Exposure to Fine Particulate Matter Air Pollution Alters mRNA and miRNA Expression in Bone Marrow-Derived Endothelial Progenitor Cells from Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice, Exposures, and RNA Extraction
2.2. Next-Generation mRNA Sequencing
2.2.1. Library Preparation
2.2.2. Sequencing
2.2.3. Data Analysis
2.3. Next-Generation miRNA Sequencing
2.3.1. Library Preparation
2.3.2. Sequencing
2.3.3. Data Analysis
2.4. In Silico INGENUITY Network Analysis
2.5. qRT-PCR
3. Results
3.1. mRNA Analysis
3.2. miRNA Analysis
3.3. Biological Function Analysis
3.4. qRT-PCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Institutional Animal Care and Use Committee
References
- Chen, H.; Goldberg, M.S.; Villeneuve, P.J. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev. Environ. Health 2008, 23, 243–297. [Google Scholar]
- Bhatnagar, A. Environmental cardiology: Studying mechanistic links between pollution and heart disease. Circ. Res. 2006, 99, 692–705. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., 3rd; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysio-logical pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Künzli, N.; Jerrett, M.; Mack, W.J.; Beckerman, B.; LaBree, L.; Gilliland, F.; Thomas, D.; Peters, J.; Hodis, H.N. Ambient Air Pollution and Atherosclerosis in Los Angeles. Environ. Health Perspect. 2005, 113, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., 3rd; Muhlestein, J.B.; May, H.T.; Renlund, D.G.; Anderson, J.L.; Horne, B.D. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 2006, 114, 2443–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D. Spatial association be-tween ambient fine particulate matter and incident hypertension. Circulation 2014, 129, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.M.; Adar, S.D.; Szpiro, A.A.; Jorgensen, N.W.; Van Hee, V.C.; Barr, R.G. Vascular responses to long- and short-term exposure to fine particulate matter: MESA Air (Multi-Ethnic Study of Athero-sclerosis and Air Pollution). J. Am. Coll. Cardiol. 2012, 60, 2158–2166. [Google Scholar] [CrossRef] [Green Version]
- Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Losordo, D.; Dimmeler, S. Critical Reevaluation of Endothelial Progenitor Cell Phenotypes for Therapeutic and Diagnostic Use. Circ. Res. 2012, 110, 624–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, M.J.; Karres, N.; Eyman, D.; Edelberg, J. Endothelial Precursor Cells. Stem Cell Rev. Rep. 2007, 3, 218–225. [Google Scholar] [CrossRef]
- Roberts, N.; Jahangiri, M.; Xu, Q. Progenitor cells in vascular disease. J. Cell. Mol. Med. 2005, 9, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Fadini, G.P.; De Kreutzenberg, S.V.; Coracina, A.; Baesso, I.; Agostini, C.; Tiengo, A.; Avogaro, A. Cir-culating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur. Hear. J. 2006, 27, 2247–2255. [Google Scholar] [CrossRef]
- Hill, J.M.; Zalos, G.; Halcox, J.P.; Schenke, W.H.; Waclawiw, M.A.; Quyyumi, A.A. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 2003, 348, 593–600. [Google Scholar] [CrossRef]
- Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001, 89, E1–E7. [Google Scholar] [CrossRef] [Green Version]
