Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imaging and Genotype Data
2.2. Construction of Fusion Features
2.3. Construction of Genetic Clustering Random Forest
2.4. Parameter Optimization Adjustment
2.5. Important “Subregion-Gene Pairs” Determination
3. Results
3.1. The Results of Fusion Feature
3.2. The Results of Parameter Optimization
3.3. Comparison with Other Methods
3.4. The Extraction of Fusion Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton-Cheh, C.; Hirschhorn, J.N. Genetic association studies of complex traits: Design and analysis issues. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 2005, 573, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.E.; Augustinack, J.C.; Nguyen, K.; Player, C.M.; Player, A.; Wright, M.; Roy, N.; Frosch, M.P.; Mckee, A.C.; Wald, L.L. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution mri: Application to adaptive segmentation of in vivo mri. Neuroimage 2015, 115, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Zeidman, P.; Maguire, E.A. Anterior hippocampus: The anatomy of perception, imagination and episodic memory. Nat. Rev. Neurosci. 2016, 17, 173–182. [Google Scholar] [CrossRef]
- Cong, S.; Risacher, S.L.; West, J.D.; Wu, Y.C.; Apostolova, L.G.; Tallman, E.; Rizkalla, M.; Salama, P.; Saykin, A.J.; Shen, L. Volumetric Comparison of Hippocampal Subfields Extracted from 4-Minute Accelerated versus 8-Minute High-resolution T2-weighted 3T MRI Scans. Brain Imaging Behav. 2018, 12, 1583–1595. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Yao, X.; Huang, Z.; Risacher, S.L.; Nho, K.; Saykin, A.J.; Shen, L. Volumetric gwas of medial temporal lobe structures identifies an erc1 locus using adni high-resolution t2-weighted mri data. Neurobiol. Aging 2020, 95, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Mikolas, P.; Tozzi, L.; Doolin, K.; Farrell, C.; O’Keane, V.; Frodl, T. Effects of early life adversity and fkbp5 genotype on hippocampal subfields volume in major depression. J. Affect. Disord. 2019, 252, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Cantero, J.L.; Iglesias, J.E.; Koen, V.L.; Mercedes, A. Regional hippocampal atrophy and higher levels of plasma amyloid-beta are as-sociated with subjective memory complaints in nondemented elderly subjects. J. Gerontol. 2016, 71, 1210–1215. [Google Scholar] [CrossRef] [Green Version]
- Santos-Filho, C.; de Lima, C.M.; Fôro, C.A.R.; de Oliveira, M.A.; Magalhães, N.G.M.; Guerreiro-Diniz, C.; Diniz, D.G.; Vasconcelos, P.F.D.C.; Diniz, C.W.P. Visuospatial learning and memory in the cebus apella and microglial morphology in the molecular layer of the dentate gyrus and ca1 lacunosum molecular layer. J. Chem. Neuroanat. 2014, 61–62, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Basu, J.; Siegelbaum, S.A. The corticohippocampal circuit, synaptic plasticity, and memory. Cold Spring Harb. Perspect. Biol. 2015, 7, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Karas, G.; Scheltens, P.; Rombouts, S.; Visser, P.; van Schijndel, R.; Fox, N.; Barkhof, F. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. NeuroImage 2004, 23, 708–716. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, X.; Dai, Z.; Xia, M.; Zhao, Z.; Zhao, X.; Jia, J.; Han, Y.; He, Y. Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol. Psychiatry 2013, 73, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.-Y.; Yap, P.-T.; Zhang, D.; Denny, K.; Browndyke, J.N.; Potter, G.G.; Welsh-Bohmer, K.A.; Wang, L.; Shen, D. Identification of mci individuals using structural and functional connectivity networks. NeuroImage 2012, 59, 2045–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, S.; Nozadi, S.H.; Shakeri, M.; Kadoury, S. Subcortical Shape Morphology and Voxel-Based Features for Alzheimer’s Disease Classification. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18 April 2017. [Google Scholar] [CrossRef]
- Bi, X.-A.; Hu, X.; Wu, H.; Wang, Y. Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest. IEEE J. Biomed. Health Inform. 2020, 24, 2973–2983. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Smith, S.M.; Nichols, T.E.; Vidaurre, D.; Winkler, A.M.; Behrens, T.E.J.; Glasser, M.F.; Ugurbil, K.; Barch, D.M.; van Essen, D.C.; Miller, K.L.; et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 2015, 18, 1565–1567. [Google Scholar] [CrossRef] [Green Version]
