Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Histology in Colonic Tissue
2.3. Site-Directed Mutagenesis
2.4. Cell Culture and Transfection Experiments
2.5. Western Blotting
2.6. PC1/3 Activity Measurement
3. Results
3.1. Clinical Phenotype Description
3.2. Gastrointestinal Phenotype
3.3. Functional Analysis of the PCSK1 E345A Mutation
3.4. Immunohistochemical Analysis of PC1/3 and Potential Substrates in Colonic Biopsies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidah, N.G.; Mattei, M.G.; Gaspar, L.; Benjannet, S.; Mbikay, M.; Chrétien, M. Chromosomal assignments of the genes for neuroendocrine convertase PC1 (NEC1) to human 5q15–21, neuroendocrine convertase PC2 (NEC2) to human 20p11.1–11.2, and furin (mouse 7[D1-E2] region). Genomics 1991, 11, 103–107. [Google Scholar] [CrossRef]
- Seidah, N.G.; Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 2012, 11, 367–383. [Google Scholar] [CrossRef]
- Seidah, N.G. The Proprotein Convertases, 20 Years Later. Adv. Struct. Saf. Stud. 2011, 768, 23–57. [Google Scholar] [CrossRef]
- Stijnen, P.; Ramos-Molina, B.; O’Rahilly, S.; Creemers, J.W.M. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr. Rev. 2016, 37, 347–371. [Google Scholar] [CrossRef] [Green Version]
- Roebroek, A.J.; Taylor, N.A.; Louagie, E.; Pauli, I.; Smeijers, L.; Snellinx, A.; Lauwers, A.; Van de Ven, W.J.; Hartmann, D.; Creemers, J.W. Limited Redundancy of the Proprotein Convertase Furin in Mouse Liver. J. Biol. Chem. 2004, 279, 53442–53450. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Thorrez, L.; Siegfried, G.; Meulemans, S.; Evrard, S.; Tejpar, S.; Khatib, A.-M.; Creemers, J.W.M. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer. Oncogene 2020, 39, 3571–3587. [Google Scholar] [CrossRef]
- Pais, R.; Gribble, F.M.; Reimann, F. Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides 2016, 77, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelstoft, M.S.; Egerod, K.L.; Holst, B.; Schwartz, T.W. A Gut Feeling for Obesity: 7TM Sensors on Enteroendocrine Cells. Cell Metab. 2008, 8, 447–449. [Google Scholar] [CrossRef] [Green Version]
- Mace, O.J.; Tehan, B.; Marshall, F.H. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol. Res. Perspect. 2015, 3, e00155. [Google Scholar] [CrossRef]
- Pais, R.; Gribble, F.M.; Reimann, F. Stimulation of incretin secreting cells. Ther. Adv. Endocrinol. Metab. 2016, 7, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.E.; Habib, A.M.; Rogers, G.J.; Gribble, F.M.; Reimann, F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 2009, 52, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.X.; Zhao, W.; Solomon, C.; Rowland, K.J.; Ackerley, C.; Robine, S.; Holzenberger, M.; Gonska, T.; Brubaker, P.L. The Intestinal Epithelial Insulin-Like Growth Factor-1 Receptor Links Glucagon-Like Peptide-2 Action to Gut Barrier Function. Endocrinology 2014, 155, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, M.G.; Lindberg, I.; Solorzano–Vargas, R.S.; Wang, J.; Avitzur, Y.; Bandsma, R.; Sokollik, C.; Lawrence, S.; Pickett, L.A.; Chen, Z.; et al. Congenital Proprotein Convertase 1/3 Deficiency Causes Malabsorptive Diarrhea and Other Endocrinopathies in a Pediatric Cohort. Gastroenterology 2013, 145, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Rahilly, S.; Gray, H.; Humphreys, P.J.; Krook, A.; Polonsky, K.S.; White, A.; Gibson, S.; Taylor, K.; Carr, C. Brief report: Impaired processing of prohormones associated with abnormali-ties of glucose homeostasis and adrenal function. N. Engl. J. Med. 1995, 333, 1386–1391. [Google Scholar] [CrossRef]