- Werner, N.; Kosiol, S.; Schiegl, T.; Ahlers, P.; Walenta, K.; Link, A.; Bohm, M.C.; Nickenig, G. Circulat-ing Endothelial Progenitor Cells and Cardiovascular Outcomes. N. Engl. J. Med. 2005, 353, 999–1007. [Google Scholar] [CrossRef]
- Haberzettl, P.; Lee, J.; Duggineni, D.; McCracken, J.; Bolanowski, D.; O’Toole, T.E. Exposure to ambient air fine particulate matter prevents VEGF-induced mobilization of endothelial progenitor cells from the bone marrow. Environ. Health Perspect. 2012, 120, 848–856. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, T.E.; Hellmann, J.; Wheat, L.; Haberzettl, P.; Lee, J.; Conklin, D.J.; Bhatnagar, A.; Pope, I.C.A. Episodic Exposure to Fine Particulate Air Pollution Decreases Circulating Levels of Endothelial Progenitor Cells. Circ. Res. 2010, 107, 200–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haberzettl, P.; Conklin, D.J.; Abplanalp, W.T.; Bhatnagar, A.; O’Toole, T.E. Inhalation of Fine Particu-late Matter Impairs Endothelial Progenitor Cell Function via Pulmonary Oxidative Stress. Arter. Thromb. Vasc. Biol. 2018, 38, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Heiss, C.; Amabile, N.; Lee, A.C.; Real, W.M.; Schick, S.F.; Lao, D.; Wong, M.L.; Jahn, S.; Angeli, F.S.; Minasi, P.; et al. Brief Secondhand Smoke Exposure Depresses Endothelial Progenitor Cells Activity and Endothelial Function: Sustained Vascular Injury and Blunted Nitric Oxide Production. J. Am. Coll. Cardiol. 2008, 51, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Jantzen, K.; Jensen, A.; Kermanizadeh, A.; Elholm, G.; Sigsgaard, T.; Møller, P.; Roursgaard, M.; Loft, S. Inhalation of House Dust and Ozone Alters Systemic Levels of Endothelial Progenitor Cells, Oxidative Stress, and Inflammation in Elderly Subjects. Toxicol. Sci. 2018, 163, 353–363. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, L.-P.; Dong, X.-H.; Cai, J.; Jiang, G.-J.; Zhang, C.; Xie, H.-H. Trace Amounts of Cop-per in Drinking Water Aggravate Cerebral Ischemic Injury via Impairing Endothelial Progenitor Cells in Mice. CNS Neurosci. Ther. 2015, 21, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Wheat, L.A.; Haberzettl, P.; Hellmann, J.; Baba, S.P.; Bertke, M.; Lee, J.; McCracken, J.; O’Toole, T.E.; Bhatnagar, A.; Conklin, D.J. Acrolein Inhalation Prevents Vascular Endothelial Growth Factor–Induced Mobilization of Flk-1 + /Sca-1 + Cells in Mice. Arter. Thromb. Vasc. Biol. 2011, 31, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Friedlander, M.; Mackowiak, S.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2011, 40, 37–52. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chen, H.; Yao, X.; Di, X.; Zhang, Y.; Zhu, H.; Liu, S.; Chen, T.; Yu, D.; Sun, X. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squa-mous cell carcinoma. Cancer Lett. 2020, 483, 114–126. [Google Scholar] [CrossRef]
- Chou, C.H.; Chang, N.W.; Shrestha, S.; Hsu, S.D.; Lin, Y.L.; Lee, W.H. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016, 44, D239–D247. [Google Scholar] [CrossRef]
- Mitra, A.K.; Zillhardt, M.; Hua, Y.; Tiwari, P.; Murmann, A.E.; Peter, M.E.; Lengyel, E. MicroRNAs Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts in Ovarian Cancer. Cancer Discov. 2012, 2, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Wiese, C.B.; Zhong, J.; Xu, Z.Q.; Zhang, Y.; Solano, M.A.R.; Zhu, W. Dual inhibition of endothelial miR-92a-3p and miR-489–3p reduces renal injury-associated atherosclerosis. Atherosclerosis 2019, 282, 121–131. [Google Scholar] [CrossRef]
