MiR-208b Regulates Rabbit Preadipocyte Proliferation and Differentiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Cell Collection
2.2. Cell Culture
2.3. Transfection
2.4. Quantitative Real-Time Polymerase Chain Reaction Analysis
2.5. Protein Extraction and Western Blotting
2.6. CCK Assay
2.7. EDU Proliferation Assay
2.8. Oil Red O Staining
2.9. Target Genes Prediction and Verification
2.10. Statistical Analysis
3. Results
3.1. Establishment of Rabbit Preadipocyte Differentiation Model
3.2. MiR-208b Promotes Rabbit Preadipocyte Differentiation
3.3. MiR-208b Promotes Rabbit Preadipocyte Proliferation
3.4. CSNK2A2 Is One of the Target Genes of miR-208b
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, J.; Bai, X.; Pan, T.; Li, Y.; Jia, X.; Wang, J.; Lai, S. Genome-Wide DNA Methylation Changes of Perirenal Adipose Tissue in Rabbits Fed a High-Fat Diet. Animals 2020, 10, 2213. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Saunders, T.J. Bioenergetics of Obesity: Is Fat Gain a Problem or a Solution? J. Parenter. Enter. Nutr. 2012, 1, 4111–4122. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.H. Adipocyte differentiation induces dynamic changes in NF-κB expression and activity. AJP Endocrinol. Metab. 2004, 287, E1178–E1188. [Google Scholar] [CrossRef]
- Stephen, R.F. Transcriptional control of adipocyte formation. Cell Metab. 2006, 4, 263–273. [Google Scholar]
- Zhang, X.J.; Chinkes, D.L.; Asle, A.; Herndon, D.N.; Wolfe, R.R. Lipid metabolism in diet-induced obese rabbits is similar to that of obese humans. J. Nutr. 2008, 138, 515–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Kitajima, S.; Watanabe, T.; Xu, J.; Zhang, J.; Liu, E.; Chen, Y.E. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol. Ther. 2015, 146, 104–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotte, A.D.; Szendro, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Testroet, E.D.; Yoder, C.L.; Testroet, A.L.; Reynolds, C.J.; O’Neil, M.; Lei, S.M.; Beitz, D.C.; Baas, T.J. Relationship of Fat Quality and Meat Quality Traits of Fresh Pork. Iowa State Univ. Digit. Repos. 2015, 661. [Google Scholar] [CrossRef]
- Webb, E.C.; O’Neill, H.A. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Du, J.; Wang, L.; Niu, L.; Zhao, Y.; Tang, G.; Jiang, Y.; Shuai, S.; Bai, L.; Li, X.J.B.; et al. MicroRNA-143a-3p modulates preadipocyte proliferation and differentiation by targeting MAPK7. Biomed. Pharmacother. 2018, 108, 531–539. [Google Scholar] [CrossRef]
- Xu, Y.; Du, J.; Zhang, P.; Zhao, X.; Li, Q.; Jiang, A.; Jiang, D.; Tang, G.; Jiang, Y.; Wang, J.; et al. MicroRNA-125a-5p mediates 3T3-L1 preadipocyte proliferation and differentiation. Molecules 2018, 23, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, L.R.P.; Frade, A.F.; Santos, R.H.B.; Teixeira, P.C.; Cunha-Neto, E. MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy. Int. J. Cardiol. 2014, 175, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, X.; Huang, J.; Sun, Q.; Wang, L. Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction. Eur. J. Med Res. 2015, 20, 58. [Google Scholar] [CrossRef] [Green Version]
- Olson, E.S.; van Rooij, E.; Montgomery, R.L.; Grueter, C. Control of Whole Body Energy Homeostasis by microRNA Regulation. U.S. Patent 9,428,749 B2, 30 August 2016. [Google Scholar]
- Luo, G.; Hu, S.; Lai, T.; Wang, J.; Lai, S. MiR-9-5p promotes rabbit preadipocyte differentiation by suppressing leptin gene expression. Lipids Health Dis. 2020, 19, 126. [Google Scholar] [CrossRef]
- Cordero, P.; Campion, J.; Milagro, F.I.; Martinez, J.A. Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: Effect of dietary methyl donor supplementation. Mol. Genet. Metab. 2013, 110, 388–395. [Google Scholar] [CrossRef]
- Rosen, E.D.; Walkey, C.J.; Puigserver, P.; Spiegelman, B.M. Transcriptional regulation of adipogenesis. Genes Dev. 2000, 14, 1293–1307. [Google Scholar] [PubMed]
- Takanabe, R.; Ono, K.; Abe, Y.; Takaya, T.; Horie, T.; Wada, H.; Kita, T.; Satoh, N.; Shimatsu, A.; Hasegawa, K. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem. Biophys. Res. Commun. 2008, 376, 728–732. [Google Scholar] [CrossRef]
- Perri, R.; Nares, S.; Zhang, S.; Barros, S.P.; Offenbacher, S. MicroRNA Modulation in Obesity and Periodontitis. J. Dent. Res. 2012, 91, 33–38. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, L.; Chen, F.; Zhang, L.; Han, Z. Circulating miR-208b: A Potentially Sensitive and Reliable Biomarker for the Diagnosis and Prognosis of Acute Myocardial Infarction. Clin. Lab. 2017, 63, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Siersbæk, R.; Nielsen, R.; Mandrup, S. PPARγ in adipocyte differentiation and metabolism—Novel insights from genome-wide studies. FEBS Lett. 2010, 584, 3242–3249. [Google Scholar] [CrossRef] [Green Version]
