Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Family Selection for Exome Sequencing
2.3. Whole Exome Sequencing
2.4. Bioinformatic Filtering
2.5. Genotyping
2.6. Gene Set Overrepresentation Analyses
3. Results
N Families Containing Variant | Gene Names |
---|---|
2 families | TMEM52, GCFC2, RTP5, SLC10A6, SAMD9L, PTPRD, ASCL1, GALC, CD34, ALPPL2, FAM189B, NTRK1, CHIT1, DCBLD2, COL6A5, ATG9B, NUTM2F, NME3, GFAP, KRTAP10-5, ZNF644, FLG, OR6P1, CSMD1, UQCRB, LMNTD2, THAP11, MLLT1, OR14A2, VWA3B, CFC1B, MSH3, AKAP3, GNB1L, RAB36, FGD1, THOC3, TNXB, AHNAK2, XYLT1, APOL3, CACFD1, RPL3L, PIGT, CTNNA3, LRIT1, TYMP, ASXL2, GPAT2, AARD, MGA, LGALS9C, C18orf65, AHCY, CSMD2, VPS41, BHLHE22, CCDC68, SYNJ1, HMGCS2, SYN2, DNASE1L3, CASP12, FSIP2, TET2, FAM153B, FAM153A, PFAS, PDZD2, KLHL32, ANKRD18A, MCM8, NPHP4, USP32, COL21A1, SSTR5, CEACAM21, FAM26F, OR4A5, KRT81, BDNF, SLC1A7, SPTA1, TNK2, PTPRE, CYB5R2, MTUS2, FANCA, KATNAL2, OTC, GPIHBP1, CLEC18B, SLC22A31, SETDB1 |
3 families | GPRIN1, SKIV2L, PRR23D1, TBC1D26, KIR3DL1, TTN [61], KRTAP4-3, DLL3 [58,59], OBSCN, KCNQ5, CCDC168, PRR25, ANKRD11 [62], HRC, GPR179, USP26, FCGBP, KCNN3, CACNA1H, ANKRD30B, KIAA1875, MRC1, ACOT4, KIAA0556, ERCC6L, DYSF, CEP170, AHNAK [60] |
4 families | POM121, PKD1L2, TMPRSS13, KRT2, ZNF717, PDE4DIP |
≥5 families | AL589743.1, TPRX1, FAM47A, WIPF3 |
Term | Count | % | p Value | Genes | Fold Enrichment |
---|---|---|---|---|---|
microtubule | 36 | 3.14 | 1.62 × 10 4 | INVS, DNAH1, DNAH7, TUBAL3, DCTN1, DNAH6, IQGAP1, CAMSAP2, GOLGA2, TEKT1, DVL1, KIF13B, TEKT2, CEP170, KIF21B, FSD1, KIF1A, PCNT, DYNC2H1, DNAH14, MTUS2, KCNAB2, SHROOM1, HAUS5, EML2, DLG1, SYNJ1, KATNAL2, INCENP, KIF26A, KIFC1, FEZ1, EHHADH, TTLL11, EIF3A, GAS8 | 1.98 |
slit diaphragm | 5 | 0.44 | 6.761 × 10 4 | TRPC6, KIRREL2, NPHS1, MAGI2, IQGAP1 | 10.66 |
intermediate filament | 17 | 1.48 | 8.88 × 104 | FLG, DSP, KRTAP13-4, KRT2, KRTAP26-1, KRTAP27-1, KRT79, KRT10, GFAP, KRT28, KRT37, PKP2, KRTAP6-1, SYNC, NES, KRT6A, PRPH | 2.57 |
Z disc | 17 | 1.48 | 1.42 × 103 | PPP1R12A, SYNPO2, AHNAK2, ATP2B4, SLC4A1, NEB, ANK3, ADRA1A, IGFN1, RYR3, MYPN, TTN, OBSCN, HRC, PDE4B, SYNC, CRYAB | 2.46 |
spindle | 17 | 1.48 | 1.85 × 103 | INVS, DIDO1, SPAG8, NUMA1, DCTN1, DCTN3, HEPACAM2, HAUS5, EML2, INCENP, KIFC1, NUP85, CLTCL1, ANKRD53, CEP170, E4F1, KBTBD8 | 2.40 |
cytoplasm | 347 | 30.28 | 3.04 × 103 | *RPL5, ANKLE1, MTRR, HDAC10, RGSL1, ABCA12, BACH2, WDR87, ENDOV, TBK1, CYP2D7, MPRIP, PPP4R2, C7ORF31, FAM65C, PLCE1, TRIM26, RTTN, KIF21B, ADGB, SDS, BSX, KRT2, MTUS2, AFAP1, SCRIB, LCE1E, MAPK8IP2, EML2, PPP1R3G, INPP4B, KATNAL2, TEP1, FEZ1, ZSCAN26, WDPCP, TTLL11, FLYWCH1, ALPK2, PFN1, RIN1, TRIB2, KPRP, SPTBN5, PARPBP, DHX8, PCDH15, C1ORF198, AGAP1, XPC | 1.13 |
lateral plasma membrane | 10 | 0.87 | 3.37 × 103 | CEACAM1, DLG1, KCNB1, MTCL1, ABCC6, PTPRO, DVL1, ANK3, IQGAP1, NKD2 | 3.22 |
cytoskeleton | 36 | 3.14 | 3.73 × 103 | TENM1, DRC7, MTCL1, EVPL, PPL, GPHN, FGD1, SYNE1, KIAA0556, CNN2, AKAP12, EPB41L5, SGCD, EPB41L2, TNKS1BP1, PLEK2, NPHP4, CTNNA3, TRIM67, DSP, VASP, FARP2, AFAP1, FRMD4A, KCNAB2, PTPN13, ARHGAP24, APBB1IP, UBXN11, FRMD7, TRIP10, FILIP1, NF2, RIN1, PFN1, TRIB2 | 1.66 |
neuron projection | 25 | 2.18 | 6.37 × 103 | TENM1, GPI, TENM2, TENM3, AHCY, TENM4, PTPRO, IQGAP1, STON2, PARK2, DVL1, CADM1, DTNBP1, ATP2B4, ANK3, PTPN13, SSTR5, SYNJ1, FRMD7, RAPGEF2, FAS, ATP13A2, NF2, PFN1, CPEB2 | 1.80 |