- Haberzettl, P.; O’Toole, T.E.; Bhatnagar, A.; Conklin, D.J. Exposure to Fine Particulate Air Pollution Caus-es Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress. Environ. Health Perspect. 2016, 124, 1830–1839. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Wang, A.; Jin, X.; Natanzon, A.; Duquaine, D.; Brook, R.D.; Aguinaldo, J.-G.S.; Fayad, Z.A.; Fuster, V.; Lippmann, M.; et al. Long-term Air Pollution Exposure and Acceleration of Atherosclerosis and Vascular Inflammation in an Animal Model. JAMA 2005, 294, 3003–3010. [Google Scholar] [CrossRef] [Green Version]
- Suwa, T.; Hogg, J.C.; Quinlan, K.B.; Ohgami, A.; Vincent, R.; van Eeden, S.F. Particulate air pollution induces progression of atherosclerosis. J. Am. Coll. Cardiol. 2002, 39, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Liberda, E.N.; Cuevas, A.K.; Gillespie, P.A.; Grunig, G.; Qu, Q.; Chen, L.C. Exposure to inhaled nickel nanoparticles causes a reduction in number and function of bone marrow endothelial progenitor cells. Inhal. Toxicol. 2010, 22 (Suppl. 2), 95–99. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Jia, F.; He, J.; Xie, X.; Li, Z.; Fu, M. Ambient Fine Particulate Matter Suppresses In Vivo Pro-lif-eration of Bone Marrow Stem Cells through Reactive Oxygen Species Formation. PLoS ONE 2015, 10, e0127309. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Guo, Z.-Q.; Zhang, R.-X.; Zhao, R.-W.; Dong, W.-Y.; Wang, H.; Deng, C.-R.; Zhuang, G.-S. Effect of PM2.5 on MicroRNA Expression and Function in Nasal Mucosa of Rats with Allergic Rhinitis. Am. J. Rhinol. Allergy 2020, 34, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Rodosthenous, R.S.; Coull, B.A.; Lu, Q.; Vokonas, P.S.; Schwartz, J.D.; Baccarelli, A.A. Ambient particulate matter and microRNAs in extracellular vesicles: A pilot study of older individuals. Part. Fibre Toxicol. 2016, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Chen, Y.; Zhang, C.; Gong, W.; Zhang, X.; Nie, S. Polycyclic Aromatic Hydrocarbons from Particulate Matter 2.5 (PM2.5) in Polluted Air Changes miRNA Profile Related to Cardiovascular Disease. Med. Sci. Monit. 2018, 24, 5925–5934. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, L.; Wu, T.; Xiong, L.; Zhang, T.; Kong, L. Identification of mRNA-miRNA crosstalk in human endothelial cells after exposure of PM2.5 through integrative transcriptome analysis. Ecotoxicol. Environ. Saf. 2019, 169, 863–873. [Google Scholar] [CrossRef]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Chi, G.C.; Liu, Y.; MacDonald, J.W.; Barr, R.G.; Donohue, K.M.; Hensley, M.D. Long-term outdoor air pollution and DNA methylation in circulating monocytes: Results from the Multi-Ethnic Study of Ather-osclerosis (MESA). Environ. Health 2016, 15, 119. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Jin, Y.; Liu, X.; Zhu, Z.; Zhang, Y.; Wang, T.; Xu, Y. Characteristics of DNA methylation changes induced by traffic-related air pollution. Mutat. Res. Toxicol. Environ. Mutagen. 2016, 796, 46–53. [Google Scholar] [CrossRef]
