VECTOR: An Integrated Correlation Network Database for the Identification of CeRNA Axes in Uveal Melanoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Elaboration
2.3. VECTOR Data and Architecture
- The correlation values (Pearson coefficients) of miRNA-mRNA, miRNA-lncRNA and lncRNA-mRNA pairs in UM samples. These correlations are used to create correlation networks, which show feedback loops involving the three classes of RNAs. The above-mentioned pairs of molecules are associated with data coming from miRBase, miRTarBase, LncBase, miRcode and Encori databases, also storing information about the predicted or validated RNA-RNA interactions. All correlation values can be downloaded by users at the “Download” section.
- Overlapping of genomic positions between mRNAs and lncRNAs, in order to find couples of sense-antisense transcripts.
- Correlation coefficients of TF-miRNA, TF-lncRNA, and TF-mRNA pairs in UM samples. These TF:RNA couples were associated with ChiPseq data of TF binding from TransmiR, ENCODE, and ChEA, in order to corroborate the potential TF regulation on miRNAs, lncRNAs and mRNAs.
- The expression values of miRNAs, expressed as log2(RPM + 1), mRNAs and lncRNAs, expressed as log2(x + 1) normalized count, were retrieved from the TCGA dataset. Assitionally, VECTOR includes expression data of miRNAs, mRNAs and lncRNAs in several physiological tissues, reported as quantile normalized expression (miRNAs) and TPM (Transcripts Per Kilobase Million) (mRNAs and lncRNAs). Clinicopathological parameters of UM patients included in the UM TCGA dataset were collected and stored in VECTOR.
2.4. VECTOR Web Interface
- The “Circuits” menu allows users to look for the molecular axes generated by lncRNA-mRNA-miRNA correlations. Users have to provide the name of at least one element that is part of the circuit (official gene symbol for mRNAs and lncRNAs, miRBase ID for miRNAs) (Figure 2A, red rectangle), and the minimum correlation coefficient of the miRNA-mRNA, lncRNA-mRNA and miRNA-lncRNA pairs. Alternatively, users can filter the output by p-value. (Figure 2A, yellow rectangle). The last parameter, named “Top n” (Figure 2A, green rectangle), limits the number of returned “triangular RNA circuits” in order to ensure a better readability of the plotted results, as well as a shorter processing time.
- The “Antisense” menu enables users to look for the sense-antisense sequence overlapping between mRNAs and lncRNAs. In this case, the user has to provide the mRNA and/or lncRNA name (Figure 2B).
- The “TF search” menu enables users to extract from our database the TF-mRNA, TF-miRNA and TF-lncRNA pairs in terms of correlation data and ChiPseq information about a given transcription factor. Therefore, the user has to provide the TF name (official gene symbol) and/or the name of a lncRNA, miRNA, and/or mRNA (Figure 2C) before submitting the search form.
- The “Expression” menu allows users to evaluate the expression levels of a selected mRNA, lncRNA or miRNA in the UM TCGA dataset and in several physiological tissues. The users have to choose the RNA molecule for which expression values in both UM and physiological tissues will be shown as histograms. To infer the potential association between the expression of a specific RNA molecule in UM and the clinicopathological parameters of UM patients, the users can select the intended parameter and VECTOR will return a new histogram graph, where UM samples are shown grouped for the selected parameter.
- The Results section (Figure 3) plots the obtained results as a network or a table.
- Once the “Circuits” or “Antisense” searching query is submitted, results will be shown through an interactive network comprising nodes and edges (Figure 3 and Figure 4). The nodes represent the RNA species: the mRNAs are shown with blue circles, the miRNAs with red triangles, and the lncRNAs with orange squares. These can be inspected (by clicking on them) to get a table listing all the TFs they interact with. The edges represent the relationships between two RNA molecules (i.e., expression correlation and potential physical interaction). Different styles and colors discriminate the kind of relationship between RNAs: red edges imply a positive expression correlation between two RNA elements, while green edges show the anti-correlation of an expression. In addition to the color, each edge is also marked with the correlation or anti-correlation numeric value, while the p-value is shown in a small pop-up window which appears by clicking on the edge. Moreover, in the “Circuits” section, when the expression relationship is confirmed by at least one of the databases (miRBase, miRTarBase, LncBase, miRcode, and Encori), the edge is depicted as a solid line; otherwise it is a dotted line. The database confirming the expression relationship is shown in a small pop-up window which appears by clicking on the edge.