centrosome | 38 | 3.32 | 1.08 × 102 | ERCC6L, NUMA1, DCTN1, VPS4B, DCTN3, HEPACAM2, CDC14A, RPGR, TTC28, CAMSAP2, PPP4R2, TMEM67, C7ORF31, CHEK1, PDE4B, CEP170, NPHP4, RTTN, NEK3, CCDC141, PCNT, ZNF322, DCAF13, LRRCC1, PPP1R12A, CEP135, DYX1C1, CCDC116, IFT140, CEP131, KLHL21, MTUS2, PDE4DIP, HAUS5, ALS2, CROCC, FEZ1, ALMS1 | 1.52 |
axon | 23 | 2.01 | 1.11 × 102 | NTRK1, EPHA5, CNTNAP2, TENM3, KCNB1, PTPRO, DAB2IP, DTNBP1, IQGAP1, IGSF9, ROBO1, SPTA1, ALCAM, ALS2, FEZ1, DVL1, KIF13B, CHRNA10, KIF21B, NEK3, LDLRAP1, CRYAB, VPS16 | 1.77 |
spectrin | 4 | 0.35 | 1.29 × 102 | SPTA1, SPTBN5, EPB41L2, SPTBN2 | 7.58 |
sarcoplasmic reticulum | 7 | 0.61 | 1.30 × 102 | ATP2A3, ITPR1, CLEC18B, MRVI1, ANK3, XDH, RYR3 | 3.51 |
plasma membrane | 272 | 23.73 | 1.48 × 102 | *RGSL1, SLC4A1, ABCA12, ABRA, SLC4A5, PIEZO1, PLCE1, GPR179, DYNC2H1, EPHA5, IL15RA, UNC5A, OR1J4, KCNK13, CACNA2D2, SCRIB, ANK3, SYTL5, PHKA2, HSPG2, SYTL3, KEL, FEZ1, OR6C6, KCNQ5, WDPCP, RIN1, EPHA1, OR5AK2, CFB, TAS2R42, SLC22A1, PCDH15, MGST2, C2CD4A, OR10T2, XPC, PCDH12, IQGAP1, MST1R, PPL, IGSF9, OR52L1, ART1, EPB41L5, NCSTN, EPB41L2, PLCG2, KCNN3, APOB | 1.13 |
proteinaceous extracellular matrix | 25 | 2.18 | 2.55 × 102 | FBN2, TNXB, LAMC3, ADAMTS12, ADAMTS10, ADAMTS14, GPC1, SLIT2, MUC4, IMPG1, TECTB, AMBN, FN1, MMP10, MMP16, CILP, COL4A3, COL4A6, COL8A2, COL21A1, COL9A3, COL6A5, COL9A2, MATN3, MATN2 | 1.59 |
adherens junction | 8 | 0.70 | 2.56 × 102 | EPHA5, EPB41L5, CEACAM1, TNK2, PKP2, FMN1, CTNNA3, NF2 | 2.73 |
sarcolemma | 11 | 0.96 | 2.65 × 102 | DLG1, SGCD, AHNAK, KCNB1, AHNAK2, DYSF, DTNBP1, ANK3, SYNC, SLC8B1, RYR3 | 2.21 |
presynapse | 9 | 0.79 | 3.25 × 102 | SYT3, SYNJ1, DVL1, SYT15, SCRIB, STON2, SYTL5, SYTL3, PARK2 | 2.40 |
apical plasma membrane | 26 | 2.27 | 3.54 × 102 | MTCL1, PTPRO, SIPA1L3, SLC4A5, PARD6B, DSTYK, SLCO2B1, CD34, DUOX2, GPIHBP1, SPTBN2, SLC22A11, MUC17, SLC10A2, ABCC6, AKR1A1, FN1, NRG1, ABCA7, CEACAM1, CDHR2, RAPGEF2, CHRFAM7A, WDPCP, SLC26A4, KCNK1 | 1.52 |
collagen trimer | 11 | 0.96 | 4.25 × 102 | MSR1, COL27A1, COL7A1, COL4A3, COL8A2, SAAL1, COL4A6, COL21A1, COL9A2, COL6A5, OTOL1 | 2.04 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asher, M.A.; Burton, D.C. Adolescent idiopathic scoliosis: Natural history and long term treatment effects. Scoliosis 2006, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, W.J.; Moe, J.H. A scoliosis-prevalence survey in Minnesota. Clin. Orthop. Relat. Res. 1970, 69, 216–218. [Google Scholar] [CrossRef]
- Weinstein, S.L. Adolescent idiopathic scoliosis: Prevalence and natural history. In The Pediatric Spine: Principles and Practice; Weinstein, S.L., Ed.; Raven Press: New York, NY, USA, 1994; pp. 463–478. [Google Scholar]
- Weinstein, S.L.; Zavala, D.C.; Ponseti, I.V. Idiopathic scoliosis: Long-term follow-up and prognosis in untreated patients. J. Bone Jt. Surg. Am. Vol. 1981, 63, 702–712. [Google Scholar] [CrossRef] [Green Version]
- Bozzio, A.E.; Hu, X.; Lieberman, I.H. Cost and Clinical Outcome of Adolescent Idiopathic Scoliosis Surgeries-Experience From a Nonprofit Community Hospital. Int. J. Spine Surg. 2019, 13, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.L.; Yeung, H.Y.; Lee, K.M.; Hung, V.W.; Cheung, C.S.; Ng, B.K.; Kwok, R.; Guo, X.; Qin, L.; Cheng, J.C. A relook into the association of the estrogen receptor [alpha] gene (PvuII, XbaI) and adolescent idiopathic scoliosis: A study of 540 Chinese cases. Spine 2006, 31, 2463–2468. [Google Scholar] [CrossRef] [PubMed]