- Wei, H.; Liang, F.; Meng, G.; Nie, Z.; Zhou, R.; Cheng, W.; Wu, X.; Feng, Y.; Wang, Y. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells. Sci. Rep. 2016, 6, 33402. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, J.; Rui, X.; Zhou, L.; Mo, X. PM2.5 exposure exacerbates allergic rhinitis in mice by increasing DNA methylation in the IFN-gamma gene promoter in CD4+T cells via the ERK-DNMT pathway. Toxicol. Lett. 2019, 301, 98–107. [Google Scholar] [CrossRef]
- Wu, Q.; Ni, X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr. Drug. Targets. 2015, 16, 13–19. [Google Scholar] [CrossRef]
- Ghio, A.J.; Carraway, M.S.; Madden, M.C. Composition of Air Pollution Particles and Oxidative Stress in Cells, Tissues, and Living Systems. J. Toxicol. Environ. Health Part B 2012, 15, 1–21. [Google Scholar] [CrossRef]
- Zong, D.; Liu, X.; Li, J.; Ouyang, R.; Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019, 12, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Garza, O.; Guo, L.; Byun, H.M.; Carrieri, M.; Bartolucci, G.B.; Barron-Vivanco, B.S. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol. Appl. Pharmacol. 2018, 339, 65–72. [Google Scholar] [CrossRef]
- Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure-Associated DNA Meth-ylation in Human Populations. Annu. Rev. Public Health 2018, 39, 309–333. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Jin, Y.; Liu, X.; Zhu, Z.; Zhang, Y.; Wang, T.; Xu, Y. H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution. Environ. Toxicol. Pharmacol. 2016, 42, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, J.; Chen, Y.; Guo, X.; Zheng, Y.; Wang, Q.; Chen, Y.; Ni, Y.; Zhu, Y.; Joyce, B.T.; et al. Characterization of genome-wide H3K27ac profiles reveals a distinct PM2.5-associated histone modification signature. Environ. Health 2015, 14, 65. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Plett, P.A.; Ingram, D.A.; Rajashekhar, G.; Orschell, C.M.; Yoder, M.; March, K.L.; Clauss, M. Endothelial-monocyte–activating polypeptide II induces migration of endothelial progenitor cells via the chemokine receptor CXCR3. Exp. Hematol. 2006, 34, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.-C.; Ng, K.T.-P.; Shao, Y.; Geng, W.; Xiao, J.-W.; Liu, H.; Li, C.-X.; Liu, X.-B.; Ma, Y.-Y.; Yeung, W.-H.; et al. Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth. J. Hepatol. 2014, 60, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Siavashi, V.; Nassiri, S.M.; Rahbarghazi, R.; Mohseni, Z.; Sharifi, A.M. Distinct Tie2 tyrosine phosphorylation sites dictate phenotypic switching in endothelial progenitor cells. J. Cell. Physiol. 2019, 234, 6209–6219. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ingram, D.A.; Murphy, M.P.; Saadatzadeh, M.R.; Mead, L.E.; Prater, D.N. Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1675–H1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampfrath, T.; Maiseyeu, A.; Ying, Z.; Shah, Z.; Deiuliis, J.A.; Xu, X. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 2011, 108, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Eckl, P.M.; Bresgen, N. Genotoxicity of lipid oxidation compounds. Free. Radic. Biol. Med. 2017, 111, 244–252. [Google Scholar] [CrossRef]