- When a “TF searching” query is submitted, the obtained records are shown in a tabular format (Figure 5). Such tables contain the TF-mRNA, TF-lncRNA, or TF-miRNA expression correlations and potential physical interactions between TFs and gene promoters. TF binding to the promoter is linked to ChIPseq data from ENCODE, ChEA, and TransmiR, reported as a binary table (i.e., 0: no ChIPseq data; 1: ChIPseq data demonstrating the TF interaction on the gene promoter).
- Expression of the chosen RNA molecule in both the UM TCGA dataset and physiological tissues is shown as a histogram (Figure 6). For the UM expression data, samples are shown grouped according to a specific clinicopathological parameter, which can be selected by the user. Selecting a different parameter, samples will be reorganized in order to group all samples sharing that clinical feature. For numerical parameters, samples are shown in ascending order for the parameter. This function will allow users to observe potential expression trends for a chosen RNA molecule in association with a specific clinical feature.
3. Results
3.1. Global Identification of lncRNA–miRNA–mRNA Axes in UM
3.2. Relationship Between Genomic Overlapping and Expression of Sense-Antisense Transcript Pairs
3.3. The Genome-Wide Identification of TFs Regulating mRNAs, lncRNAs and miRNAs in UM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nichols, E.E.; Richmond, A.; Daniels, A.B. Tumor Characteristics, Genetics, Management, and the Risk of Metastasis in Uveal Melanoma. Semin. Ophthalmol. 2016, 31, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Durairaj, P.; Yeung, J. Uveal Melanoma: A Review of the Literature. Oncol. Ther. 2018, 6, 87–104. [Google Scholar] [CrossRef] [Green Version]
- van den Bosch, T.; van Beek, J.G.; Vaarwater, J.; Verdijk, R.M.; Naus, N.C.; Paridaens, D.; de Klein, A.; Kilic, E. Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2668–2674. [Google Scholar] [CrossRef] [Green Version]
- Amaro, A.; Gangemi, R.; Piaggio, F.; Angelini, G.; Barisione, G.; Ferrini, S.; Pfeffer, U. The biology of uveal melanoma. Cancer Metastasis Rev. 2017, 36, 109–140. [Google Scholar] [CrossRef]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef]
- Brait, M.; Sidransky, D. Cancer epigenetics: Above and beyond. Toxicol. Mech. Methods 2011, 21, 275–288. [Google Scholar] [CrossRef]
- Meseure, D.; Drak Alsibai, K.; Nicolas, A.; Bieche, I.; Morillon, A. Long Noncoding RNAs as New Architects in Cancer Epigenetics, Prognostic Biomarkers, and Potential Therapeutic Targets. BioMed Res. Int. 2015, 2015, 320214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 2013, 12, 847–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragusa, M.; Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Battaglia, R.; Barbagallo, D.; Di Pietro, C.; Purrello, M. Molecular Crosstalking among Noncoding RNAs: A New Network Layer of Genome Regulation in Cancer. Int. J. Genom. 2017, 2017, 4723193. [Google Scholar] [CrossRef]
- Miao, H.; Lu, J.; Guo, Y.; Qiu, H.; Zhang, Y.; Yao, X.; Li, X.; Lu, Y. LncRNA TP73-AS1 enhances the malignant properties of pancreatic ductal adenocarcinoma by increasing MMP14 expression through miRNA-200a sponging. J. Cell. Mol. Med. 2021, 25, 3654–3664. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.M.; Morais, C.M.; Rebelo, O.; Tao, H.; Barbosa, M.; Pedroso de Lima, M.C.; Jurado, A.S. Downregulation of long non-protein coding RNA MVIH impairs glioblastoma cell proliferation and invasion through an miR-302a-dependent mechanism. Hum. Mol. Genet. 2021, 30, 46–64. [Google Scholar] [CrossRef]