- Khanshour, A.M.; Wise, C.A. The Genetic Architecture of Adolescent Idiopathic Scoliosis. In Pathogenesis of Idiopathic Scoliosis; Machida, M., Weinstein, S.L., Dubousset, J., Eds.; Springer: Tokyo, Japan, 2018; pp. 51–74. [Google Scholar] [CrossRef]
- Ward, K.; Ogilvie, J.; Argyle, V.; Nelson, L.; Meade, M.; Braun, J.; Chettier, R. Polygenic inheritance of adolescent idiopathic scoliosis: A study of extended families in Utah. Am. J. Med. Genet A 2010, 152A, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Kou, I.; Takahashi, A.; Johnson, T.A.; Kono, K.; Kawakami, N.; Uno, K.; Ito, M.; Minami, S.; Yanagida, H.; et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat. Genet. 2011, 43, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.H.; Song, Y.Q.; Chan, D.; Takahashi, Y.; Ikegawa, S.; Matsumoto, M.; Kou, I.; Cheah, K.S.; Sham, P.; Cheung, K.M.; et al. SNP rs11190870 near LBX1 is associated with adolescent idiopathic scoliosis in southern Chinese. J. Hum. Genet 2012, 57, 244–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Qiu, X.; Dai, J.; Yan, H.; Zhu, Z.; Qian, B.; Qiu, Y. Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2013, 22, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Peng, Y.; Liang, G.; Liang, A.; Ye, W.; Zhang, L.; Sharma, S.; Su, P.; Huang, D. Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS ONE 2013, 8, e53234. [Google Scholar] [CrossRef] [Green Version]
- Londono, D.; Kou, I.; Johnson, T.A.; Sharma, S.; Ogura, Y.; Tsunoda, T.; Takahashi, A.; Matsumoto, M.; Herring, J.A.; Lam, T.P.; et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J. Med. Genet 2014, 51, 401–406. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, L.; Roffey, D.M.; Phan, P.; Wai, E.K. Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis in East Asians: A systematic review and meta-analysis. Spine J. Off. J. N. Am. Spine Soc. 2014, 14, 2968–2975. [Google Scholar] [CrossRef]
- Liang, J.; Xing, D.; Li, Z.; Chua, S.; Li, S. Association Between rs11190870 Polymorphism Near LBX1 and Susceptibility to Adolescent Idiopathic Scoliosis in East Asian Population: A Genetic Meta-Analysis. Spine 2014, 39, 862–869. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, N.L.; Xu, L.; Qin, X.; Mao, S.; Song, Y.; Liu, L.; Li, F.; Liu, P.; Yi, L.; et al. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat. Commun. 2015, 6, 8355. [Google Scholar] [CrossRef] [Green Version]
- Chettier, R.; Nelson, L.; Ogilvie, J.W.; Albertsen, H.M.; Ward, K. Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS ONE 2015, 10, e0117708. [Google Scholar] [CrossRef]
- Grauers, A.; Wang, J.; Einarsdottir, E.; Simony, A.; Danielsson, A.; Akesson, K.; Ohlin, A.; Halldin, K.; Grabowski, P.; Tenne, M.; et al. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine J. Off. J. N. Am. Spine Soc. 2015, 15, 2239–2246. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wu, N.; Zuo, Y.; Zhou, Y.; Liu, J.; Liu, Z.; Chen, W.; Liu, G.; Chen, Y.; Chen, J.; et al. Genetic Polymorphism of LBX1 Is Associated With Adolescent Idiopathic Scoliosis in Northern Chinese Han Population. Spine 2017, 42, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Nada, D.; Julien, C.; Samuels, M.E.; Moreau, A. A Replication Study for Association of LBX1 Locus With Adolescent Idiopathic Scoliosis in French-Canadian Population. Spine 2018, 43, 172–178. [Google Scholar] [CrossRef]