- Jackson, R.S.; Creemers, J.W.M.; Ohagi, S.; Raffin-Sanson, M.-L.; Sanders, L.; Montague, C.T.; Hutton, J.C.; O’Rahilly, S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 1997, 16, 303–306. [Google Scholar] [CrossRef]
- Jackson, R.S.; Creemers, J.W.; Farooqi, I.S.; Raffin-Sanson, M.-L.; Varro, A.; Dockray, G.J.; Holst, J.J.; Brubaker, P.L.; Corvol, P.; Polonsky, K.S.; et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J. Clin. Investig. 2003, 112, 1550–1560. [Google Scholar] [CrossRef]
- Pépin, L.; Colin, E.; Tessarech, M.; Rouleau, S.; Bouhours-Nouet, N.; Bonneau, M.; Coutant, R. A New Case of PCSK1 Pathogenic Variant With Congenital Proprotein Convertase 1/3 Deficiency and Literature Review. J. Clin. Endocrinol. Metab. 2019, 104, 985–993. [Google Scholar] [CrossRef]
- Thiagarajah, J.R.; Kamin, D.S.; Acra, S.; Goldsmith, J.D.; Roland, J.T.; Lencer, W.I.; Muise, A.M.; Goldenring, J.R.; Avitzur, Y.; Martín, M.G. Advances in Evaluation of Chronic Diarrhea in Infants. Gastroenterology 2018, 154, 2045–2059.e6. [Google Scholar] [CrossRef] [Green Version]
- Terry, N.A.; Lee, R.A.; Walp, E.R.; Kaestner, K.H.; May, C.L. Dysgenesis of Enteroendocrine Cells in Aristaless-Related Homeobox Polyalanine Expansion Mutations. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 192–199. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Yang, Q.-C.; Lin, Y.; Xue, L.; Chen, M.-H.; Chen, J. Chromogranin A as a Marker for Diagnosis, Treatment, and Survival in Patients With Gastroenteropancreatic Neuroendocrine Neoplasm. Medicine 2014, 93, e247. [Google Scholar] [CrossRef]
- Ohsie, S.; Gerney, G.; Gui, D.; Kahana, D.; Martín, M.G.; Cortina, G. A paucity of colonic enteroendocrine and/or enterochromaffin cells characterizes a subset of patients with chronic unexplained diarrhea/malabsorption. Hum. Pathol. 2009, 40, 1006–1014. [Google Scholar] [CrossRef]
- Stijnen, P.; Brouwers, B.; Dirkx, E.; Ramos-Molina, B.; Van Lommel, L.; Schuit, F.; Thorrez, L.; Declercq, J.; Creemers, J.W.M. Endoplasmic reticulum-associated degradation of the mouse PC1/3-N222D hypomorph and human PCSK1 mutations contributes to obesity. Int. J. Obes. 2016, 40, 973–981. [Google Scholar] [CrossRef] [Green Version]
- Creemers, J.W.; Choquet, H.; Stijnen, P.; Vatin, V.; Pigeyre, M.; Beckers, S.; Meulemans, S.; Than, M.E.; Yengo, L.; Tauber, M.; et al. Heterozygous Mutations Causing Partial Prohormone Convertase 1 Deficiency Contribute to Human Obesity. Diabetes 2011, 61, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Sivagnanam, M.; Mueller, J.L.; Lee, H.; Chen, Z.; Nelson, S.F.; Turner, D.; Zlotkin, S.H.; Pencharz, P.B.; Ngan, B.; Libiger, O.; et al. Identification of EpCAM as the Gene for Congenital Tufting Enteropathy. Gastroenterology 2008, 135, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Wilschanski, M.; Abbasi, M.; Blanco, E.; Lindberg, I.; Yourshaw, M.; Zangen, D.; Berger, I.; Shteyer, E.; Pappo, O.; Bar-Oz, B.; et al. A Novel Familial Mutation in the PCSK1 Gene That Alters the Oxyanion Hole Residue of Proprotein Convertase 1/3 and Impairs Its Enzymatic Activity. PLoS ONE 2014, 9, e108878. [Google Scholar] [CrossRef]
- Zhou, A.; Paquet, L.; Mains, R.E. Structural Elements That Direct Specific Processing of Different Mammalian Subtilisin-like Prohormone Convertases. J. Biol. Chem. 1995, 270, 21509–21516. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.D.; VanSlyke, J.K.; Thulin, C.D.; Jean, F.; Thomas, G. Activation of the furin endoprotease is a multiple-step process: Requirements for acidification and internal propeptide cleavage extension of the mature protein. The functions of pro-and amphiregulin) the propeptides are required for stability. EMBO J. 1997, 16, 1508–1518. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.M.; Elferich, J.; Ramakrishnan, P.; Thomas, G.; Shinde, U. The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal Activation of Furin. J. Biol. Chem. 2013, 288, 19154–19165. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.M.; Elferich, J.; Shinde, U. Mechanism of Fine-tuning pH Sensors in Proprotein Convertases. J. Biol. Chem. 2015, 290, 23214–23225. [Google Scholar] [CrossRef] [Green Version]
