Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Xcc Treatment with Individual Epigenetic Modulating Chemicals
2.2. Plant Material, Inoculation with ETSs and Virulence Evaluation
2.3. Assessment of the Stability of Induced Changes in Virulence by Reisolation and Reinoculation
2.4. DNA Methylation-Sensitive Profiling of Individual ETSs Using MSAP
2.5. RNA Extraction, Library Preparation and High-Throughput Dual RNA Sequencing of the Treatments by Using Lomeguatrib and CAY10602 Chemicals
2.6. High-Throughput Sequencing Data Evaluation
3. Results
3.1. Virulence of Individual ETSs and Stability of Induced Changes as Revealed by Reisolation and Reinoculation of New Sets of Plants
3.2. Effect of the EMCs on the DNA Methylation-Sensitive Profiling of the Treated Strains
3.3. Identification of the Contigs with the Highest Impact on the Variability within Xcc Transcriptomes Evaluated within Dual RNA-Seq
3.4. Identification of the Contigs with the Highest Impact on the Variability of B. rapa Transcriptomes Evaluated within Dual RNA-Seq
3.5. Control ofthe Dual RNA-Seq Data in Terms of Point Mutations in Xcc Genomes after Treatments by Using Lomeguatrib and CAY10602 Chemicals
4. Discussion
4.1. Overall Evaluation of the Effect of EMCs on the Properties of Treated Xcc Strain
4.2. Virulence of Individual ETSs on B. rapa Plants
4.3. Results of DNA Methylation-Sensitive Profiling of the Strains Treatedby Individual EMCs
4.4. Comparison of Xcc and B. rapa Transcriptomes by Dual RNA-Seq
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Issa, J.P.J.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016, 17, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Waltes, R.; Chiocchetti, A.G.; Freitag, C.M. The Neurobiological Basis of Human Aggression: A Review on Genetic and Epigenetic Mechanisms. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2016, 171, 650–675. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018, 378, 1323–1334. [Google Scholar] [CrossRef]
- Latzel, V.; Janecek, S.; Dolezal, J.; Klimesova, J.; Bossdorf, O. Adaptive transgenerational plasticity in the perennial Plantago lanceolata. Oikos 2014, 123, 41–46. [Google Scholar] [CrossRef]
- Baranek, M.; Cechova, J.; Raddova, J.; Holleinova, V.; Ondrusikova, E.; Pidra, M. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy. PLoS ONE 2015, 10, e0126638. [Google Scholar] [CrossRef]
- Sanchez-Romero, M.A.; Cota, I.; Casadesus, J. DNA methylation in bacteria: From the methyl group to the methylome. Curr. Opin. Microbiol. 2015, 25, 9–16. [Google Scholar] [CrossRef]
- Jeltsch, A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 2002, 3, 275–293. [Google Scholar] [CrossRef]
- Loenen, W.A.M.; Dryden, D.T.F.; Raleigh, E.A.; Wilson, G.G.; Murray, N.E. Highlights of the DNA cutters: A short history of the restriction enzymes. Nucleic Acids Res. 2014, 42, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Romero, M.A.; Casadesús, J. The bacterial epigenome. Nat. Rev. Microbiol. 2020, 18, 7–20. [Google Scholar] [CrossRef]
- Vasu, K.; Nagaraja, V. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiol. Mol. Biol. Rev. 2013, 77, 53–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blow, M.J.; Clark, T.A.; Daum, C.G.; Deutschbauer, A.M.; Fomenkov, A.; Fries, R.; Roberts, R.J. The epigenomic landscape of prokaryotes. PLoS Genet. 2016, 12, e1005854. [Google Scholar] [CrossRef] [Green Version]
- Gryn, J.; Zeigler, Z.R.; Shadduck, R.K.; Lister, J.; Raymond, J.M.; Sbeitan, I.; Srodes, C.; Meisner, D.; Evans, C. Treatment of myelodysplastic syndromes with 5-azacytidine. Leuk. Res. 2002, 26, 893–897. [Google Scholar] [CrossRef]