- Li, Y.L.; Gao, S.J.; Xu, H.; Liu, Y.; Li, H.L.; Chen, X.Y.; Ning, G.Z.; Feng, S.Q. The association of rs11190870 near LBX1 with the susceptibility and severity of AIS, a meta-analysis. Int. J. Surg. 2018, 54, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Man, G.C.; Tang, N.L.; Chan, T.F.; Lam, T.P.; Li, J.W.; Ng, B.K.; Zhu, Z.; Qiu, Y.; Cheng, J.C. Replication Study for the Association of GWAS-associated Loci with Adolescent Idiopathic Scoliosis Susceptibility and Curve Progression in a Chinese Population. Spine 2018. [Google Scholar] [CrossRef]
- Kou, I.; Takahashi, Y.; Johnson, T.A.; Takahashi, A.; Guo, L.; Dai, J.; Qiu, X.; Sharma, S.; Takimoto, A.; Ogura, Y.; et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat. Genet. 2013, 45, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.F.; Yang, G.H.; Pan, X.H.; Zhang, S.J.; Zhao, C.; Qiu, B.S.; Gu, H.F.; Hong, J.F.; Cao, L.; Chen, Y.; et al. Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics 2015, 105, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xu, L.; Xia, C.; Zhu, W.; Sun, W.; Liu, Z.; Qiu, Y.; Zhu, Z. Genetic Variant of GPR126 Gene is Functionally Associated With Adolescent Idiopathic Scoliosis in Chinese Population. Spine 2017, 42, E1098–E1103. [Google Scholar] [CrossRef] [PubMed]
- Kou, I.; Watanabe, K.; Takahashi, Y.; Momozawa, Y.; Khanshour, A.; Grauers, A.; Zhou, H.; Liu, G.; Fan, Y.H.; Takeda, K.; et al. A multi-ethnic meta-analysis confirms the association of rs6570507 with adolescent idiopathic scoliosis. Sci. Rep. 2018, 8, 11575. [Google Scholar] [CrossRef]
- Haller, G.; Alvarado, D.; McCall, K.; Yang, P.; Cruchaga, C.; Harms, M.; Goate, A.; Willing, M.; Morcuende, J.A.; Baschal, E.; et al. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum. Mol. Genet. 2016, 25, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Baschal, E.E.; Wethey, C.I.; Swindle, K.; Baschal, R.M.; Gowan, K.; Tang, N.L.; Alvarado, D.M.; Haller, G.E.; Dobbs, M.B.; Taylor, M.R.; et al. Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3 2014, 5, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Buchan, J.G.; Alvarado, D.M.; Haller, G.E.; Cruchaga, C.; Harms, M.B.; Zhang, T.; Willing, M.C.; Grange, D.K.; Braverman, A.C.; Miller, N.H.; et al. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum. Mol. Genet. 2014, 23, 5271–5282. [Google Scholar] [CrossRef] [Green Version]
- Rose, C.D.; Pompili, D.; Henke, K.; Van Gennip, J.L.M.; Meyer-Miner, A.; Rana, R.; Gobron, S.; Harris, M.P.; Nitz, M.; Ciruna, B. SCO-Spondin Defects and Neuroinflammation Are Conserved Mechanisms Driving Spinal Deformity across Genetic Models of Idiopathic Scoliosis. Curr. Biol. 2020. [Google Scholar] [CrossRef]
- Van Gennip, J.L.M.; Boswell, C.W.; Ciruna, B. Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis. Sci. Adv. 2018, 4, eaav1781. [Google Scholar] [CrossRef] [Green Version]
