Common Variation in Cytoskeletal Genes Is Associated with Conotruncal Heart Defects
Abstract
:1. Introduction
2. Materials & Methods
2.1. Data Sets
2.2. Gene-Sets
2.3. Gene-Set Analyses
2.4. Post Hoc Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability
Acknowledgments
Conflicts of Interest
References
- Bouma, B.J.; Mulder, B.J. Changing Landscape of Congenital Heart Disease. Circ. Res. 2017, 120, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.M.; Gallego, P.; Gonzalez, A.E.; Garcia-Hamilton, D.; Avila, P.; Yotti, R.; Ferreira, I.; Fernandez-Aviles, F. Risk factors for excess mortality in adults with congenital heart diseases. Eur. Heart J. 2017, 38, 1233–1241. [Google Scholar] [CrossRef]
- Zimmerman, M.S.; Smith, A.G.; Sable, C.A.; Echko, M.M.; Wilner, L.B.; Olsen, H.E.; Atalay, H.T.; Awasthi, A.; Bhutta, Z.A.; Boucher, J.L.; et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.; Brueckner, M. Genetics and Genomics of Congenital Heart Disease. Circ. Res. 2017, 120, 923–940. [Google Scholar] [CrossRef]
- Pierpont, M.E.; Brueckner, M.; Chung, W.K.; Garg, V.; Lacro, R.V.; McGuire, A.L.; Mital, S.; Priest, J.R.; Pu, W.T.; Roberts, A.; et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018, 138, e653–e711. [Google Scholar] [CrossRef]
- Williams, K.; Carson, J.; Lo, C. Genetics of Congenital Heart Disease. Biomolecules 2019, 9, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabana, N.A.; Shahid, S.U.; Irfan, U. Genetic Contribution to Congenital Heart Disease (CHD). Pediatr. Cardiol. 2020, 41, 12–23. [Google Scholar] [CrossRef]
- Lupo, P.J.; Mitchell, L.E.; Jenkins, M.M. Genome-wide association studies of structural birth defects: A review and commentary. Birth Defects Res. 2019, 111, 1329–1342. [Google Scholar] [CrossRef]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [Green Version]
- White, M.J.; Yaspan, B.L.; Veatch, O.J.; Goddard, P.; Risse-Adams, O.S.; Contreras, M.G. Strategies for Pathway Analysis Using GWAS and WGS Data. Curr. Protoc. Hum. Genet. 2019, 100, e79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, W.S.; Hernandez, E.J.; Wesolowski, S.; Bisgrove, B.W.; Sunderland, R.T.; Lin, E.; Lemmon, G.; Demarest, B.L.; Miller, T.A.; Bernstein, D.; et al. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat. Commun. 2019, 10, 4722. [Google Scholar] [CrossRef]
- Hoang, T.T.; Goldmuntz, E.; Roberts, A.E.; Chung, W.K.; Kline, J.K.; Deanfield, J.E.; Giardini, A.; Aleman, A.; Gelb, B.D.; Mac Neal, M.; et al. The Congenital Heart Disease Genetic Network Study: Cohort description. PLoS ONE 2018, 13, e0191319. [Google Scholar] [CrossRef] [Green Version]
- Agopian, A.J.; Goldmuntz, E.; Hakonarson, H.; Sewda, A.; Taylor, D.; Mitchell, L.E.; Pediatric Cardiac Genomics, C. Genome-Wide Association Studies and Meta-Analyses for Congenital Heart Defects. Circ. Cardiovasc. Genet. 2017, 10, e001449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef]
- Howie, B.N.; Donnelly, P.; Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, H.F.; Unwin, J.; Jamison, D.L.; Cordell, H.J. Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet. Epidemiol. 2011, 35, 19–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howey, R.; Cordell, H.J. PREMIM and EMIM: Tools for estimation of maternal, imprinting and interaction effects using multinomial modelling. BMC Bioinform. 2012, 13, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielman, R.S.; McGinnis, R.E.; Ewens, W.J. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 1993, 52, 506–516. [Google Scholar]