- Sudan, N.; Rossetti, J.M.; Shadduck, R.K.; Latsko, J.; Lech, J.A.; Kaplan, R.B.; Kennedy, M.; Gryn, J.F.; Faroun, Y.; Lister, J. Treatment of acute myelogenous leukemia with outpatient azacitidine. Cancer 2006, 107, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Munzbergova, Z.; Latzel, V.; Surinova, M.; Hadincova, V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 2019, 128, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Modrich, P. Methyl-directed DNA mismatch correction. J. Biol. Chem. 1989, 264, 6597–6600. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Ogneva, Z.V.; Dubrovina, A.S.; Nityagovsky, N.N.; Suprun, A.R. Somatic mutations, DNA methylation, and expression of DNA repair genes in Arabidopsis thaliana treated with 5-azacytidine. Biol. Plant. 2019, 63, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Champion, C.; Guianvarc’h, D.; Senamaud-Beaufort, C.; Jurkowska, R.Z.; Jeltsch, A.; Ponger, L.; Arimondo, P.B.; Guieysse-Peugeot, A.L. Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine. PLoS ONE 2010, 5, e12388. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.P. Review: The plant sirtuins. Plant Sci. 2020, 293, 8. [Google Scholar] [CrossRef]
- Watroba, M.; Dudek, I.; Skoda, M.; Stangret, A.; Rzodkiewicz, P.; Szukiewicz, D. Sirtuins, epigenetics and longevity. Ageing Res. Rev. 2017, 40, 11–19. [Google Scholar] [CrossRef]
- Kosciuk, T.; Wang, M.; Hong, J.Y.; Lin, H.N. Updates on the epigenetic roles of sirtuins. Curr. Opin. Chem. Biol. 2019, 51, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, R.M.; Van Drisse, C.M.; Tucker, A.C.; Escalante-Semerena, J.C. New AMP-forming acid:CoA ligases from Streptomyces lividans, some of which are posttranslationally regulated by reversible lysine acetylation. Mol. Microbiol. 2020, 113, 253–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Seong, H.J.; Park, H.J.; Hong, E.; Lee, S.C.; Sul, W.J.; Han, S.W. Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing. Plant Pathol. J. 2016, 32, 500. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulos, P.T.; Kotsianidis, I.; Symeonidis, A.; Pappa, V.; Galanopoulos, A.; Gogos, D.; Karakatsanis, S.; Papadaki, H.; Palla, A.; Hatzimichael, E.; et al. Chronic myelomonocytic leukemia treated with 5-azacytidine-results from the Hellenic 5-Azacytidine Registry: Proposal of a new risk stratification system. Leuk. Lymphoma 2019, 60, 1721–1730. [Google Scholar] [CrossRef]
- Ogneva, Z.V.; Suprun, A.R.; Dubrovina, A.S.; Kiselev, K.V. Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant Prot. Sci. 2019, 55, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Kozuka, C.; Shimizu-Okabe, C.; Takayama, C.; Nakano, K.; Morinaga, H.; Kinjo, A.; Fukuda, K.; Kamei, A.; Yasuoka, A.; Kondo, T.; et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv. 2017, 24, 558–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanho, A.; Lageiro, M.; Calhelha, R.C.; Ferreira, I.; Sokovic, M.; Cunha, L.M.; Brites, C. Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food Funct. 2019, 10, 2382–2389. [Google Scholar] [CrossRef] [PubMed]
- Erasimus, H.; Gobin, M.; Niclou, S.; Van Dyck, E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat. Res. Rev. Mutat. Res. 2016, 769, 19–35. [Google Scholar] [CrossRef]
- Ranson, M.; Middleton, M.R.; Bridgewater, J.; Lee, S.M.; Dawson, M.; Jowle, D.; Halbert, G.; Waller, S.; McGrath, H.; Gumbrell, L.; et al. Lomeguatrib, a potent inhibitor of O-6-alkylguanine-DNA-alkyltransferase: Phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 2006, 12, 1577–1584. [Google Scholar] [CrossRef] [Green Version]
- Assis, R.I.F.; Wiench, M.; Silverio, K.G.; da Silva, R.A.; Feltran, G.D.; Sallum, E.A.; Casati, M.Z.; Nociti, F.H.; Andia, D.C. RG108 increases NANOG and OCT4 in bone marrow-derived mesenchymal cells through global changes in DNA modifications and epigenetic activation. PLoS ONE 2018, 13, e0207873. [Google Scholar] [CrossRef] [PubMed]
- Rondelet, G.; Fleury, L.; Faux, C.; Masson, V.; Dubois, J.; Arimondo, P.B.; Willems, L.; Wouters, J. Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med. Chem. 2017, 9, 1465–1481. [Google Scholar] [CrossRef]
