Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution
Abstract
:1. Introduction
2. Methods
2.1. Database Search
2.2. Alignment and Phylogenetic Analysis
2.3. Ancestral Sequence Reconstruction (ASR)
2.4. HHsearch
2.5. Positive Selection
3. Results
3.1. Workflow
3.2. Evolutionary History of ILs Family
3.3. Evolutionary History for ILs Receptors
3.4. Interleukin Families Origin
3.5. Interleukin Receptor Families Origin
3.6. Neutrality Test and Positive Selection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nyholm, S.V.; Graf, J. Knowing your friends: Invertebrate innate immunity fosters beneficial bacterial symbioses. Nat. Rev. Microbiol. 2012, 10, 815–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickael, M.-E.; Kubick, N.; Klimovich, P.; Flournoy, P.H.; Bieńkowska, I.; Sacharczuk, M. Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events. Genes 2021, 12, 254. [Google Scholar] [CrossRef]
- Hirano, M.; Das, S.; Guo, P.; Cooper, M.D. The Evolution of Adaptive Immunity in Vertebrates. Adv. Immunol. 2011, 109, 125–157. [Google Scholar]
- Amoriello, R.; Greiff, V.; Aldinucci, A.; Bonechi, E.; Carnasciali, A.; Peruzzi, B.; Repice, A.M.; Mariottini, A.; Saccardi, R.; Mazzanti, B.; et al. The TCR Repertoire Reconstitution in Multiple Sclerosis: Comparing One-Shot and Continuous Immunosuppressive Therapies. Front. Immunol. 2020, 11, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaumik, S.; Basu, R. Cellular and molecular dynamics of Th17 differentiation and its developmental plasticity in the intestinal immune response. Front. Immunol. 2017, 8, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commins, S.P.; Borish, L.; Steinke, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 2010, 125, S53–S72. [Google Scholar] [CrossRef] [PubMed]
- Brocker, C.; Thompson, D.; Matsumoto, A.; Nebert, D.W.; Vasiliou, V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum. Genom. 2010, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Historical Review of Cytokines. Eur. J. Immunol. 2007, 37, S34–S45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolk, K.; Witte, K.; Witte, E.; Raftery, M.; Kokolakis, G.; Philipp, S.; Schönrich, G.; Warszawska, K.; Kirsch, S.; Prösch, S.; et al. IL-29 is produced by TH17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci. Transl. Med. 2013, 5, 204ra129. [Google Scholar] [CrossRef] [PubMed]
- Coomes, S.M.; Kannan, Y.; Pelly, V.S.; Entwistle, L.J.; Guidi, R.; Perez-Lloret, J.; Nikolov, N.; Müller, W.; Wilson, M.S. CD4+ Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunol. 2017, 10, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Poholek, A.C.; Jankovic, D.; Villarino, A.V.; Petermann, F.; Hettinga, A.; Shouval, D.S.; Snapper, S.B.; Kaech, S.M.; Brooks, S.R.; Vahedi, G.; et al. IL-10 induces a STAT3-dependent autoregulatory loop in TH2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes. Sci. Immunol. 2016, 1, eaaf8612. [Google Scholar] [CrossRef]
- Chong, W.P.; Mattapallil, M.J.; Bing, S.J.; Wu, S.; Zhong, Y.; Wang, W.; Chen, Z.; Silver, P.B.; Chan, C.-C.; Chen, J.; et al. The Cytokine IL-17A Limits Th17 Pathogenicity via a Negative Feedback Loop Driven by Autocrine Induction of IL-24. Immunity 2020, 53, 384–397. [Google Scholar] [CrossRef]