- Magi, R.; Morris, A.P. GWAMA: Software for genome-wide association meta-analysis. BMC Bioinform. 2010, 11, 288. [Google Scholar] [CrossRef] [Green Version]
- De Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deneka, A.; Korobeynikov, V.; Golemis, E.A. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015, 570, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.; Vaught, T.G.; Ji, H.; Gu, D.; Papasakelariou-Yared, C.; Horstmann, N.; Jennings, J.M.; Lee, M.; Sevilla, L.M.; Kloc, M.; et al. Xenopus Kazrin interacts with ARVCF-catenin, spectrin and p190B RhoGAP, and modulates RhoA activity and epithelial integrity. J. Cell Sci. 2010, 123, 4128–4144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuh, M. An actin-dependent mechanism for long-range vesicle transport. Nat. Cell Biol. 2011, 13, 1431–1436. [Google Scholar] [CrossRef]
- Leung, C.; Lu, X.; Liu, M.; Feng, Q. Rac1 signaling is critical to cardiomyocyte polarity and embryonic heart development. J. Am. Heart Assoc. 2014, 3, e001271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.; Liu, Y.; Lu, X.; Kim, M.; Drysdale, T.A.; Feng, Q. Rac1 Signaling Is Required for Anterior Second Heart Field Cellular Organization and Cardiac Outflow Tract Development. J. Am. Heart Assoc. 2015, 5, e002508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durbin, M.D.; O’Kane, J.; Lorentz, S.; Firulli, A.B.; Ware, S.M. SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev. Biol. 2020, 464, 124–136. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, L.; Wang, Q.; You, X.; Li, Y.; Zhao, Y.; Han, X.; Chang, Z.; He, X.; Cheng, C.; et al. NEXN inhibits GATA4 and leads to atrial septal defects in mice and humans. Cardiovasc. Res. 2014, 103, 228–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Presti, F.; Guzzardi, D.G.; Bancone, C.; Fedak, P.W.M.; Della Corte, A. The science of BAV aortopathy. Prog. Cardiovasc. Dis. 2020, 63, 465–474. [Google Scholar] [CrossRef]
- Logeswaran, T.; Friedburg, C.; Hofmann, K.; Akintuerk, H.; Biskup, S.; Graef, M.; Rad, A.; Weber, A.; Neubauer, B.A.; Schranz, D.; et al. Two patients with the heterozygous R189H mutation in ACTA2 and Complex congenital heart defects expands the cardiac phenotype of multisystemic smooth muscle dysfunction syndrome. Am. J. Med. Genet. A 2017, 173, 2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, R.; Al Hashem, A.; Alghamdi, M.H.; Seidahmad, M.Z.; Wakil, S.M.; Dagriri, K.; Keavney, B.; Goodship, J.; Alyousif, S.; Al-Habshan, F.M.; et al. Positional mapping of PRKD1, NRP1 and PRDM1 as novel candidate disease genes in truncus arteriosus. J. Med. Genet. 2015, 52, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, Q. NOing the heart: Role of nitric oxide synthase-3 in heart development. Differentiation 2012, 84, 54–61. [Google Scholar] [CrossRef]
Name | Description 1 | # of Genes |
---|---|---|
Autism | High-ranking autism candidate genes | 86 |
CHD | Non-cilia genes associated with congenital heart defects in humans or other organisms | 402 |
Chromatin | Chromatin-modifying genes found to be disrupted in patients with congenital heart defects | 163 |