- Wise, C.A.; Sepich, D.; Ushiki, A.; Khanshour, A.M.; Kidane, Y.H.; Makki, N.; Gurnett, C.A.; Gray, R.S.; Rios, J.J.; Ahituv, N.; et al. The cartilage matrisome in adolescent idiopathic scoliosis. Bone Res. 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Buchan, J.G.; Gray, R.S.; Gansner, J.M.; Alvarado, D.M.; Burgert, L.; Gitlin, J.D.; Gurnett, C.A.; Goldsmith, M.I. Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2014, 243, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.T.; Boswell, C.W.; Morante, N.F.; Henkelman, R.M.; Burdine, R.D.; Ciruna, B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 2016, 352, 1341–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, M.; Gao, X.; Yu, L.X.; Paria, N.; Henkelman, R.M.; Wise, C.A.; Ciruna, B. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat. Commun. 2014, 5, 4777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konjikusic, M.J.; Yeetong, P.; Boswell, C.W.; Lee, C.; Roberson, E.C.; Ittiwut, R.; Suphapeetiporn, K.; Ciruna, B.; Gurnett, C.A.; Wallingford, J.B.; et al. Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development. PLoS Genet. 2018, 14, e1007817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terhune, E.A.; Cuevas, M.T.; Monley, A.M.; Wethey, C.I.; Chen, X.; Cattel, M.V.; Bayrak, M.N.; Bland, M.R.; Sutphin, B.; Devon Trahan, G.; et al. Mutations in KIF7 Implicated in Idiopathic Scoliosis in Humans and Axial Curvatures in Zebrafish. Hum. Mutat 2020. [Google Scholar] [CrossRef]
- Carry, P.M.; Duke, V.R.; Brazell, C.J.; Stence, N.; Scholes, M.; Rousie, D.L.; Hadley Miller, N. Lateral semi-circular canal asymmetry in females with idiopathic scoliosis. PLoS ONE 2020, 15, e0232417. [Google Scholar] [CrossRef]
- Hawasli, A.H.; Hullar, T.E.; Dorward, I.G. Idiopathic scoliosis and the vestibular system. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2015, 24, 227–233. [Google Scholar] [CrossRef]
- Pialasse, J.P.; Descarreaux, M.; Mercier, P.; Blouin, J.; Simoneau, M. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered. PLoS ONE 2015, 10, e0143124. [Google Scholar] [CrossRef] [Green Version]
- Haumont, T.; Gauchard, G.C.; Lascombes, P.; Perrin, P.P. Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine 2011, 36, E847–E854. [Google Scholar] [CrossRef] [Green Version]
- Simoneau, M.; Lamothe, V.; Hutin, E.; Mercier, P.; Teasdale, N.; Blouin, J. Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients. BMC Neurosci. 2009, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, I.; McVean, G. Differential confounding of rare and common variants in spatially structured populations. Nat. Genet. 2012, 44, 243–246. [Google Scholar] [CrossRef] [Green Version]
- McClellan, J.; King, M.C. Genetic heterogeneity in human disease. Cell 2010, 141, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Baschal, E.E.; Terhune, E.A.; Wethey, C.I.; Baschal, R.M.; Robinson, K.D.; Cuevas, M.T.; Pradhan, S.; Sutphin, B.S.; Taylor, M.R.G.; Gowan, K.; et al. Idiopathic Scoliosis Families Highlight Actin-Based and Microtubule-Based Cellular Projections and Extracellular Matrix in Disease Etiology. G3 2018, 8, 2663–2672. [Google Scholar] [CrossRef] [Green Version]
- Shands, A.R.; Eisberg, H.B. The incidence of scoliosis in the state of Delaware; a study of 50,000 minifilms of the chest made during a survey for tuberculosis. J. Bone Jt. Surg. Am. Vol. 1955, 37, 1243–1249. [Google Scholar] [CrossRef]
- Kane, W.J. Scoliosis prevalence: A call for a statement of terms. Clin. Orthop. Relat. Res. 1977, 126, 43–46. [Google Scholar] [CrossRef]
- Armstrong, G.W.; Livermore, N.B., 3rd; Suzuki, N.; Armstrong, J.G. Nonstandard vertebral rotation in scoliosis screening patients. Its prevalence and relation to the clinical deformity. Spine (Phila Pa 1976) 1982, 7, 50–54. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang le, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat 2011, 32, 894–899. [Google Scholar] [CrossRef]