- Kaiser, P. Evolution of the interleukins. Dev. Comp. Immunol. 2004, 28, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Witley, S.H.; Bhaumik, S.; Zindl, C.L.; Schoeb, T.R.; Benveniste, E.N.; Pear, W.S.; Hatton, R.D.; Weaver, C.T. IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nat. Immunol. 2015, 16, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Ogryzko, N.V.; Renshaw, S.A.; Wilson, H.L. The IL-1 family in fish: Swimming through the muddy waters of inflammasome evolution. Dev. Comp. Immunol. 2014, 46, 53–62. [Google Scholar] [CrossRef]
- Ottaviani, E.; Caselgrandi, E.; Franceschi, C. Cytokines and evolution: In vitro effects of IL-1α, IL-1β, TNF-α and TNF-β on an ancestral type of stress response. Biochem. Biophys. Res. Commun. 1995, 207, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Rivers-Auty, J.; Daniels, M.J.D.; Colliver, I.; Robertson, D.L.; Brough, D. Redefining the ancestral origins of the interleukin-1 superfamily. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Beck, G. Macrokines: Invertebrate cytokine-like molecules? Front. Biosci. J. Virtual Libr. 1998, 3, 559–569. [Google Scholar] [CrossRef]
- Brown, S.; Hu, N.; Hombría, J.C.G. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr. Biol. 2001, 11, 1700–1705. [Google Scholar] [CrossRef]
- De Huang, X.; Zhang, H.; He, M.X. Comparative and evolutionary analysis of the interleukin 17 gene family in invertebrates. PLoS ONE 2015, 10, e0132802. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Jin, M.; Zhang, Y.; Wei, T.; Bai, Z. Evolution of the IL17 receptor family in chordates: A new subfamily IL17REL. Immunogenetics 2011, 63, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Das, S.; Hirano, M.; Holland, S.J.; McCurley, N.; Guo, P.; Rosenberg, C.S.; Boehm, T.; Cooper, M.D. Characterization of Lamprey IL-17 Family Members and Their Receptors. J. Immunol. 2015, 195, 5440–5451. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Secombes, C.J. The cytokine networks of adaptive immunity in fish. Fish. Shellfish Immunol. 2013, 35, 1703–1718. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Xu, J.; Jia, Z.; Liu, Q.; Zhu, X.; Xia, C.; Zou, J. Structural insights into the co-evolution of IL-2 and its private receptor in fish. Dev. Comp. Immunol. 2021, 115, 103895. [Google Scholar] [CrossRef]
- Mickael, M.E.; Rajput, A.; Steyn, J.; Wiemerslage, L.; Bürglin, T. An optimised phylogenetic method sheds more light on the main branching events of rhodopsin-like superfamily. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2016, 20, 85–94. [Google Scholar] [CrossRef]
- Kubick, N.; Flournoy, P.C.H.; Enciu, A.-M.; Manda, G.; Mickael, M.-E. Drugs Modulating CD4+ T Cells Blood-Brain Barrier Interaction in Alzheimer’s Disease. Pharmaceutics 2020, 12, 880. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Gabler, F.; Nam, S.Z.; Till, S.; Mirdita, M.; Steinegger, M.; Söding, J.; Lupas, A.N.; Alva, V. Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinform. 2020, 72, e108. [Google Scholar] [CrossRef]
- Kubick, N.; Brösamle, D.; Mickael, M.E. Molecular Evolution and Functional Divergence of the IgLON Family. Evol. Bioinform. 2018, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramaniam, S. The interleukin 1 receptor family. Dev. Comp. Immunol. 2004, 28, 415–428. [Google Scholar] [CrossRef]