- Ugleholdt, R.; Poulsen, M.-L.H.; Holst, P.J.; Irminger, J.-C.; Orskov, C.; Pedersen, J.; Rosenkilde, M.M.; Zhu, X.; Steiner, D.F.; Holst, J.J. Prohormone Convertase 1/3 Is Essential for Processing of the Glucose-dependent Insulinotropic Polypeptide Precursor. J. Biol. Chem. 2006, 281, 11050–11057. [Google Scholar] [CrossRef] [Green Version]
- Dhanvantari, S.; Seidah, N.G.; Brubaker, P.L. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol. Endocrinol. 1996, 10, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Pépin, L.; Colin, E.; Tessarech, M.; Rouleau, S.; Bouhours-Nouet, N.; Bonneau, D.; Coutant, R. A new case of pcsk1 pathogenic variant with congenital proprotein convertase 1/3 deficiency and literature review. J. Clin. Endocrinol. Metab. Copyr. 2018, 104, 985–993. [Google Scholar] [CrossRef]
- Wang, J.; Cortina, G.; Wu, S.V.; Tran, R.; Cho, J.H.; Tsai, M.J.; Bailey, T.J.; Jamrich, M.; Ament, M.E.; Treem, W.R.; et al. Mutant Neurogenin-3 in Congenital Malabsorptive Diarrhea A BS TR AC T. N. Engl. J. Med. 2006, 355, 270–280. [Google Scholar] [CrossRef]
- Dey, A.; Lipkind, G.M.; Rouillé, Y.; Norrbom, C.; Stein, J.; Zhang, C.; Carroll, R.; Steiner, N.F. Significance of Prohormone Convertase 2, PC2, Mediated Initial Cleavage at the Proglucagon Interdomain Site, Lys70-Arg71, to Generate Glucagon. Endocrinology 2005, 146, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Holyoak, T.; Wilson, M.A.; Fenn, T.D.; Kettner, C.A.; Petsko, G.A.; Fuller, R.S.; Ringe, D. 2.4 Å Resolution Crystal Structure of the Prototypical Hormone-Processing Protease Kex2 in Complex with an Ala-Lys-Arg Boronic Acid Inhibitor. Biochemistry 2003, 42, 6709–6718. [Google Scholar] [CrossRef]
Baseline | 30 min | 60 min | 90 min | 120 min | 150 min | 180 min | |
---|---|---|---|---|---|---|---|
Glucose | 11 | 8 | 6 | 10 | 17 | ||
Polycose | 0 | 3 | 3 | 3 | 4 | 28 | 24 |
Sucrose | 14 | 23 | 70 | 75 | 107 | 182 | 217 |
Fructose | 8 | 10 | 13 | 14 | 22 | 21 | 14 |
Lactose | 12 | 10 | 27 | 55 | 64 | 79 | 34 |
μmol/min/g | Test 1 | Test 2 | Test 3 1 | |
---|---|---|---|---|
Lactase | 14-33 | 29.3 | 6.2 | 18.8 |
Sucrase | 25-66 | 78.1 | 26.5 | 22.4 |
Maltase | 135-205 | 314.8 | 112 | 93.6 |
Palatinase | 8.5-22 | 23.7 | 8.9 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aerts, L.; Terry, N.A.; Sainath, N.N.; Torres, C.; Martín, M.G.; Ramos-Molina, B.; Creemers, J.W. Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea. Genes 2021, 12, 710. https://doi.org/10.3390/genes12050710
Aerts L, Terry NA, Sainath NN, Torres C, Martín MG, Ramos-Molina B, Creemers JW. Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea. Genes. 2021; 12(5):710. https://doi.org/10.3390/genes12050710
Chicago/Turabian StyleAerts, Laetitia, Nathalie A. Terry, Nina N. Sainath, Clarivet Torres, Martín G. Martín, Bruno Ramos-Molina, and John W. Creemers. 2021. "Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea" Genes 12, no. 5: 710. https://doi.org/10.3390/genes12050710
APA StyleAerts, L., Terry, N. A., Sainath, N. N., Torres, C., Martín, M. G., Ramos-Molina, B., & Creemers, J. W. (2021). Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea. Genes, 12(5), 710. https://doi.org/10.3390/genes12050710