- O’Toole, T.E.; Abplanalp, W.; Li, X.; Cooper, N.; Conklin, D.J.; Haberzettl, P. Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a. Toxicol. Sci. 2014, 140, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Pizzimenti, S.; Ferracin, M.; Sabbioni, S.; Toaldo, C.; Pettazzoni, P.; Dianzani, M.U. MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic. Biol. Med. 2009, 46, 282–288. [Google Scholar] [CrossRef]
- Abplanalp, W.; Haberzettl, P.; Bhatnagar, A.; Conklin, D.J.; O’Toole, T.E. Carnosine Supplementation Mitigates the Deleterious Effects of Particulate Matter Exposure in Mice. J. Am. Heart Assoc. 2019, 8, e013041. [Google Scholar] [CrossRef]
- Brody, J.S. Transcriptome alterations induced by cigarette smoke. Int. J. Cancer 2012, 131, 2754–2762. [Google Scholar] [CrossRef]
- Chappell, G.; Pogribny, I.P.; Guyton, K.Z.; Rusyn, I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutat. Res. Rev. Mutat. Res. 2016, 768, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Kopa, P.N.; Pawliczak, R. Effect of smoking on gene expression profile—Overall mechanism, impact on respiratory system function, and reference to electronic cigarettes. Toxicol. Mech. Methods 2018, 28, 397–409. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Mahanty, A.; Mitra, T.; Mohanty, S.; Naik, A.K.; Parija, S.C. Proteomic and tran-scriptomic changes in rat liver following oral feeding of formaldehyde. Chemosphere 2020, 245, 125599. [Google Scholar] [CrossRef]
- Wallace, D.R.; Taalab, Y.; Heinze, S.; Lovaković, B.T.; Pizent, A.; Renieri, E.; Tsatsakis, A.; Farooqi, A.A.; Javorac, D.; Andjelkovic, M.; et al. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020, 9, 901. [Google Scholar] [CrossRef] [Green Version]
Ensembl ID | Gene Symbol (Description) | Log2(FC) | q-Value |
---|---|---|---|
ENSMUSG00000090362 | Vmn2r79 (vomeronasal 2, receptor 79) | 5.8 | 3.5 × 10−3 |
ENSMUSG00000067855 | Speer3 (spermatogenesis associated glutamate (E)-rich protein 3) | 5.8 | 1.1 × 10−2 |
ENSMUSG00000062342 | Serpinb9e (serine (or cysteine) peptidase inhibitor, clade B, member 9e) | 4.0 | 3.6 × 10−2 |
ENSMUSG00000020950 | Foxg1 (forkhead box G1) | 3.2 | 3.8 × 10−3 |
ENSMUSG00000020911 | Krt19 (keratin 19) | 3.1 | 1.2 × 10−6 |
ENSMUSG00000051726 | Kcnf1 (potassium voltage-gated channel, subfamily F, member 1) | 3.0 | 1.9 × 10−2 |
ENSMUSG00000021403 | Serpinb9b (serine (or cysteine) peptidase inhibitor, clade B, member 9b) | 2.9 | 1.3 × 10−5 |
ENSMUSG00000079654 | Prrt4 (proline-rich transmembrane protein 4) | 2.8 | 6.7 × 10−3 |
ENSMUSG00000021301 | Hecw1 (HECT, C2, and WW domain-containing E3 ubiquitin protein ligase 1) | 2.8 | 4.1 × 10−2 |
ENSMUSG00000029370 | Rassf6 (Ras association (RalGDS/AF-6) domain family member 6) | 2.7 | 2.4 × 10−2 |
ENSMUSG00000035042 | Ccl5 (chemokine (C-C motif) ligand 5) | 2.5 | 4.8 × 10−5 |
ENSMUSG00000054855 | Rnd1 (Rho family GTPase 1) | 2.5 | 6.3 × 10−3 |
ENSMUSG00000026068 | Il18rap (interleukin 18 receptor accessory protein) | 2.3 | 1.9 × 10−2 |
ENSMUSG00000001864 | Aif1l (allograft inflammatory factor 1-like) | 2.1 | 1.0 × 10−2 |
ENSMUSG00000032735 | Ablim3 (actin binding LIM protein family, member 3) | 2.1 | 1.2 × 10−2 |
ENSMUSG00000020953 | Coch (cochlin) | 1.9 | 2.4 × 10−2 |
ENSMUSG00000037185 | Krt80 (keratin 80) | 1.9 | 2.8 × 10−2 |
ENSMUSG00000030468 | Siglecg (sialic acid binding Ig-like lectin G) | 1.9 | 3.6 × 10−2 |