- Brex, D.; Barbagallo, C.; Mirabella, F.; Caponnetto, A.; Battaglia, R.; Barbagallo, D.; Caltabiano, R.; Broggi, G.; Memeo, L.; Di Pietro, C.; et al. LINC00483 Has a Potential Tumor-Suppressor Role in Colorectal Cancer Through Multiple Molecular Axes. Front. Oncol. 2020, 10, 614455. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Duan, Y.; Sang, Y.; Li, Y.; Zhang, H.; Liang, Y.; Liu, Y.; Zhang, N.; Yang, Q. LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J. Cell. Physiol. 2019, 234, 9105–9117. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhao, N.; Zha, G.; Wang, H.; Tong, Q.; Xin, S. LncRNA HOXA11-AS Exerts Oncogenic Functions by Repressing p21 and miR-124 in Uveal Melanoma. DNA Cell. Biol. 2017, 36, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, C.; Caltabiano, R.; Broggi, G.; Russo, A.; Puzzo, L.; Avitabile, T.; Longo, A.; Reibaldi, M.; Barbagallo, D.; Di Pietro, C.; et al. LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers 2020, 12, 3867. [Google Scholar] [CrossRef]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017, 32, 204–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stahler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Habuka, M.; Fagerberg, L.; Hallstrom, B.M.; Ponten, F.; Yamamoto, T.; Uhlen, M. The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling. PLoS ONE 2015, 10, e0145301. [Google Scholar] [CrossRef]
- Naranbhai, V.; Fletcher, H.A.; Tanner, R.; O’Shea, M.K.; McShane, H.; Fairfax, B.P.; Knight, J.C.; Hill, A.V. Distinct Transcriptional and Anti-Mycobacterial Profiles of Peripheral Blood Monocytes Dependent on the Ratio of Monocytes: Lymphocytes. EBioMedicine 2015, 2, 1619–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis, I.; Maniou, S.; Skoufos, G.; et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 2018, 46, D239–D245. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018, 46, D296–D302. [Google Scholar] [CrossRef]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Reczko, M.; Maragkakis, M.; Dalamagas, T.M.; Hatzigeorgiou, A.G. DIANA-LncBase: Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 2013, 41, D239–D245. [Google Scholar] [CrossRef]
- Tong, Z.; Cui, Q.; Wang, J.; Zhou, Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019, 47, D253–D258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, E.P.; Moore, J.E.; Purcaro, M.J.; Pratt, H.E.; Epstein, C.B.; Shoresh, N.; Adrian, J.; Kawli, T.; Davis, C.A.; Dobin, A.; et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 2020, 583, 699–710. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [Green Version]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Mejias, A.; Tay, Y. Competing endogenous RNA networks: Tying the essential knots for cancer biology and therapeutics. J. Hematol. Oncol. 2015, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Yu, S.; Xiong, J.; Long, J.; Zheng, Y.; Sang, X. CeRNA regulatory network-based analysis to study the roles of noncoding RNAs in the pathogenesis of intrahepatic cholangiocellular carcinoma. Aging 2020, 12, 1047–1086. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Chen, X.; Mo, S.; Li, J.; Huang, Z.; Huang, S.; Xu, J.; He, B.; Zou, Y.; Chen, J.; et al. Meta-signature LncRNAs serve as novel biomarkers for colorectal cancer: Integrated bioinformatics analysis, experimental validation and diagnostic evaluation. Sci. Rep. 2017, 7, 46572. [Google Scholar] [CrossRef]