- Finnegan, E.J.; Ford, B.; Wallace, X.; Pettolino, F.; Griffin, P.T.; Schmitz, R.J.; Zhang, P.; Barrero, J.M.; Hayden, M.J.; Boden, S.A.; et al. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ. 2018, 41, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Griffin, P.T.; Niederhuth, C.E.; Schmitz, R.J. A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation. G3-Genes Genomes Genet. 2016, 6, 2773–2780. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, M.P.; Decandido, G.; Quiroga, A.D.; Comanzo, C.G.; Livore, V.I.; Lorenzetti, F.; Lambertucci, F.; Chazarreta-Cifre, L.; Banchio, C.; Alvarez, M.D.; et al. Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines. Toxicol. Lett. 2018, 289, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Sinclair, D.A.; Ellis, J.L.; Steegborn, C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther. 2018, 188, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Cheang, W.S.; Wong, W.T.; Wang, L.; Cheng, C.K.; Lau, C.W.; Ma, R.C.W.; Xu, A.M.; Wang, N.P.; Huang, Y.; Tian, X.Y. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor delta. Pharmacol. Res. 2019, 139, 384–394. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.; Yadav, S.; Gautam, V.; Sarkar, A.K. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components. Sci. Rep. 2017, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Khader, A.; Yang, W.L.; Hansen, L.W.; Rajayer, S.R.; Prince, J.M.; Nicastro, J.M.; Coppa, G.F.; Wang, P. SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis. J. Surg. Res. 2017, 219, 288–295. [Google Scholar] [CrossRef]
- Nautiyal, A.; Patil, K.N.; Muniyappa, K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother. 2014, 69, 1834–1843. [Google Scholar] [CrossRef]
- Peňázová, E.; Kopta, T.; Jurica, M.; Pečenka, J.; Eichmeier, A.; Pokluda, R. Testing of inoculation methods and susceptibility testing of perspective cabbage breeding lines (Brassica oleracea convar. capitata) to the black rot disease caused by Xanthomonas campestris pv. campestris. Acta Univ. Agric. Silv. Mendel. Brun. 2018, 66, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Scortichini, M.; Stefani, E.; Elphinstone, J.; Bergsma Vlami, M. PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. Bull. OEPP 2013, 43, 7–20. [Google Scholar]
- Berg, T.; Tesoriero, L.; Hailstones, D.L. PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol. 2005, 54, 416–427. [Google Scholar] [CrossRef]
- Eichmeier, A.; Penazova, E.; Pokluda, R.; Vicente, J.G. Detection of Xanthomonas campestris pv. campestris through a real-time PCR assay targeting the Zur gene and comparison with detection targeting the hrpF gene. Eur. J. Plant Pathol. 2019, 155, 891–902. [Google Scholar] [CrossRef]
- Baranek, M.; Krizan, B.; Ondrusikova, E.; Pidra, M. DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue Organ Cult. 2010, 101, 11–22. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.H. Mathematical-model for studying genetic-variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [Green Version]
- Eichmeier, A.; Pieczonka, K.; Peňázová, E.; Pečenka, J.; Gajewski, Z. Occurrence of Grapevine pinot gris virus in Poland and description of asymptomatic exhibitions in grapevines. J. Plant Dis. Prot. 2017, 124, 407–411. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Version 0.11.2; Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Kopylova, E.; Noe, L.; Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012, 28, 3211–3217. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.M.; Yao, R.A. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Seong, H.J.; Lee, J.; Heo, L.; Sul, W.J.; Han, S.W. Two DNA Methyltransferases for Site-Specific 6mA and 5mC DNA Modification in Xanthomonas euvesicatoria. Front. Plant Sci. 2021, 12, 436. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.L.; Xie, S.Q.; Xie, Q.B.; Liu, Z.Y.; Xing, J.F.; Ji, K.K.; Tao, J.; Dai, L.Y.; Luo, F. N6-Methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Sharma, V.K.; Singh, D.K.; Mishra, A.; Gond, S.K.; Verma, S.K.; Kumar, A.; Kharwar, R.N. Epigenetic Activation of Antibacterial Property of an Endophytic Streptomyces coelicolor Strain AZRA 37 and Identification of the Induced Protein Using MALDI TOF MS/MS. PLoS ONE 2016, 11, e0147876. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.K.; Chae, S.W.; Song, J.J. Effect of 5-azacytidine on in vitro biofilm formation of Streptococcus pneumoniae. Microb. Pathog. 2012, 53, 219–226. [Google Scholar] [CrossRef]