- Artoni, F.; Delorme, A.; Makeig, S. Applying dimension reduction to eeg data by principal component analysis reduces the quality of its subsequent independent component decomposition. NeuroImage 2018, 175, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yao, Z.; Xie, Y.; Fan, J.; Hu, B. Identification of Alzheimer’s disease and mild cognitive impairment using networks constructed based on multiple morphological brain features. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Shi, X.; Rodrigue, A.K.; Feng, J.; Xia, Y.; Elhoseny, M.; Yuan, X.; Gu, L. Feature selection based on artificial bee colony and gradient boosting decision tree. Appl. Soft Comput. 2019, 74, 634–642. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Yao, X.; Cong, S.; Yan, J.; Risacher, S.; Saykin, A.; Moore, J.; Shen, L. Regional imaging genetic enrichment analysis. Bioinformatics 2020, 36, 2554–2560. [Google Scholar] [CrossRef]
- Yao, X.; Risacher, S.L.; Nho, K.; Saykin, A.J.; Shen, L. Targeted genetic analysis of cerebral blood flow imaging phenotypes implicates the inpp5d gene. Neurobiol. Aging 2019, 81, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saykin, A.J.; Shen, L.; Foroud, T.M.; Potkin, S.G.; Swaminathan, S.; Kim, S.; Risacher, S.L.; Nho, K.; Huentelman, M.J.; Craig, D.W.; et al. Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimer’s Dement. 2010, 6, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Yan, J.; Liu, K.; Kim, S.; Nho, K.; Risacher, S.L.; Greene, C.S.; Moore, J.H.; Saykin, A.J.; Shen, L. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics 2017, 33, 3250–3257. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. Plink: A tool set for whole-genome association and population-based link-age analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, W.; Meng, X.; Bian, C.; Liang, H. Research on Interactive Visualization Method of Brain Image and Genomic Data Association. Trans. Beijing Inst. Technol. 2019, 39, 12–18. [Google Scholar]
- Li, M.-X.; Sham, P.C.; Cherny, S.S.; Song, Y.-Q. A knowledge-based weighting framework to boost the power of genome-wide association studies. PLoS ONE 2010, 5, e14480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.X.; Gui, H.S.; Kwan, J.S.; Sham, P.C. Gates: A rapid and powerful gene-based association test using extended simes procedure. Am. J. Hum. Genet. 2011, 88, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, A.R.; Smith, S.M.; Fjell, A.M.; Tamnes, C.K.; Walhovd, K.B.; Douaud, G.; Woolrich, M.W.; Westlye, L.T. Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure. NeuroImage 2012, 63, 365–380. [Google Scholar] [CrossRef]
- Douaud, G.; Groves, A.R.; Tamnes, C.K.; Westlye, L.T.; Duff, E.P.; Engvig, A.; Walhovd, K.B.; James, A.; Gass, A.; Monsch, A.U.; et al. A common brain network links development, aging, and vulnerability to disease. Proc. Natl. Acad. Sci. USA 2014, 111, 17648–17653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, A.R.; Beckmann, C.F.; Smith, S.M.; Woolrich, M.W. Linked independent component analysis for multimodal data fusion. NeuroImage 2011, 54, 2198–2217. [Google Scholar] [CrossRef]
- Itahashi, T.; Yamada, T.; Nakamura, M.; Watanabe, H.; Yamagata, B.; Imbo, D.; Shioda, S.; Kuroda, M.; Toriizuka, K.; Kato, N.; et al. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study. NeuroImage Clin. 2015, 7, 155–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.; Lee, P.H.; Lee, S.; Chung, S.J.; Shin, N. The diagnostic potential of multimodal neuroimaging measures in Parkinson’s disease and atypical parkinsonism. Brain Behav. 2020, 10, e01808. [Google Scholar] [CrossRef]
- Zafeiris, D.; Rutella, S.; Ball, G.R. An artificial neural network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Comput. Struct. Biotechnol. J. 2018, 16, 77–87. [Google Scholar] [CrossRef]
- Zeng, N.; Qiu, H.; Wang, Z.; Liu, W.; Zhang, H.; Li, Y. A new switching-delayed-pso-based optimized svm algorithm for diagnosis of Alzheimer’s disease. Neurocomputing 2018, 320, 195–202. [Google Scholar] [CrossRef]
- Bi, X.-A.; Jiang, Q.; Sun, Q.; Shu, Q.; Liu, Y. Analysis of Alzheimer’s disease based on the random neural network cluster in fmri. Front. Neuroinform. 2018, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.A.; Shu, Q.; Sun, Q.; Xu, Q. Random support vector machine cluster analysis of resting-state fmri in Alzheimer’s disease. PLoS ONE 2018, 13, e0194479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Zhang, L.; Yang, H.; Luo, X.; Fan, G. Do multiple system atrophy and Parkinson’s disease show distinct patterns of volumetric alterations across hippocampal subfields? an exploratory study. Eur. Radiol. 2019, 29, 4948–4956. [Google Scholar] [CrossRef] [PubMed]