- Yang, M.; Xiong, X.; Chen, L.; Yang, L.; Li, X. Identification and validation long non-coding RNAs of oral squamous cell carcinoma by bioinformatics method. Oncotarget 2017, 8, 107469–107476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Xu, Q.; Liu, F.; Ye, X.; Wang, J.; Meng, X. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas. J. Thorac. Oncol. 2015, 10, 645–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falzone, L.; Romano, G.L.; Salemi, R.; Bucolo, C.; Tomasello, B.; Lupo, G.; Anfuso, C.D.; Spandidos, D.A.; Libra, M.; Candido, S. Prognostic significance of deregulated microRNAs in uveal melanomas. Mol. Med. Rep. 2019, 19, 2599–2610. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Cheng, Y.; Li, W.; Li, Z.; Wu, P.; Qiu, S.; Zeng, B.; Huang, B. A novel lncRNA-miRNA-mRNA competitive endogenous RNA network for uveal melanoma prognosis constructed by weighted gene co-expression network analysis. Life Sci. 2020, 260, 118409. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo, D.; Biondi, A.; Cappellani, A.; et al. LncRNA UCA1, upregulated in CRC Biopsies and Downregulated in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. Mol. Ther. Nucleic Acids 2018, 12, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.; Hu, Z.; Zhou, Z.; Zhang, H. Linc00518 Contributes to Multidrug Resistance Through Regulating the MiR-199a/MRP1 Axis in Breast Cancer. Cell. Physiol. Biochem. 2018, 48, 16–28. [Google Scholar] [CrossRef]
- Rothem, L.; Stark, M.; Assaraf, Y.G. Impaired CREB-1 phosphorylation in antifolate-resistant cell lines with down-regulation of the reduced folate carrier gene. Mol. Pharmacol. 2004, 66, 1536–1543. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, D.; Casadio, A.; Karl, K.A.; Serodio, P.; Kandel, E.R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 1998, 95, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.F.; Mott, S.; Rosmarin, A.G. The Ets transcription factor GABP is required for cell-cycle progression. Nat. Cell Biol. 2007, 9, 339–346. [Google Scholar] [CrossRef]
- Yu, S.; Cui, K.; Jothi, R.; Zhao, D.M.; Jing, X.; Zhao, K.; Xue, H.H. GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood 2011, 117, 2166–2178. [Google Scholar] [CrossRef]
- Patton, J.; Block, S.; Coombs, C.; Martin, M.E. Identification of functional elements in the murine Gabp α/ATP synthase coupling factor 6 bi-directional promoter. Gene 2006, 369, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Berger, I.; Shaul, Y. The human junD gene is positively and selectively autoregulated. DNA Cell Biol. 1994, 13, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Ugai, H.; Kanazawa, I.; Sun, K.; Yokoyama, K.K. Independent repression of a GC-rich housekeeping gene by Sp1 and MAZ involves the same cis-elements. J. Biol. Chem. 2001, 276, 19897–19904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, M.H.; Li, N.; Lao, Q.; Gottschalk, R.A.; Hager, G.L.; Fraser, I.D. Switching of the relative dominance between feedback mechanisms in lipopolysaccharide-induced NF-kappaB signaling. Sci. Signal. 2014, 7, ra6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, L.A.; Lee, T.I.; Cole, M.F.; Johnstone, S.E.; Levine, S.S.; Zucker, J.P.; Guenther, M.G.; Kumar, R.M.; Murray, H.L.; Jenner, R.G.; et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Tomioka, M.; Nishimoto, M.; Miyagi, S.; Katayanagi, T.; Fukui, N.; Niwa, H.; Muramatsu, M.; Okuda, A. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res. 2002, 30, 3202–3213. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ray-Gallet, D.; Zhang, P.; Hetherington, C.J.; Gonzalez, D.A.; Zhang, D.E.; Moreau-Gachelin, F.; Tenen, D.G. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 1995, 11, 1549–1560. [Google Scholar]
- Okuno, Y.; Huang, G.; Rosenbauer, F.; Evans, E.K.; Radomska, H.S.; Iwasaki, H.; Akashi, K.; Moreau-Gachelin, F.; Li, Y.; Zhang, P.; et al. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol. Cell. Biol. 2005, 25, 2832–2845. [Google Scholar] [CrossRef] [Green Version]