Cilia | Expanded cilia gene list including the 302 SysCilia genes and potential cilia genes identified by a GOontology search in model organisms (zebrafish and mouse) | 669 |
Cytoskeletal | Cytoskeleton genes identified using the Reactome pathway database, with exclusion of genes related to cilia structure or function | 791 |
FGF signaling | Fibroblast growth factor signaling genes identified using the Reactome pathway database | 87 |
FoxJ1 | Genes with at least a two-fold change in expression when FoxJ1 is over-expressed or depleted in a zebrafish model | 116 |
Hedgehog signaling | Hedgehog signaling genes identified using the Reactome pathway database | 149 |
High heart expression | Genes with de novo mutations observed in human CHD cases and in the top quartile of expression in mouse embryonic day 14.5 hearts | 146 |
Notch1 | Hand curated Notch1 associated gene list | 130 |
PDGF signaling | Platelet derived growth factor signaling genes identified using the Reactome pathway database | 116 |
Ser-Thr kinases | Ser-Thr kinases identified using the Reactome pathway databases | 47 |
Syscilia | Well-characterized structural cilia genes (SysCil 2.0) assembled from the literature | 302 |
TGF-β | Assembled using the Reactome pathway database | 431 |
WNT signaling | WNT signaling genes identified using the Reactome pathway databases | 297 |
Gene-Set | # Genes Analyzed (# of Genes in Set) 1 | CTDs Only (3 Datasets/1431 Cases) 2 | LVOTDs Only (2 Datasets/509 Cases) 2 | CTDs and LVOTDs (5 Datasets/1940 Cases) 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ΒS | 95% CI | p-Value 3 | βS | 95% CI | p-Value 3 | βS | 95% CI | p-Value 3 | ||
Autism | 76 (86) | −0.12 | −0.03–0.06 | 0.89 | 0.11 | −0.09–0.31 | 0.12 | −0.02 | −0.20–0.16 | 0.59 |
CHD | 364 (402) | 0.04 | −0.05–0.11 | 0.21 | 0.05 | −0.03–0.13 | 0.14 | 0.02 | −0.06–0.10 | 0.36 |
Chromatin | 148 (163) | 0.07 | −0.05–0.19 | 0.15 | −0.02 | −0.16–0.12 | 0.63 | −0.01 | −0.13–0.11 | 0.57 |
Cilia | 612 (669) | 0.06 | 0.001–0.12 | 0.03 | 0.04 | −0.02–0.10 | 0.09 | 0.06 | 0.001–0.12 | 0.04 |
Cytoskeletal | 726 (791) | 0.09 | 0.03–0.15 | 0.001 | −0.06 | −0.12–0.001 | 0.97 | 0.04 | −0.02–0.10 | 0.08 |
FGF signaling | 83 (87) | 0.03 | −0.15–0.21 | 0.37 | 0.008 | −0.17–0.18 | 0.46 | −0.07 | −0.23–0.09 | 0.80 |
FoxJ1 | 105 (116) | 0.06 | −0.08–0.20 | 0.20 | 0.06 | −0.08–0.20 | 0.20 | 0.05 | −0.09–0.19 | 0.24 |
Hedgehog signaling | 137 (149) | 0.11 | −0.01–0.19 | 0.04 | 0.06 | −0.06–0.18 | 0.19 | 0.05 | −0.07–0.17 | 0.21 |
High heart expression | 133 (146) | −0.12 | −0.26–0.02 | 0.96 | −0.03 | −0.16–0.12 | 0.66 | 0.02 | −0.12–0.16 | 0.41 |
Notch1 | 120 (130) | −0.05 | −0.19–0.09 | 0.77 | 0.18 | 0.04–0.32 | 0.007 | −0.12 | −0.26–0.02 | 0.95 |
PDGF signaling | 101 (116) | −0.11 | −0.27–0.05 | 0.92 | 0.08 | −0.08–0.24 | 0.15 | −0.18 | −0.34–0.02 | 0.99 |
Ser-Thr kinases | 41 (47) | −0.06 | −0.31–0.19 | 0.66 | −0.03 | −0.28–0.22 | 0.60 | −0.13 | −0.37–0.13 | 0.84 |
SysCilia | 280 (302) | 0.04 | −0.06–0.14 | 0.19 | 0.04 | −0.06–0.14 | 0.20 | 0.01 | −0.07–0.09 | 0.40 |
TGF-β | 402 (431) | −0.03 | −0.11–0.05 | 0.77 | −0.05 | −0.13–0.03 | 0.88 | −0.04 | −0.12–0.04 | 0.86 |
WNT signaling | 275 (297) | 0.08 | −0.02–0.18 | 0.04 | −0.02 | −0.12–0.08 | 0.65 | 0.05 | −0.05–0.15 | 0.16 |