- Xia, J.; Han, L.; Zhao, Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genom. 2012, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.L. Methylation-induced hypermutation in natural populations of bacteria. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [Green Version]
- Sater, M.R.A.; Lamelas, A.; Wang, G.; Clark, T.A.; Röltgen, K.; Mane, S.; Korlach, J.; Pluschke, G.; Schmid, C.D. DNA methylation assessed by SMRT sequencing is linked to mutations in Neisseria meningitidis isolates. PLoS ONE 2015, 10, e0144612. [Google Scholar] [CrossRef] [Green Version]
- Marinus, M.G.; Casadesus, J. Roles of DNA adenine methylation in host-pathogen interactions: Mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 2009, 33, 488–503. [Google Scholar] [CrossRef] [Green Version]
- Shell, S.S.; Prestwich, E.G.; Baek, S.H.; Shah, R.R.; Sassetti, C.M.; Dedon, P.C.; Fortune, S.M. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis. PLoS Pathog. 2013, 9, e1003419. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.T.; Yi, W.C.; Shun, C.T.; Tsai, S.F. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1. J. Microbiol. Immunol. Infect. 2017, 50, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Seib, K.L.; Srikhanta, Y.N.; Atack, J.M.; Jennings, M.P. Epigenetic regulation of virulence and immunoevasion by phase-variable restriction-modification systems in bacterial pathogens. Annu. Rev. Microbiol. 2020, 74, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Banger, A.K.; Wallace, A.; Glass, E.M.; Åslund, F.; Schneewind, O.; Missiakas, D.M. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. USA 2004, 101, 12312–12317. [Google Scholar] [CrossRef] [Green Version]
- Dean, M.A.; Olsen, R.J.; Long, S.W.; Rosato, A.E.; Musser, J.M. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione. Infect. Immun. 2014, 82, 1600–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starai, V.J.; Celic, I.; Cole, R.N.; Boeke, J.D.; Escalante-Semerena, J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002, 298, 2390–2392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.F.; Gu, J.; Gong, P.; Wang, X.D.; Tu, S.; Bi, L.J.; Yu, Z.N.; Zhang, Z.P.; Cui, Z.Q.; Wei, H.P.; et al. Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J. 2013, 280, 1966–1979. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gu, J.; Chen, Y.Y.; Xiao, C.L.; Wang, L.W.; Zhang, Z.P.; Bi, L.J.; Wei, H.P.; Wang, X.D.; Deng, J.Y.; et al. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol. Microbiol. 2010, 76, 1162–1174. [Google Scholar] [CrossRef] [Green Version]
- Lima, B.P.; Antelmann, H.; Gronau, K.; Chi, B.K.; Becher, D.; Brinsmade, S.R.; Wolfe, A.J. Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. Mol. Microbiol. 2011, 81, 1190–1204. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.D.I.; Chi, B.K.; Kuhn, M.L.; Filippova, E.V.; Walker-Peddakotla, A.J.; Basell, K.; Becher, D.; Anderson, W.F.; Antelmann, H.; Wolfe, A.J. Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter. J. Bacteriol. 2013, 195, 4174–4186. [Google Scholar] [CrossRef] [Green Version]
- Thao, S.; Chen, C.S.; Zhu, H.; Escalante-Semerena, J.C. N-epsilon-Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity. PLoS ONE 2010, 5, e15123. [Google Scholar] [CrossRef]
- Eden, S.; Hashimshony, T.; Keshet, I.; Cedar, H.; Thorne, A.W. DNA methylation models histone acetylation. Nature 1998, 394, 842. [Google Scholar] [CrossRef]
- Mutskov, V.J.; Farrell, C.M.; Wade, P.A.; Wolffe, A.P.; Felsenfeld, G. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev. 2002, 16, 1540–1554. [Google Scholar] [CrossRef] [Green Version]
- Baranek, M.; Otmar, M.; Krecmerova, M.; Eichmeier, A.; Moudra, J.; Mynarzova, Z. Effect of Different DNA Demethylating Agents on In vitro Cultures of Peach Rootstock GF 677. Not. Bot. Hortic Agrobot. Cluj-Napoca 2019, 47, 896–902. [Google Scholar] [CrossRef]
- Jiang, B.L.; He, Y.Q.; Cen, W.J.; Wei, H.Y.; Jiang, G.F.; Jiang, W.; Hang, X.H.; Feng, J.X.; Lu, G.T.; Tang, D.H.; et al. The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res. Microbiol. 2008, 159, 216–220. [Google Scholar] [CrossRef]