- Ågerstam, H.; Karlsson, C.; Hansen, N.; Sandén, C.; Askmyr, M.; von Palfy, S.; Rissler, M.; Richter, J.; Bhatia, R.; Mulloy, J.C.; et al. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2015, 112, 10786–10791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wald, D.; Qin, J.; Zhao, Z.; Qian, Y.; Naramura, M.; Tian, L.; Towne, J.; Sims, J.E.; Stark, G.R.; Li, X. SIGIRR, a negative regulator of Toll-like receptor–interleukin 1 receptor signaling. Nat. Immunol. 2003, 4, 920–927. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symons, J.A.; Young, P.R.; Duff, G.W. Soluble type II interleukin 1 (IL-1) receptor binds and blocks processing of IL-1β precursor and loses affinity for IL-1 receptor antagonist. Proc. Natl. Acad. Sci. USA 1995, 92, 1714–1718. [Google Scholar] [CrossRef] [Green Version]
- Gay, N.J.; Keith, F.J. Drosophila Toll and IL-1 receptor. Nature 1991, 351, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Liberati, N.T.; Fitzgerald, K.A.; Kim, D.H.; Feinbaum, R.; Golenbock, D.T.; Ausubel, F.M. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. USA 2004, 101, 6593–6598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Burg, C.A.; Prentis, P.J.; Surm, J.M.; Pavasovic, A. Insights into the innate immunome of actiniarians using a comparative genomic approach. BMC Genom. 2016, 17, 850. [Google Scholar] [CrossRef]
- Stauber, D.J.; Debler, E.W.; Horton, P.A.; Smith, K.A.; Wilson, I.A. Crystal structure of the IL-2 signaling complex: Paradigm for a heterotrimeric cytokine receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 2788–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, S.; Keegan, A.D.; Harada, N.; Nakamura, Y.; Noguchi, N.; Leland, P.; Friedmann, M.C.; Miyajima, A.; Puri, R.K.; Paul, W.E.; et al. Interleukin-2 receptor γ chain: A functional component of the interleukin-4 receptor. Science 1993, 262, 1880–1883. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Lin, J.-X.; Leonard, W.J. IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 2011, 23, 598–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.M.; Kumaki, S.; Ahdieh, M.; Bertles, J.; Tometsko, M.; Loomis, A.; Giri, J.; Copeland, N.G.; Gilbeert, D.J.; Jenkins, N.A.; et al. Functional characterization of the human interleukin-15 receptor α chain and close linkage of IL15RA and IL2RA genes. J. Biol. Chem. 1995, 270, 29862–29869. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-L.; Foster, D.; Sebald, W. Human IL-21 and IL-4 bind to partially overlapping epitopes of common γ-chain. Biochem. Biophys. Res. Commun. 2003, 300, 291–296. [Google Scholar] [CrossRef]
- Stomski, F.C.; Sun, Q.; Bagley, C.J.; Woodcock, J.; Goodall, G.; Andrews, R.K.; Berndt, M.C.; Lopez, A.F. Human interleukin-3 (IL-3) induces disulfide-linked IL-3 receptor α- and β-chain heterodimerization, which is required for receptor activation but not high-affinity binding. Mol. Cell. Biol. 1996, 16, 3035–3046. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Schones, D.E.; Oh, J.; Cui, Y.; Cui, K.; Roh, T.-Y.; Zhao, K.; Leonard, W.J. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nat. Immunol. 2008, 9, 1288–1296. [Google Scholar] [CrossRef] [Green Version]
- Chomarat, P.; Banchereau, J. Interleukin-4 and lnterleukin-13: Their Similarities and Discrepancies. Int. Rev. Immunol. 1998, 17, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Joshi, B.; Nakajima, A.; Puri, R.K. A novel role of interleukin-13 receptor α2 in pancreatic cancer invasion and metastasis. Cancer Res. 2009, 69, 8678–8685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, T. Interleukin 6 and its receptor: Ten years later. Int. Rev. Immunol. 1998, 16, 249–284. [Google Scholar] [CrossRef]