- Christidi, F.; Karavasilis, E.; Rentzos, M.; Velonakis, G.; Zouvelou, V.; Irou, S.; Argyropoulos, G.; Papatriantafyllou, I.; Pantolewn, V.; Ferentinos, P.; et al. Hippocampal pathology in amyotrophic lateral sclerosis: Selective vulnerability of subfields and their associated projections. Neurobiol. Aging 2019, 84, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Bleda, M.; Witter, M.P. Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: An anterograde tracing study in the rat. J. Comp. Neurol. 1993, 328, 115. [Google Scholar] [CrossRef] [PubMed]
- Glasgow, S.D.; Chapman, C.A. Local generation of theta-frequency eeg activity in the parasubiculum. J. Neurophysiol. 2007, 97, 3868–3879. [Google Scholar] [CrossRef]
- Ding, S.L. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. J. Comp. Neurol. 2013, 521, 4145–4162. [Google Scholar] [CrossRef]
- Fukutani, Y.; Kobayashi, K.; Nakamura, I.; Watanabe, K.; Isaki, K.; Cairns, N.J. Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neurosci. Lett. 1995, 200, 57–60. [Google Scholar] [CrossRef]
- Sun, J.; Song, F.; Wang, J.; Han, G.; Lei, H. Hidden risk genes with high-order intragenic epistasis in Alzheimer’s disease. J. Alzheimer’s Dis. 2014, 41, 1039–1056. [Google Scholar] [CrossRef] [PubMed]
- Koran, M.E.I.; Hohman, T.J.; Thornton-Wells, A.T. Genetic inter-actions found between calcium channel genes modulate amyloid load measured by positron emission tomography. Hum. Genet. 2014, 133, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelliher, M.; Fastbom, J.; Cowburn, R.F.; Bonkale, W.; Ohm, T.G.; Avid, R.; Sorrentino, V.; O’Neill, C. Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and beta-amyloid pathologies. Neuroence 1999, 92, 499–513. [Google Scholar]
- Gong, S.; Su, B.B.; Tovar, H.; Mao, C.; Gonzalez, V.; Liu, Y.; Lu, Y.; Wang, K.-S.; Xu, C. Polymorphisms within ryr3 gene are associated with risk and age at onset of hypertension, diabetes, and Alzheimer’s disease. Am. J. Hypertens. 2018, 31, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.-S.; Wang, D.; Yu, G.-Q.; Zhu, G.; Kharazia, V.N.; Paredes, J.P.; Chang, W.S.; Deitchman, J.K.; Mucke, L.; Messing, R.O.; et al. Pkc increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc. Natl. Acad. Sci. USA 2006, 103, 8215–8220. [Google Scholar] [CrossRef] [Green Version]
Subjects | HC | AD |
---|---|---|
Number | 262 | 125 |
Gender (M/F) | 135/127 | 76/49 |
Age (mean ± sd) | 74.6 ± 5.8 | 74.3 ± 7.7 |
Edu (mean ± sd) | 16.4 ± 2.8 | 15.8 ± 3.0 |
Numbers | Subregions | Genes |
---|---|---|
29 | PARASUBICULUM | CAMTA1 |
25 | PARASUBICULUM | PCSK5 |
23 | HIPPOCAMPAL_FISSURE | TSBP1-AS1 |
23 | FIMBRIA | LRRC4C |
22 | GL_ML_DG | KIF26B |
22 | CA4 | LINGO2 |
22 | CA4 | NRXN1 |
22 | FIMBRIA | TRAPPC9 |
21 | MOLECULAR_LAYER | FHIT |
21 | MOLECULAR_LAYER | NAV2 |
21 | GL_ML_DG | LINC01317 |
21 | CA4 | KIAA1217 |
21 | PRESUBICULUM | PCSK5 |
21 | CA3 | PTPRN2 |
21 | CA3 | RYR3 |
Method | Discoveries | Overlap with Our Method |
---|---|---|
GCRF | 475 | - |
RF | 205 | 68 |
GARF | 90 | 35 |
CERF | 220 | 73 |
Dataset | Base Classifier Number | GE Times | CE Times | Optimal Features Number | Average Accuracy |
---|---|---|---|---|---|
125AD + 262HC | 480 | 3 | 17 | 475 | 87.50% |
269EMCI + 262HC | 460 | 1 | 3 | 165 | 84.58% |
288LMCI + 262HC | 400 | 5 | 14 | 470 | 85.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, W.; Cao, L.; Luo, H.; Xu, S.; Bao, P.; Meng, X.; Liang, H.; Fang, S. Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest. Genes 2021, 12, 683. https://doi.org/10.3390/genes12050683
Li J, Liu W, Cao L, Luo H, Xu S, Bao P, Meng X, Liang H, Fang S. Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest. Genes. 2021; 12(5):683. https://doi.org/10.3390/genes12050683
Chicago/Turabian StyleLi, Jin, Wenjie Liu, Luolong Cao, Haoran Luo, Siwen Xu, Peihua Bao, Xianglian Meng, Hong Liang, and Shiaofen Fang. 2021. "Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest" Genes 12, no. 5: 683. https://doi.org/10.3390/genes12050683
APA StyleLi, J., Liu, W., Cao, L., Luo, H., Xu, S., Bao, P., Meng, X., Liang, H., & Fang, S. (2021). Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest. Genes, 12(5), 683. https://doi.org/10.3390/genes12050683