- Breig, O.; Theoleyre, O.; Douablin, A.; Baklouti, F. Subtle distinct regulations of late erythroid molecular events by PI3K/AKT-mediated activation of Spi-1/PU.1 oncogene autoregulation loop. Oncogene 2010, 29, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Tsai, E.M.; Wang, Y.C.; Lee, T.T.; Tsai, C.F.; Chen, H.S.; Lai, F.J.; Yokoyama, K.K.; Hsieh, T.H.; Wu, R.M.; Lee, J.N. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells. PLoS ONE 2015, 10, e0143852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, P.; Lavorgna, A.; Sehgal, M.; Gao, L.; Ginwala, R.; Sagar, D.; Harhaj, E.W.; Khan, Z.K. Myocyte enhancer factor (MEF)-2 plays essential roles in T-cell transformation associated with HTLV-1 infection by stabilizing complex between Tax and CREB. Retrovirology 2015, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Morrissy, A.S.; Griffith, M.; Marra, M.A. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 2011, 21, 1203–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, S.; Tomaru, Y.; Kasukawa, T.; Waki, K.; Nakanishi, M.; Nakamura, M.; Nishida, H.; Yap, C.C.; Suzuki, M.; Kawai, J.; et al. Antisense transcription in the mammalian transcriptome. Science 2005, 309, 1564–1566. [Google Scholar] [CrossRef]
- Chen, J.; Sun, M.; Hurst, L.D.; Carmichael, G.G.; Rowley, J.D. Genome-wide analysis of coordinate expression and evolution of human cis-encoded sense-antisense transcripts. Trends Genet. 2005, 21, 326–329. [Google Scholar] [CrossRef]
- Wenric, S.; ElGuendi, S.; Caberg, J.H.; Bezzaou, W.; Fasquelle, C.; Charloteaux, B.; Karim, L.; Hennuy, B.; Freres, P.; Collignon, J.; et al. Transcriptome-wide analysis of natural antisense transcripts shows their potential role in breast cancer. Sci. Rep. 2017, 7, 17452. [Google Scholar] [CrossRef] [Green Version]
- Grigoriadis, A.; Oliver, G.R.; Tanney, A.; Kendrick, H.; Smalley, M.J.; Jat, P.; Neville, A.M. Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues. BMC Genom. 2009, 10, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.Y.; He, L.; Khaitovich, P. Deep sequencing reveals a novel class of bidirectional promoters associated with neuronal genes. BMC Genom. 2014, 15, 457. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Fiskin, E.; Gutschner, T.; Polycarpou-Schwarz, M.; Gross, M.; Neugebauer, J.; Gandhi, M.; Caudron-Herger, M.; Benes, V.; Diederichs, S. A cautionary tale of sense-antisense gene pairs: Independent regulation despite inverse correlation of expression. Nucleic Acids Res. 2017, 45, 12496–12508. [Google Scholar] [CrossRef] [PubMed]
- Faghihi, M.A.; Zhang, M.; Huang, J.; Modarresi, F.; Van der Brug, M.P.; Nalls, M.A.; Cookson, M.R.; St-Laurent, G., 3rd; Wahlestedt, C. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 2010, 11, R56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltran, M.; Puig, I.; Pena, C.; Garcia, J.M.; Alvarez, A.B.; Pena, R.; Bonilla, F.; de Herreros, A.G. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008, 22, 756–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNA | Pearson miRNA–mRNA | mRNA | TarB | mirTar | lncRNA | Pearson miRNA–lncRNA | miRc | lncB-V | lncB-P | En | Pearson lncRNA–mRNA |
---|---|---|---|---|---|---|---|---|---|---|---|
hsa-miR-199a-5p | −0.65 | CDCA7L | 1 | 0 | LINC00518 | −0.66 | 1 | 0 | 0 | 0 | 0.65 |
hsa-miR-199a-5p | −0.65 | CDCA7L | 1 | 0 | SNHG7 | −0.69 | 1 | 0 | 0 | 0 | 0.73 |
hsa-miR-195-5p | −0.60 | SDC3 | 1 | 0 | LINC01128 | −0.67 | 0 | 0 | 0 | 1 | 0.72 |
hsa-miR-199a-5p | −0.66 | RPL15 | 1 | 0 | LINC00518 | −0.66 | 1 | 0 | 0 | 0 | 0.64 |
hsa-miR-199a-5p | −0.66 | RPL15 | 1 | 0 | SNHG7 | −0.69 | 1 | 0 | 0 | 0 | 0.80 |
hsa-miR-199a-5p | −0.66 | RPL15 | 1 | 0 | WDFY3-AS2 | −0.63 | 1 | 0 | 0 | 0 | 0.62 |
hsa-miR-199a-5p | −0.63 | ZNF415 | 0 | 1 | LINC00518 | −0.66 | 1 | 0 | 0 | 0 | 0.72 |
hsa-miR-195-5p | −0.66 | TPRG1L | 1 | 0 | LINC01128 | −0.66 | 0 | 0 | 0 | 1 | 0.82 |
hsa-miR-508-3p | −0.61 | GPR176 | 0 | 1 | HCP5 | −0.70 | 1 | 0 | 0 | 0 | 0.63 |