Gene Symbol | Gene Name | p-Value | # De Novo 1 | # Recessive or Compound Heterozygous 1 | Total # of Rare Variants 1 |
---|---|---|---|---|---|
Top 10 gene-associations in the full cystoskeletal gene-set (N = 726) | |||||
CASS4 | Cas scaffold protein family member 4 | 0.003 | 0 | 0 | 0 |
CLIP1 | Cap-gly domain containing linker protein | 0.006 | 0 | 0 | 0 |
ACTA2 | Actin α 2, smooth muscle | 0.006 | 0 | 0 | 0 |
KAZN | Kazin, periplankin interaction protein | 0.007 | 0 | 0 | 0 |
MAEA | Macrophage erythroblast attacher, E3 ubiquitin ligase | 0.010 | 0 | 0 | 0 |
TBC1D21 | TBC1 domain family member 21 | 0.010 | 0 | 0 | 0 |
NRP1 | Neuropilin 1 | 0.010 | 0 | 0 | 0 |
SPIRE2 | Spire type actin nucleation factor 2 | 0.012 | 0 | 2 | 2 |
SEPT9 | Septin 9 | 0.014 | 0 | 0 | 0 |
CLIC5 | Chloride intracellular channel 5 | 0.014 | 0 | 0 | 0 |
Top 10 gene-associations in the sub-set of cystoskeletal genes with damaging rare genotypes in ≥ 2 cases 1 (N = 50) | |||||
SPIRE2 | Spire type actin nucleation factor 2 | 0.012 | 0 | 2 | 2 |
TNS1 | Tensin 1 | 0.035 | 1 | 2 | 3 |
SCNN1D | Sodium channel epithelial 1 subunit delta | 0.040 | 0 | 2 | 2 |
RAPH1 | Ras association and pleckstrin homology domains 1 | 0.046 | 1 | 1 | 2 |
TENM2 | Teneurin transmembrance protein 2 | 0.049 | 0 | 2 | 2 |
TACC2 | Tranforming acidic coiled-coil containing protein 2 | 0.050 | 0 | 2 | 2 |
PLEC | Plectin | 0.060 | 0 | 8 | 8 |
TRIP6 | Thyroid hormone receptor interactor 6 | 0.073 | 0 | 2 | 2 |
NOS3 | Nitric oxide synthase 3 | 0.086 | 0 | 2 | 2 |
BSN | Bassoon presynaptic cytomatrix protein | 0.093 | 1 | 4 | 5 |
Gene-Set/Sub-Set | # of Genes | βS | 95% Confidence Interval | p-Value 2 |
---|---|---|---|---|
Full cytoskeletal gene-set | 726 | 0.09 | 0.03–0.15 | 0.001 |
Subset with de novo mutations 1 | 82 | 0.12 | −0.05–0.30 | 0.09 |
Subset with rare recessive mutations 1 | 120 | 0.18 | 0.04–0.32 | 0.007 |
Subset with more than one reported de novo or recessive mutations | 50 | 0.32 | 0.08–0.56 | 0.002 |
Subset with more than one reported recessive mutation | 39 | 0.32 | 0.08–0.56 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musfee, F.I.; Agopian, A.J.; Goldmuntz, E.; Hakonarson, H.; Morrow, B.E.; Taylor, D.M.; Tristani-Firouzi, M.; Watkins, W.S.; Yandell, M.; Mitchell, L.E. Common Variation in Cytoskeletal Genes Is Associated with Conotruncal Heart Defects. Genes 2021, 12, 655. https://doi.org/10.3390/genes12050655
Musfee FI, Agopian AJ, Goldmuntz E, Hakonarson H, Morrow BE, Taylor DM, Tristani-Firouzi M, Watkins WS, Yandell M, Mitchell LE. Common Variation in Cytoskeletal Genes Is Associated with Conotruncal Heart Defects. Genes. 2021; 12(5):655. https://doi.org/10.3390/genes12050655
Chicago/Turabian StyleMusfee, Fadi I., A. J. Agopian, Elizabeth Goldmuntz, Hakon Hakonarson, Bernice E. Morrow, Deanne M. Taylor, Martin Tristani-Firouzi, W. Scott Watkins, Mark Yandell, and Laura E. Mitchell. 2021. "Common Variation in Cytoskeletal Genes Is Associated with Conotruncal Heart Defects" Genes 12, no. 5: 655. https://doi.org/10.3390/genes12050655
APA StyleMusfee, F. I., Agopian, A. J., Goldmuntz, E., Hakonarson, H., Morrow, B. E., Taylor, D. M., Tristani-Firouzi, M., Watkins, W. S., Yandell, M., & Mitchell, L. E. (2021). Common Variation in Cytoskeletal Genes Is Associated with Conotruncal Heart Defects. Genes, 12(5), 655. https://doi.org/10.3390/genes12050655