- Liu, X.; Wu, C.; Li, C.; Boerwinkle, E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum. Mutat 2016, 37, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [Green Version]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giampietro, P.F.; Raggio, C.L.; Reynolds, C.; Ghebranious, N.; Burmester, J.K.; Glurich, I.; Rasmussen, K.; McPherson, E.; Pauli, R.M.; Shukla, S.K.; et al. DLL3 as a candidate gene for vertebral malformations. Am. J. Med. Genet. A 2006, 140, 2447–2453. [Google Scholar] [CrossRef]
- Loomes, K.M.; Stevens, S.A.; O’Brien, M.L.; Gonzalez, D.M.; Ryan, M.J.; Segalov, M.; Dormans, N.J.; Mimoto, M.S.; Gibson, J.D.; Sewell, W.; et al. Dll3 and Notch1 genetic interactions model axial segmental and craniofacial malformations of human birth defects. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2007, 236, 2943–2951. [Google Scholar] [CrossRef]
- Shen, N.; Chen, N.; Zhou, X.; Zhao, B.; Huang, R.; Liang, J.; Yang, X.; Chen, M.; Song, Y.; Du, Q. Alterations of the gut microbiome and plasma proteome in Chinese patients with adolescent idiopathic scoliosis. Bone 2019, 120, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Wang, L.; Yu, B.; Zhuang, Q.Y.; Wang, Y.P. Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis. Biomed. Res. Int. 2015, 2015, 276049. [Google Scholar] [CrossRef]
- Shin, J.H.; Ha, K.Y.; Jung, S.H.; Chung, Y.J. Genetic predisposition in degenerative lumbar scoliosis due to the copy number variation. Spine 2011, 36, 1782–1793. [Google Scholar] [CrossRef]
- Miller, N.H.; Mims, B.; Child, A.; Milewicz, D.M.; Sponseller, P.; Blanton, S.H. Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis. J. Orthop. Res. 1996, 14, 994–999. [Google Scholar] [CrossRef]
- Wise, C.A.; Barnes, R.; Gillum, J.; Herring, J.A.; Bowcock, A.M.; Lovett, M. Localization of susceptibility to familial idiopathic scoliosis. Spine 2000, 25, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Justice, C.M.; Miller, N.H.; Marosy, B.; Zhang, J.; Wilson, A.F. Familial idiopathic scoliosis: Evidence of an X-linked susceptibility locus. Spine 2003, 28, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.H.; Justice, C.M.; Marosy, B.; Doheny, K.F.; Pugh, E.; Zhang, J.; Dietz, H.C., 3rd; Wilson, A.F. Identification of candidate regions for familial idiopathic scoliosis. Spine 2005, 30, 1181–1187. [Google Scholar] [CrossRef]
- Miller, N.H.; Marosy, B.; Justice, C.M.; Novak, S.M.; Tang, E.Y.; Boyce, P.; Pettengil, J.; Doheny, K.F.; Pugh, E.W.; Wilson, A.F. Linkage analysis of genetic loci for kyphoscoliosis on chromosomes 5p13, 13q13.3, and 13q32. Am. J. Med. Genet. A 2006, 140, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Ocaka, L.; Zhao, C.; Reed, J.A.; Ebenezer, N.D.; Brice, G.; Morley, T.; Mehta, M.; O’Dowd, J.; Weber, J.L.; Hardcastle, A.J.; et al. Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J. Med. Genet. 2008, 45, 87–92. [Google Scholar] [CrossRef]
- Esposito, T.; Uccello, R.; Caliendo, R.; Di Martino, G.F.; Gironi Carnevale, U.A.; Cuomo, S.; Ronca, D.; Varriale, B. Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human: A possible genetic linkage. J. Steroid Biochem. Mol. Biol 2009, 116, 56–60. [Google Scholar] [CrossRef]