hsa-miR-195-5p | –0.65 | BSDC1 | 1 | 0 | LINC01128 | –0.67 | 0 | 0 | 0 | 1 | 0.61 |
hsa-miR-195-5p | –0.65 | CTNNBIP1 | 1 | 0 | LINC01128 | –0.67 | 0 | 0 | 0 | 1 | 0.72 |
TFs | mRNAs | miRNAs | lncRNAs | Role in Cancer |
---|---|---|---|---|
CDC73 | ATF2, BACH1, CREB1, ELF1, MEF2A | / | / | Oncogene (29221126)/tumor-suppressor (24145611) |
COG6 | BACH1, CREB1, ELF1, GABPA | / | / | / |
CREB1 | CREB1 (15340044, 9790528), MEF2A (26606046, 25809782) | / | SEPT7P2, SUZ12P1, ZNF252P, ZNF37BP | Oncogene (17786359, 28498439, 27801665) |
EPC2 | ATF1, BACH1, CREB1, ELF1, MEF2A, SMAD4 | / | / | Oncogene (24166297) |
GABPA | GABPA (17277770, 21139080, 16309857) | / | LOC407835(-), CCT6P1, LOC100190986, SUZ12P1, ZNF37BP | Tumor-suppressor (31802036, 28549418) |
JUND | JUND (8172655) | / | FAM35BP(-), FAM35DP(-) | Oncogene (30763715, 27358408)/tumor-suppressor (18454173) |
MAZ | MAZ (11259406) | / | BDNF-AS(-), CCT6P1(-), SBDSP1(-), SEPT7P2(-) | Oncogene (31488180, 29414775) |
MORC3 | BACH1, CREB1, ELF1, GABPA | / | / | / |
NARFL | ATF2(-), BACH1(-) | / | / | / |
PIKFYVE | ATF2, CREB1, MEF2A, ZFX | / | / | Oncogene (17909029, 24840251, 23154468) |
RELA | RELA (24425788) | / | SEPT7P2(-), SNHG10(-), ZNF37BP(-) | Oncogene (17622249, 12615723)/tumor-suppressor (11747334) |
SF3B1 | ATF2, BACH1, CREB1, ZNF143 | / | / | / |
SOX2 | SOX2 (16153702, 12136102) | hsa-miR-124-3p, hsa-miR-183-5p, hsa-miR-96-5p | / | Oncogene (31412296, 31748974, 30518951) |
SP3 | ATF2, CLOCK, CREB1, MEF2A, YY1 | / | / | Oncogene (20810260, 26967243, 26352013) |
SPI1 | SPI1 (7478579, 15767686, 20190819) | hsa-miR-146b-3p, hsa-miR-146b-5p, hsa-miR-150-5p | LOC606724, NCF1B, NCF1C | Oncogene (28415748) |
TFAP2A | / | hsa-miR-145-3p(-), hsa-miR-199a-5p(-), hsa-miR-4709-3p(-), hsa-miR-708-5p(-), hsa-miR-887-3p(-), hsa-miR-937-3p(-), hsa-miR-181a-5p | / | Oncogene (31772149, 30824562, 28412966)/tumor-suppressor (30824562) |
TRAPPC8 | ATF1, ATF2, CREB1, MEF2A, YY1 | / | / | / |
USF2 | USF2 | / | SBDSP1(-), SEPT7P2(-) | Oncogene (30244169)/tumor-suppressor (16186802) |
XPO1 | ATF2, BACH1, CEBPZ, CREB1 | / | / | Oncogene (32487143, 30976603, 24431073) |
ZBTB45 | CREB1(-), MEF2A(-) | / | / | |
ZFR | ATF2, BACH1, CLOCK, CREB1, ELF1, YY1 | / | / | Oncogene (31010678) |
ZNF143 | ZNF143 | / | LOC407835(-), SEPT7P2, SUZ12P1, ZNF37BP | Oncogene (27449034, 20860770, 32312832) |
ZNF791 | ATF2, BACH1, CREB1, SP4, YY1 | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbagallo, C.; Di Maria, A.; Alecci, A.; Barbagallo, D.; Alaimo, S.; Colarossi, L.; Ferro, A.; Di Pietro, C.; Purrello, M.; Pulvirenti, A.; et al. VECTOR: An Integrated Correlation Network Database for the Identification of CeRNA Axes in Uveal Melanoma. Genes 2021, 12, 1004. https://doi.org/10.3390/genes12071004
Barbagallo C, Di Maria A, Alecci A, Barbagallo D, Alaimo S, Colarossi L, Ferro A, Di Pietro C, Purrello M, Pulvirenti A, et al. VECTOR: An Integrated Correlation Network Database for the Identification of CeRNA Axes in Uveal Melanoma. Genes. 2021; 12(7):1004. https://doi.org/10.3390/genes12071004
Chicago/Turabian StyleBarbagallo, Cristina, Antonio Di Maria, Adriana Alecci, Davide Barbagallo, Salvatore Alaimo, Lorenzo Colarossi, Alfredo Ferro, Cinzia Di Pietro, Michele Purrello, Alfredo Pulvirenti, and et al. 2021. "VECTOR: An Integrated Correlation Network Database for the Identification of CeRNA Axes in Uveal Melanoma" Genes 12, no. 7: 1004. https://doi.org/10.3390/genes12071004
APA StyleBarbagallo, C., Di Maria, A., Alecci, A., Barbagallo, D., Alaimo, S., Colarossi, L., Ferro, A., Di Pietro, C., Purrello, M., Pulvirenti, A., & Ragusa, M. (2021). VECTOR: An Integrated Correlation Network Database for the Identification of CeRNA Axes in Uveal Melanoma. Genes, 12(7), 1004. https://doi.org/10.3390/genes12071004