- Presky, D.H.; Yang, H.; Minetti, L.J.; Chua, A.O.; Nabavi, N.; Wu, C.-Y.; Gately, M.K.; Gubler, U. A functional interleukin 12 receptor complex is composed of two β-type cytokine receptor subunits. Proc. Natl. Acad. Sci. USA 1996, 93, 14002–14007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pflanz, S.; Hibbert, L.; Mattson, J.; Rosales, R.; Vaisberg, E.; Bazan, J.F.; Phillips, J.H.; McClanahan, T.K.; de Waal Malefyt, R.; Kastelein, R.A. WSX-1 and Glycoprotein 130 Constitute a Signal-Transducing Receptor for IL-27. J. Immunol. 2004, 172, 2225–2231. [Google Scholar] [CrossRef] [PubMed]
- Sims, N.A. Cardiotrophin-like cytokine factor 1 (CLCF1) and neuropoietin (NP) signalling and their roles in development, adulthood, cancer and degenerative disorders. Cytokine Growth Factor Rev. 2015, 26, 517–522. [Google Scholar] [CrossRef]
- Dumoutier, L.; Lejeune, D.; Colau, D.; Renauld, J.-C. Cloning and Characterization of IL-22 Binding Protein, a Natural Antagonist of IL-10-Related T Cell-Derived Inducible Factor/IL-22. J. Immunol. 2001, 166, 7090–7095. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, F.; Baurin, V.V.; Lewis-Antes, A.; Shah, N.K.; Smirnov, S.V.; Anantha, S.; Dumoutier, L.; Renauld, J.-C.; Zdanov, A.; Donnelly, R.P.; et al. Cutting Edge: IL-26 Signals through a Novel Receptor Complex Composed of IL-20 Receptor 1 and IL-10 Receptor 2. J. Immunol. 2004, 172, 2006–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Tan, Z.; Zhang, R.; Kotenko, S.V.; Liang, P. Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J. Biol. Chem. 2002, 277, 7341–7347. [Google Scholar] [CrossRef] [Green Version]
- De Weerd, N.A.; Nguyen, T. The interferons and their receptors-distribution and regulation. Immunol. Cell Biol. 2012, 90, 483–491. [Google Scholar] [CrossRef]
- Brat, D.J.; Bellail, A.C.; van Meir, E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncol. 2005, 7, 122–133. [Google Scholar] [CrossRef]
- Koltsida, O.; Hausding, M.; Stavropoulos, A.; Koch, S.; Tzelepis, G.; Übel, C.; Kotenko, S.V.; Sideras, P.; Lehr, H.A.; Tepe, M.; et al. IL-28A (IFN-λ2) modulates lung DC function to promote Th1 immune skewing and suppress allergic airway disease. EMBO Mol. Med. 2011, 3, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Harjula, S.-K.E.; Ojanen, M.J.T.; Taavitsainen, S.; Nykter, M.; Rämet, M. Interleukin 10 mutant zebrafish have an enhanced interferon γ response and improved survival against a Mycobacterium marinum infection. Sci. Rep. 2018, 8, 10360. [Google Scholar] [CrossRef] [PubMed]
- Siupka, P.; Hamming, O.J.; Frétaud, M.; Luftalla, G.; Levraud, J.P.; Hartmann, R. The crystal structure of zebrafish IL-22 reveals an evolutionary, conserved structure highly similar to that of human IL-22. Genes Immun. 2014, 15, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Salazar, J.; Martinez, M.S.; Palmar, J.; Bautista, J.; Chavez-Castillo, M.; Gomez, A.; Bermudez, V. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. Scientifica 2015, 2015, 851252. [Google Scholar] [CrossRef]
- Logsdon, N.J.; Deshpande, A.; Harris, B.D.; Rajashankar, K.R.; Walter, M.R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. USA 2012, 109, 12704–12709. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Xu, Y. Interleukin-24 Regulates T Cell Activity in Patients with Colorectal Adenocarcinoma. Front. Oncol. 2019, 9, 1401. [Google Scholar] [CrossRef]