- Gurnett, C.A.; Alaee, F.; Bowcock, A.; Kruse, L.; Lenke, L.G.; Bridwell, K.H.; Kuklo, T.; Luhmann, S.J.; Dobbs, M.B. Genetic linkage localizes an adolescent idiopathic scoliosis and pectus excavatum gene to chromosome 18 q. Spine 2009, 34, E94–E100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marosy, B.; Justice, C.M.; Vu, C.; Zorn, A.; Nzegwu, N.; Wilson, A.F.; Miller, N.H. Identification of susceptibility loci for scoliosis in FIS families with triple curves. Am. J. Med. Genet. A 2010, 152A, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Meester, J.A.N.; Verstraeten, A.; Schepers, D.; Alaerts, M.; Van Laer, L.; Loeys, B.L. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Ann. Cardiothorac Surg. 2017, 6, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Lao, Q.; Mallappa, A.; Rueda Faucz, F.; Joyal, E.; Veeraraghavan, P.; Chen, W.; Merke, D.P. A TNXB splice donor site variant as a cause of hypermobility type Ehlers-Danlos syndrome in patients with congenital adrenal hyperplasia. Mol. Genet. Genom. Med. 2021, 9, e1556. [Google Scholar] [CrossRef]
- Rymen, D.; Ritelli, M.; Zoppi, N.; Cinquina, V.; Giunta, C.; Rohrbach, M.; Colombi, M. Clinical and Molecular Characterization of Classical-Like Ehlers-Danlos Syndrome Due to a Novel TNXB Variant. Genes 2019, 10, 843. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.L.; Merke, D.P. Tenascin-X, Congenital Adrenal Hyperplasia, and the CAH-X Syndrome. Horm Res. Paediatr 2018, 89, 352–361. [Google Scholar] [CrossRef]
- McNally, E.; MacLeod, H.; Dellefave-Castillo, L. Arrhythmogenic Right Ventricular Cardiomyopathy; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; GeneReviews®: Seattle, WA, USA, 1993. [Google Scholar]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef]
- Bouguenina, H.; Salaun, D.; Mangon, A.; Muller, L.; Baudelet, E.; Camoin, L.; Tachibana, T.; Cianferani, S.; Audebert, S.; Verdier-Pinard, P.; et al. EB1-binding-myomegalin protein complex promotes centrosomal microtubules functions. Proc. Natl. Acad. Sci. USA 2017, 114, E10687–E10696. [Google Scholar] [CrossRef] [Green Version]
- Kruse, L.M.; Buchan, J.G.; Gurnett, C.A.; Dobbs, M.B. Polygenic threshold model with sex dimorphism in adolescent idiopathic scoliosis: The Carter effect. J. Bone Jt. Surg. Am. Vol. 2012, 94, 1485–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grauers, A.; Einarsdottir, E.; Gerdhem, P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016, 11, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Machado, G.; Berenguer-Pascual, E.; Bovea-Marco, M.; Rubio-Belmar, P.A.; Garcia-Lopez, E.; Garzon, M.J.; Mena-Molla, S.; Pallardo, F.V.; Bas, T.; Vina, J.R.; et al. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 2020, 140, 115563. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef]
- Lamande, S.R.; Bateman, J.F. Genetic Disorders of the Extracellular Matrix. Anat. Rec. 2020, 303, 1527–1542. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qiu, Y.; Ma, Z.; Xia, C.; Zhu, F.; Zhu, Z. Expression of Runx2 and type X collagen in vertebral growth plate of patients with adolescent idiopathic scoliosis. Connect. Tissue Res. 2010, 51, 188–196. [Google Scholar] [CrossRef]
- Carr, A.J.; Ogilvie, D.J.; Wordsworth, B.P.; Priestly, L.M.; Smith, R.; Sykes, B. Segregation of structural collagen genes in adolescent idiopathic scoliosis. Clin. Orthop. Relat. Res. 1992, 274, 305–310. [Google Scholar]
