR [62] | XTR [28] | XTR [25] | Morph. | GISH | Cot | CMA/DA | XLA [32] | XLA [26] | GISH/Cot | XTR-7w |
---|---|---|---|---|---|---|---|---|---|---|---|
XTR1 | 1 | 1 | 1 | S | T | T | XLA1L | 1 | T | ||
XLA1S | 2 | T | |||||||||
XTR2 | 2 | 2 | 2 | S | T | T | XLA2L | 3 | T | ||
XLA2S | 8 | T | |||||||||
XTR3 | 3 | 9 | 9 | A | T, p | T, p | p | XLA3L (N) | 12 | T, p | p |
XLA3S | 16 | T, p (pol) 1 | |||||||||
XTR4 | 5 | 3 | 4 | S | T, c2 p | T, c2 p | XLA4L | 13 | T, p (pol) 1 | ||
XLA4S | 17 | T | |||||||||
XTR5 | 4 | 4 | 3 | S | T | T | XLA5L | 4 | T | ||
XLA5S | 5 | T | |||||||||
XTR6 | 6 | 8 | 8 | M | T | T | XLA6L | 9 | T | ||
XLA6S | 6 | T, C (pol) | |||||||||
XTR7 (N) | 7 | 5 | 5 | S | T | T | N | XLA7L | 7 | T | w |
XLA7S | 10 | T | w | ||||||||
XTR8 | 8 | 10 | 10 | A | T | T, p | XLA8L | 14 | T | ||
XLA8S | 11 | T | |||||||||
XTR9 | 9 | 6 | 6 | S | T, c2 q | T, c2 q | c2 q | XLA9L | 15 | T | |
XTR10 | 10 | 7 | 7 | S | T | T | |||||
XLA9S | 18 | T | |||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roco, Á.S.; Liehr, T.; Ruiz-García, A.; Guzmán, K.; Bullejos, M. Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae). Genes 2021, 12, 617. https://doi.org/10.3390/genes12050617
Roco ÁS, Liehr T, Ruiz-García A, Guzmán K, Bullejos M. Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae). Genes. 2021; 12(5):617. https://doi.org/10.3390/genes12050617
Chicago/Turabian StyleRoco, Álvaro S., Thomas Liehr, Adrián Ruiz-García, Kateryna Guzmán, and Mónica Bullejos. 2021. "Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae)" Genes 12, no. 5: 617. https://doi.org/10.3390/genes12050617
APA StyleRoco, Á. S., Liehr, T., Ruiz-García, A., Guzmán, K., & Bullejos, M. (2021). Comparative Distribution of Repetitive Sequences in the Karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae). Genes, 12(5), 617. https://doi.org/10.3390/genes12050617