- Shevyrev, D.; Tereshchenko, V. Treg Heterogeneity, Function, and Homeostasis. Front. Immunol. 2020, 10, 3100. [Google Scholar] [CrossRef] [Green Version]
- Amoyel, M.; Bach, E. Functions of the Drosophila JAK-STAT pathway: Lessons from stem cells. Jak-Stat. 2012, 1, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Beck, G.; Habicht, G.S. Characterization of an Il-6-Like Molecule from an Echinoderm (Asterias forbesi). Cytokine 1996, 8, 507–512. [Google Scholar] [CrossRef]
- Ren, J.; Chung-Davidson, Y.W.; Jia, L.; Li, W. Genomic sequence analyses of classical and non-classical lamprey progesterone receptor genes and the inference of homologous gene evolution in metazoans. BMC Evol. Biol. 2019, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Grandchamp, A.; Monget, P. The membrane receptors that appeared before their ligand: The different proposed scenarios. PLoS ONE 2020, 15, e0231813. [Google Scholar] [CrossRef] [PubMed]
- Markov, G.V.; Paris, M.; Bertrand, S.; Laudet, V. The evolution of the ligand/receptor couple: A long road from comparative endocrinology to comparative genomics. Mol. Cell. Endocrinol. 2008, 293, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, P.; Hirano, M.; Herrin, B.R.; Li, J.; Yu, C.; Sadlonova, A.; Cooper, M.D. Dual nature of the adaptive immune system in lampreys. Nature 2009, 459, 796–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mailer, R.K.W.; Joly, A.L.; Liu, S.; Elias, S.; Tegner, J.; Andersson, J. IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashidori, T.; Shirataki, H.; Kamai, T.; Nakamura, F.; Yoshida, K.-I. Increased α-taxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer. Biomed. Res. 2011, 32, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.C.; Center, D.M.; Cruikshank, W.W. The effect of interleukin-16 and its precursor on T lymphocyte activation and growth. Growth Factors 2004, 22, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, X.; Shi, B.; Xiao, R.; Gou, M.; Wang, H.; Li, Q. Identification and characterisation of the immune response properties of Lampetra japonica BLNK. Sci. Rep. 2016, 6, 25308. [Google Scholar] [CrossRef] [PubMed]
Receptor Family | Origin |
---|---|
IL1R | TIR domain-containing protein (99.9%) Titin (99.89%) |
IL2R | Fibronectin type-III domain-containing protein (99.69%) Granulocyte-macrophage colony-stimulating factor receptor subunit α (99.89%) cytokine receptor-like factor 2 isoform X1 (99.8%) |
IL4R | Fibronectin domain-containing protein (99.9%) Insulin-like growth factor 1 receptor (99.89%) Interferon α/β receptor 1 (99.83%) |
IL6R | granulocyte colony-stimulating factor receptor-like (99.99%) Leukemia inhibitory factor receptor α (99.99%) Fibronectin; FN3 DOMAIN, FIBRONECTIN (99.87%) |
IL10R | Interferon γ receptor 1 (99.61%) Interferon α/β receptor 1 (99.63%) Granulocyte-macrophage colony-stimulating factor receptor subunit α; GM-CSF (99.65) |
IL17R | Toll-like receptor 5; Toll-like receptor 5, (96.67%) |
IL28R | Interferon α/β receptor 1 (Fragment) (98.7%) Fibronectin type-III domain-containing protein (98.44%) |
Unclassified (IL8) | Somatostatin receptor (100%) |
Interleukins family | Origin |
IL1 | Transforming growth factor β-1 proprotein (99.92%) |
IL2 | transforming growth factor β-1 proprotein (99.92%) Latency-associated peptide (99.91%) transforming growth factor β-3 (99.88%) |