ENSMUSG00000027313 | Chac1 (ChaC, cation transport regulator 1) | 1.7 | 1.4 × 10−2 |
ENSMUSG00000079852 | Klra4 (killer cell lectin-like receptor, subfamily A, member 4) | 1.7 | 3.4 × 10−2 |
Ensembl ID | Gene Symbol (Description) | Log2(FC) | q-Value |
---|---|---|---|
ENSMUSG00000030077 | Chl1 (cell adhesion molecule L1-like) | −6.2 | 2.4 × 10−2 |
ENSMUSG00000062760 | 1810041L15Rik (RIKEN cDNA 1810041L15 gene) | −6.2 | 3.1 × 10−2 |
ENSMUSG00000045515 | Pou3f3 (POU domain, class 3, transcription factor 3) | −6.0 | 2.1 × 10−2 |
ENSMUSG00000031636 | Pdlim3 (PDZ and LIM domain 3) | −5.8 | 4.9 × 10−2 |
ENSMUSG00000045008 | 9030612E09Rik (RIKEN cDNA 9030612E09 gene) | −5.7 | 4.6 × 10−2 |
ENSMUSG00000006386 | Tek (TEK receptor tyrosine kinase) | −5.3 | 1.8 × 10−2 |
ENSMUSG00000022803 | Popdc2 (popeye domain containing 2) | −5.2 | 4.5 × 10−2 |
ENSMUSG00000051242 | Pcdhb9 (protocadherin β 9) | −4.7 | 4.1 × 10−2 |
ENSMUSG00000050493 | Fam167b (family with sequence similarity 167, member B) | −3.6 | 2.0 × 10−2 |
ENSMUSG00000036502 | Tmem255a (transmembrane protein 255A) | −3.3 | 4.5 × 10−2 |
ENSMUSG00000066113 | Adamtsl1 (ADAMTS-like 1) | −2.7 | 2.7 × 10−2 |
ENSMUSG00000020566 | Atp6v1c2 (ATPase, H+ transporting, lysosomal V1 subunit C2) | −2.6 | 1.6 × 10−4 |
ENSMUSG00000038570 | Saxo2 (stabilizer of axonemal microtubules 2) | −2.5 | 1.7 × 10−2 |
ENSMUSG00000055254 | Ntrk2 (neurotrophic tyrosine kinase, receptor, type 2) | −2.3 | 5.0 × 10−2 |
ENSMUSG00000000739 | Sult5a1 (sulfotransferase family 5A, member 1) | −2.3 | 3.7 × 10−2 |
ENSMUSG00000022623 | Shank3 (SH3 and multiple ankyrin repeat domains 3) | −1.9 | 3.8 × 10−2 |
ENSMUSG00000022015 | Tnfsf11 (tumor necrosis factor (ligand) superfamily, member 11) | −1.9 | 3.2 × 10−2 |
ENSMUSG00000027408 | Cpxm1 (carboxypeptidase X 1 (M14 family)) | −1.7 | 2.4 × 10−2 |
ENSMUSG00000050232 | Cxcr3 (chemokine (C-X-C motif) receptor 3) | −1.3 | 3.7 × 10−2 |
ENSMUSG00000053414 | Hunk (hormonally upregulated Neu-associated kinase) | −1.2 | 1.8 × 10−2 |
Upregulated | Downregulated | ||||
---|---|---|---|---|---|
miRNA | FC (log2) | q Value | miRNA | FC (log2) | q Value |
mmu-miR-6937-5p | 3.2 | 1.8 × 10−4 | mmu-miR-1899 | −2.3 | 6.8 × 10−4 |
mmu-miR-6399 | 2.5 | 2.5 × 10−4 | mmu-miR-3106-5p | −1.7 | 1.6 × 10−4 |
mmu-miR-6539 | 2.1 | 1.9 × 10−3 | mmu-miR-486a-3p | −1.6 | 3.4 × 10−2 |
mmu-miR-344d-3p | 1.3 | 5.7 × 10−3 | mmu-miR-7649-3p | −1.6 | 3.6 × 10−2 |
mmu-miR-7043-3p | 1.2 | 5.8 × 10−6 | mmu-miR-3969 | −1.4 | 2.9 × 10−3 |
mmu-miR-23a-5p | 1.2 | 2.9 × 10−4 | mmu-miR-708-5p | −1.2 | 7.0 × 10−4 |
mmu-miR-27a-5p | 1.0 | 6.6 × 10−3 | mmu-miR-708-3p | −1.1 | 2.3 × 10−2 |
mmu-miR-7b-5p | 0.9 | 1.8 × 10−4 | mmu-miR-499-5p | −1.1 | 2.3 × 10−2 |
mmu-miR-365-2-5p | 0.9 | 1.9 × 10−3 | mmu-miR-214-3p | −1.0 | 8.2 × 10−5 |
mmu-miR-376b-3p | 0.9 | 2.6 × 10−3 | mmu-miR-5619-5p | −1.0 | 2.1 × 10−2 |
mmu-miR-3473a | 0.9 | 1.1 × 10−3 | mmu-miR-34b-5p | −0.9 | 9.9 × 10−6 |
mmu-miR-7a-5p | 0.8 | 1.2 × 10−10 | mmu-miR-3110-5p | −0.9 | 2.6 × 10−2 |
mmu-miR-342-5p | 0.8 | 1.8 × 10−4 | mmu-miR-450a-5p | −0.8 | 1.1 × 10−4 |
mmu-miR-7654-5p | 0.7 | 4.8 × 10−3 | mmu-miR-6239 | −0.8 | 4.7 × 10−5 |
mmu-miR-466h-5p | 0.7 | 3.0 × 10−4 | mmu-miR-450a-2-3p | −0.8 | 3.8 × 10−3 |
mmu-miR-92a-3p | 0.7 | 6.8 × 10−3 | mmu-miR-700-5p | −0.7 | 4.6 × 10−2 |