- Rossier, O.; Van den Ackerveken, G.; Bonas, U. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 2000, 38, 828–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhateeb, R.S.; Vorholter, F.J.; Steffens, T.; Ruckert, C.; Ortseifen, V.; Hublik, G.; Niehaus, K.; Puhler, A. Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase. Appl. Microbiol. Biotechnol. 2018, 102, 6613–6625. [Google Scholar] [CrossRef] [PubMed]
- Vojnov, A.A.; Slater, H.; Daniels, M.J.; Dow, J.M. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol. Plant-Microbe Interact. 2001, 14, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.C.; So, B.H.; Kim, J.H.; Park, Y.J.; Lee, B.M.; Kang, H.W. Genome-wide identification of pathogenicity genes in Xanthomonas oryzae pv. oryzae by transposon mutagenesis. Plant Pathol. 2008, 57, 1136–1145. [Google Scholar] [CrossRef]
- Bianco, M.I.; Toum, L.; Yaryura, P.M.; Mielnichuk, N.; Gudesblat, G.E.; Roeschlin, R.; Marano, M.R.; Lelpi, L.; Vojnov, A.A. Xanthan Pyruvilation Is Essential for the Virulence of Xanthomonas campestris pv. campestris. Mol. Plant-Microbe Interact. 2016, 29, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Fagard, M.; Launay, A.; Clement, G.; Courtial, J.; Dellagi, A.; Farjad, M.; Krapp, A.; Soulie, M.C.; Masclaux-Daubresse, C. Nitrogen metabolism meets phytopathology. J. Exp. Bot. 2014, 65, 5643–5656. [Google Scholar] [CrossRef] [PubMed]
- Mur, L.A.J.; Simpson, C.; Kumari, A.; Gupta, A.K.; Gupta, K.J. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 2017, 119, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Z.; Lam, H.M. Signal Transduction Pathways in Plants for Resistance against Pathogens. Int. J. Mol. Sci. 2019, 20, 2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollist, H.; Zandalinas, S.I.; Sengupta, S.; Nuhkat, M.; Kangasjarvi, J.; Mittler, R. Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends Plant Sci. 2019, 24, 25–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical/Abbrv. | Demonstrated/Hypothetical Epigenetic Effect | References |
---|---|---|
Azacytidine/AZA * | Nucleoside analogue of cytidine specifically inhibiting DNA methylation by trapping DNMTs | [25,26] |
γ-Oryzanol/ORY * | DNMT inhibitor activity, the mechanism of action needs to be further deciphered | [27,28] |
Lomeguatrib/LOM * | Modified guanine base inhibiting the activity of DNA repair protein O(6)-alkylguanine-DNA alkyltransferase | [29,30] |
RG108/RG * | Non-nucleoside inhibitor of DNMTs lacking the human cells toxicity | [31,32] |
Zebularine/ZEB * | DNA demethylation activity by stabilizing the binding of DNMTs to DNA | [33,34] |
Cambinol/CAM ** | SIRT1 and SIRT2 inhibitor | [35,36] |
CAY10602/CAY ** | SIRT1 activator | [37] |
Sirtinol/SIR ** | SIRT1 and SIRT2 inhibitor | [38] |
SRT1720 Hydrochloride/SRT ** | Strong SIRT1 and weak SIRT2 and SIRT3 inhibitor | [39] |
Suramine/SU ** | SIRT1 and SIRT5 inhibitor; potential inhibitor of bacterial RecA protein | [40] |
No. | Sample | PCR Cycles | i5 Barcode | i7 Barcode |
---|---|---|---|---|
1 | plant | 16 | AGGCTTAG | GAGATTCC |
2 | plant+Xcc (1279A) | 16 | ATTAGACG | GAGATTCC |
3 | plant+Xcc (1279A) treated by CAY | 16 | CGGAGAGA | GAGATTCC |
4 | plant+Xcc (1279A) treated by LOM | 16 | CTAGTCGA | GAGATTCC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baránek, M.; Kováčová, V.; Gazdík, F.; Špetík, M.; Eichmeier, A.; Puławska, J.; Baránková, K. Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris. Genes 2021, 12, 804. https://doi.org/10.3390/genes12060804
Baránek M, Kováčová V, Gazdík F, Špetík M, Eichmeier A, Puławska J, Baránková K. Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris. Genes. 2021; 12(6):804. https://doi.org/10.3390/genes12060804
Chicago/Turabian StyleBaránek, Miroslav, Viera Kováčová, Filip Gazdík, Milan Špetík, Aleš Eichmeier, Joanna Puławska, and Kateřina Baránková. 2021. "Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris" Genes 12, no. 6: 804. https://doi.org/10.3390/genes12060804
APA StyleBaránek, M., Kováčová, V., Gazdík, F., Špetík, M., Eichmeier, A., Puławska, J., & Baránková, K. (2021). Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris. Genes, 12(6), 804. https://doi.org/10.3390/genes12060804