- Doğan, A.; Demirci, S.; Kıratlı, B.; Şahin, F. Cytoglobin: A potential marker for adipogenic differentiation in preadipocytes in vitro. Cytotechnology 2017, 69, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Tontonoz, P.; Hu, E.; Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 1994, 79, 1147–1156. [Google Scholar] [CrossRef]
- Kralisch, S.; Fasshauer, M. Adipocyte fatty acid binding protein: A novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 2013, 56, 10–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, V.W.; Christy, R.J.; Cook, J.S.; Lane, T.J.K.D. Mechanism of Regulation of the 422(aP2) Gene by cAMP during Preadipocyte Differentiation. Proc. Natl. Acad. Sci. USA 1989, 86, 3629–3633. [Google Scholar] [CrossRef] [Green Version]
- Szatkowski, C.; Vallet, J.; Dormishian, M.; Messaddeq, N.; Valet, P.; Boulberdaa, M.; Metzger, D.; Chambon, P.; Nebigil, C.G. Prokineticin Receptor 1 as a Novel Suppressor of Preadipocyte Proliferation and Differentiation to Control Obesity. PLoS ONE 2013, 8, e81175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berti, L.; Irmler, M.; Zdichavsky, M.; Meile, T.; Böhm, A. Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes. Mol. Metab. 2015, 4, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, H.; Liao, Y.; Zhou, P.; Li, X. miR-208b modulating skeletal muscle development and energy homeostasis through targeting distinct targets. RNA Biol. 2020, 17, 1728102. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.; Sowdhamini, R. Sequence search and analysis of gene products containing RNA recognition motifs in the human genome. BMC Genom. 2014, 15, 1159. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.H.; Ka, S.; Kim, A.Y.; Kim, J.B. Regulation of Adipocyte Differentiation via MicroRNAs. Endocrinol. Metab. 2014, 29, 122–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutnikova, H.; Auwerx, J. Regulation of adipocyte differentiation. Ann. Med. 2001, 33, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Akabayov, S.R.; Wagner, G. Backbone resonance assignment of the HEAT1-domain of the human eukaryotic translation initiation factor 4GI. Biomol. NMR Assign. 2014, 8, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Ross Sarah, E.; Nahid, H.; Longo Kenneth, A.; Bennett Christina, N.; Lucas Peter, C. Inhibition of Adipogenesis by Wnt Signaling. Science 2000, 289, 950–953. [Google Scholar] [CrossRef]
- Xi, F.X.; Wei, C.S.; Xu, Y.T.; Ma, L.; He, Y.L.; Shi, X.E.; Yang, G.S.; Yu, T.Y. MicroRNA-214-3p Targeting Ctnnb1 Promotes 3T3-L1 Preadipocyte Differentiation by Interfering with the Wnt/β-Catenin Signaling Pathway. Int. J. Mol. Sci. 2019, 20, 1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, M.T.; Davies, E.; Spence, A. PL-04 Regulation of self-renewal, proliferation and differentiation in an adult stem cell lineage. Mech. Dev. 2009, 126, S3. [Google Scholar] [CrossRef]
- Harris, T.J.C.; Tepass, U. Adherens junctions: From molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 2010, 11, 502–514. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.; Thein, S.; Xu, F.; Sugii, S.; Baas, P.W.; Radda, G.K.; Han, W. Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MEC-17-dependent acetylation of α-tubulin. Biochem. J. 2013, 449, 605–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Sequence Information (5′-3′) |
---|---|
miR-208b mimic | F:AUAAGACGAACAAAAGGUUUGU R:ACAAACCUUUUGUUCGUCUUAU |
miR-208b inhibitor | ACAAACCUUUUGUUCGUCUUAU |
miR-208b NC | F:UUGUACUACACAAAAGUACUG R:GUACUUUUGUGUAGUACAAUU |
miR-208b INC | CAGUACUUUUGUGUAGUACAA |
Name | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
PPARγ | GAGGACATCCAGGACAACC | GTCCGTCTCCGTCTTCTTT |
FABP4 | GGCCAGGAATTTGATGAAGTC | AGTTTATCGCCCTCCCGTT |
GAPDH | CTTCGGCATTGTGGAGGG | GGAGGCAGGGATGATGTTCT |
CSNK2A2 miR-208b | GTGCTCTCCAGTGGTCTCAC ATAAGACGAACAAAAGGTTTGT | GGACAACAGGAACCGACCAT mRQ 3′ primer |
U6 | GGAACGATACAGAGAAGATTAGC | TGGAACGCTTCACGAATTTGCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Pan, T.; Wang, J.; Tang, T.; Li, Y.; Jia, X.; Lai, S. MiR-208b Regulates Rabbit Preadipocyte Proliferation and Differentiation. Genes 2021, 12, 890. https://doi.org/10.3390/genes12060890
Shao J, Pan T, Wang J, Tang T, Li Y, Jia X, Lai S. MiR-208b Regulates Rabbit Preadipocyte Proliferation and Differentiation. Genes. 2021; 12(6):890. https://doi.org/10.3390/genes12060890
Chicago/Turabian StyleShao, Jiahao, Ting Pan, Jie Wang, Tao Tang, Yanhong Li, Xianbo Jia, and Songjia Lai. 2021. "MiR-208b Regulates Rabbit Preadipocyte Proliferation and Differentiation" Genes 12, no. 6: 890. https://doi.org/10.3390/genes12060890
APA StyleShao, J., Pan, T., Wang, J., Tang, T., Li, Y., Jia, X., & Lai, S. (2021). MiR-208b Regulates Rabbit Preadipocyte Proliferation and Differentiation. Genes, 12(6), 890. https://doi.org/10.3390/genes12060890