IL4 | Transforming growth factor β-1 (99.68%) Growth/differentiation factor 8 (99.47%) Inhibin β A chain; Growth factor (99%) |
IL6 | transforming growth factor β-1 proprotein (99.92%) |
IL10 | Mouse double-minute 1 (99.71%) Interferon γ (96.73%) Transforming growth factor β-1-like (94.82%) |
IL17 | Transforming growth factor β-1 proprotein (99%) Spaetzle (98%) Zinc Finger CCCH-Type Containing 3 (97.1%) Prothoracicotropic hormone (96.5%) NOGGIN (95%) |
IL28 | Basal cell adhesion molecule (99.56%) Methyltransf_11 domain-containing protein (99.2%) |
Unclassified (IL8) | IL1B (99%) IL36(99.7%) IL37(97.5%) |
Unclassified (IL14) | α-taxilin (99%) |
Unclassified (IL16) | Discs Large MAGUK Scaffold Protein 4 (99.56%) Amyloid β A4 precursor protein-binding family A member 2 (99.51%) Glutamate receptor-interacting protein 1(99.43%) |
Unclassified (IL32) | MMP25 protein (99.5%) |
Unclassified (IL40) | Synaptogyrin (99.28%) Platelet and Endothelial Cell Adhesion Molecule 1 (97.1%) Fragment Crystallizable RECEPTOR 1(97%) |
Gene | Neutrality Test | ω | p-Value |
---|---|---|---|
IL1 | 0.99 | 1.83 | <0.01 |
IL2 | −2.4 | 0.73 | >0.05 |
IL4 | −1.4 | 0.83 | >0.05 |
IL6 | −0.8 | 1.76 | < 0.01 |
IL10 | 2.4 | 0.46 | >0.05 |
IL17 | 1.2 | 1.00 | >0.05 |
IL28 | n/c | 0.9 | >0.05 |
IL8 | 2.9 | 0.32 | <0.01 |
IL14 | −0.6 | 0.38 | <0.01 |
IL16 | 0.4 | 0.48 | <0.01 |
IL32 | 0.8 | 0.02 | <0.01 |
IL34 | 1.5 | 0.43 | <0.01 |
IL40 | 2.4 | 0.69 | >0.05 |
IL41 | 1.5 | 0.31 | >0.05 |
IL1R | 4.0 | 0.61 | <0.01 |
IL2R | 1.6 | 0.49 | <0.01 |
IL4R | 1.07 | 0.3 | <0.01 |
IL6R | 2.02 | 0.38 | <0.01 |
IL10R | 2.01 | 0.84 | <0.01 |
IL17R | 1.5 | 0.39 | <0.01 |
IL28R | 3.5 | 0.69 | <0.01 |
Unclassified (IL8R) | 2.6 | 0.44 | <0.01 |
Interlukin | ω | p-Value |
---|---|---|
IL1B | 0.69 | <0.01 |
IL17B | 4.00 | >0.05 |
IL17C | 0.23 | >0.05 |
IL17D | 0.57 | >0.05 |
IL17E | >10 | <0.01 |
IL14 | 0.23 | >0.05 |
IL16 | 0.40 | >0.05 |
IL41 | 0.31 | >0.05 |
Receptor | ω | p-value |
IL1R8 | 0.30608 | >0.05 |
IL1RAP | 0.46 | >0.05 |
IL13RA1 | 0.1 | >0.05 |
IL6RB | 1.21 | >0.05 |
IL31R | >10 | >0.05 |
CNTFR | 1.00 | >0.05 |
CRFL1 | >10 | >0.05 |
CSFR | 1.00 | >0.05 |
IL20RA | 0.1 | >0.05 |
IL17RA | 0.31 | <0.01 |
IL17RD | 1.00 | >0.05 |
IL17RE | 0.46 | >0.05 |
IL8R | 0.28 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubick, N.; Klimovich, P.; Flournoy, P.H.; Bieńkowska, I.; Łazarczyk, M.; Sacharczuk, M.; Bhaumik, S.; Mickael, M.-E.; Basu, R. Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution. Genes 2021, 12, 813. https://doi.org/10.3390/genes12060813
Kubick N, Klimovich P, Flournoy PH, Bieńkowska I, Łazarczyk M, Sacharczuk M, Bhaumik S, Mickael M-E, Basu R. Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution. Genes. 2021; 12(6):813. https://doi.org/10.3390/genes12060813
Chicago/Turabian StyleKubick, Norwin, Pavel Klimovich, Patrick Henckell Flournoy, Irmina Bieńkowska, Marzena Łazarczyk, Mariusz Sacharczuk, Suniti Bhaumik, Michel-Edwar Mickael, and Rajatava Basu. 2021. "Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution" Genes 12, no. 6: 813. https://doi.org/10.3390/genes12060813
APA StyleKubick, N., Klimovich, P., Flournoy, P. H., Bieńkowska, I., Łazarczyk, M., Sacharczuk, M., Bhaumik, S., Mickael, M. -E., & Basu, R. (2021). Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution. Genes, 12(6), 813. https://doi.org/10.3390/genes12060813