- Montanaro, L.; Parisini, P.; Greggi, T.; Di Silvestre, M.; Campoccia, D.; Rizzi, S.; Arciola, C.R. Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 2006, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, T.; Dehghani, F. The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, J.D.; Dufresne, E.R.; Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014, 15, 802–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein-Nulend, J.; Bacabac, R.G.; Bakker, A.D. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur. Cell Mater. 2012, 24, 278–291. [Google Scholar] [CrossRef]
- Patten, S.A.; Margaritte-Jeannin, P.; Bernard, J.C.; Alix, E.; Labalme, A.; Besson, A.; Girard, S.L.; Fendri, K.; Fraisse, N.; Biot, B.; et al. Functional variants of POC5 identified in patients with idiopathic scoliosis. J. Clin. Investig. 2015, 125, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sheng, F.; Xia, C.; Li, Y.; Feng, Z.; Qiu, Y.; Zhu, Z. Common Variant of POC5 Is Associated With the Susceptibility of Adolescent Idiopathic Scoliosis. Spine 2018, 43, E683–E688. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Parent, S.; Mathieu, H.; Zaouter, C.; Molidperee, S.; Bagu, E.T.; Barchi, S.; Villemure, I.; Patten, S.A.; Moldovan, F. Adolescent idiopathic scoliosis associated POC5 mutation impairs cell cycle, cilia length and centrosome protein interactions. PLoS ONE 2019, 14, e0213269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, R.S.; Gonzalez, R.; Ackerman, S.D.; Minowa, R.; Griest, J.F.; Bayrak, M.N.; Troutwine, B.; Canter, S.; Monk, K.R.; Sepich, D.S.; et al. Postembryonic screen for mutations affecting spine development in zebrafish. Dev. Biol. 2021, 471, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, J.R.; Prendergast, A.E.; Brosse, L.; Cantaut-Belarif, Y.; Thouvenin, O.; Orts-Del’Immagine, A.; Castillo, L.; Djenoune, L.; Kurisu, S.; McDearmid, J.R.; et al. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat. Commun. 2018, 9, 3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Jia, S.; Chen, Z.; Chong, Y.L.; Xie, H.; Feng, D.; Wu, X.; Song, D.Z.; Roy, S.; Zhao, C. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat. Genet. 2018, 50, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Bomba, L.; Walter, K.; Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017, 18, 77. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terhune, E.A.; Wethey, C.I.; Cuevas, M.T.; Monley, A.M.; Baschal, E.E.; Bland, M.R.; Baschal, R.; Trahan, G.D.; Taylor, M.R.G.; Jones, K.L.; et al. Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease. Genes 2021, 12, 922. https://doi.org/10.3390/genes12060922
Terhune EA, Wethey CI, Cuevas MT, Monley AM, Baschal EE, Bland MR, Baschal R, Trahan GD, Taylor MRG, Jones KL, et al. Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease. Genes. 2021; 12(6):922. https://doi.org/10.3390/genes12060922
Chicago/Turabian StyleTerhune, Elizabeth A., Cambria I. Wethey, Melissa T. Cuevas, Anna M. Monley, Erin E. Baschal, Morgan R. Bland, Robin Baschal, G. Devon Trahan, Matthew R. G. Taylor, Kenneth L. Jones, and et al. 2021. "Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease" Genes 12, no. 6: 922. https://doi.org/10.3390/genes12060922
APA StyleTerhune, E. A., Wethey, C. I., Cuevas, M. T., Monley, A. M., Baschal, E. E., Bland, M. R., Baschal, R., Trahan, G. D., Taylor, M. R. G., Jones, K. L., & Hadley Miller, N. (2021). Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease. Genes, 12(6), 922. https://doi.org/10.3390/genes12060922