mmu-miR-200c-3p | 0.6 | 3.5 × 10−3 | mmu-miR-188-3p | −0.7 | 2.1 × 10−3 |
mmu-miR-466k | 0.6 | 1.0 × 10−4 | mmu-miR-511-3p | −0.7 | 4.3 × 10−3 |
mmu-miR-30d-3p | 0.6 | 1.9 × 10−6 | mmu-miR-322-3p | −0.6 | 2.8 × 10−3 |
mmu-miR-877-3p | 0.6 | 1.4 × 10−3 |
Category | p-Value | Number | Representative Genes |
---|---|---|---|
Cellular movement | 1.53 × 10−10–2.52 × 10−4 | 56 | Ccl5, Foxg1, Itga3, Krt19, Marcks, Tek, Tgfb2, Tnsf11 |
Tissue development | 4.43 × 10−10–2.33 × 10−4 | 66 | Ccl5, Dusp-10, Foxg1, Itga3, Krt19, Marcks, Myc, Ntrk2, Tnfsf11 |
Cardiovascular system development and function | 1.42 × 10−9–2.5 × 10−4 | 37 | Ccl5, Cxcr3, Itga3, Myc, Ntrk2, Rnd1, Tek, Tgfb2, Tnsf11 |
Cellular assembly and organization | 1.03 × 10−8–1.94 × 10−4 | 43 | Ccl5, Cxcr3, Itga3, Krt19, Myc, Ntrk2, Pdlim3, Rnd1, Tek, Tgfb2, Tnfsf11 |
Cellular function and maintenance | 1.03 × 10−8–1.94 × 10−4 | 39 | Ablim3, Ccl5, Cxcr3, Itga3, Myc, Ntrk2, Rnd1, Tek, Tgfb2, Tnfsf11 |
Cellular development | 1.44 × 10−7–1.99 × 10−4 | 52 | Ccl5, Chl1, Cxcr3, Dusp10, Foxg1, Itga3, Marcks, Myc, Ntrk2, Tek, Tgfb2, Tnfsf11 |
Cellular growth and proliferation | 1.44 × 10−7–2.04 × 10−4 | 61 | Ccl5, Chl1, Cxcr3, Dusp-10, Foxg1, Il18rap, Itga3, Marcks, Myc, Ntrk2, Tek, Tgfb2, Tnfsf11 |
Cell death and survival | 2.53 × 10−7–2.39 × 10−4 | 56 | Ccl5, Chl1, Cxcr3, Dusp-10, Foxg1, Itga3, Myc, Ntrk2, Pou3f3, Tek, Tgfb2, Tnfsf11 |
Connective tissue disorders | 3.02 × 10−7–1.99 × 10−4 | 43 | Adamtsl1, Ccl5, Cxcr3, Dusp-10, Ntrk2, Tgfb2, Tnfsf11 |
Cell-to-cell signaling and interaction | 3.38 × 10−7–2.47 × 10−4 | 31 | Ccl5, Cxcr3, Itga3, Ntrk2, Tek, Tgfb2, Tnfsf11 |
Cell cycle | 6.15 × 10−7–2.29 × 10−4 | 19 | Ccl5, Foxg1, Myc, Ntrk2, Tnfsf11 |
Tissue morphology | 8.46 × 10−7–1.89 × 10−4 | 53 | Ccl5, Cxcr3, Dusp-10, Itga3, Krt19, Myc, Ntrk2, Tek, Tgfb2, Tnfsf11 |
Cell morphology | 2.67 × 10−6–1.89 × 10−4 | 38 | Ablim3, Ccl5, Chl1, Cxcr3, Foxg1, Itga3, Myc, Ntrk2, Pou3f3, Tek, Tgfb2, Tnfsf11 |
Post-translational modification | 2.73 × 10−6–2.46 × 10−4 | 20 | Ccl5, Ntrk2, Tek, Tgfb2, Tnfsf11 |
Connective tissue development and function | 1.24 × 10−5–1.89 × 10−4 | 17 | Cxcr3, Myc, Tgfb2, Tnfsf11 |
DNA replication, recombination, and repair | 2.22 × 10−5–1.52 × 10−4 | 15 | Ccl5, Cxcr3, Myc, Ntrk2, Tgfb2, Tnfsf11 |
Hematopoiesis | 2.41 × 10−5–1.68 × 10−4 | 29 | Ccl5, Cxcr3, Dusp-10, Marcks, Myc, Tek, Tnfsf11 |
Amino acid metabolism | ≤9.78 × 10−5 | 3 | Myc |
Molecular transport | 9.78 × 10−5–2.29 × 10−4 | 15 | Ccl5, Cxcr3, Myc, Tnfsf11 |
Small molecule biochemistry | 9.78 × 10−5–2.29 × 10−4 | 6 | Myc, Tnfsf11 |
Energy production | ≤2.29 × 10−4 | 4 | Tnfsf11 |
Nucleic acid metabolism | ≤2.29 × 10−4 | 4 | Tnfsf11 |
Cell signaling | ≤2.46 × 10−4 | 7 | Ccl5 |
Category | p-Value | Number | Representative miRNA |
---|---|---|---|
Cellular movement | 1.18 × 10−6–4.59 × 10−2 | 16 | mir-7a-5p, mir-92a-3p |
Cell death and survival | 1.71 × 10−6–4.59 × 10−2 | 16 | mir-214-3p |
Cellular development | 3.45 × 10−5–4.15 × 10−2 | 21 | mir-27a-3p, mir-92a-3p |
Cellular growth and proliferation | 3.45 × 10−5–3.65 × 10−2 | 16 | mir-27a-3p, mir-92a-3p |
Cardiovascular system development and function | 1.95 × 10−4–3.9 × 10−2 | 14 | mir-27a-3p, mir-214-3p, mir-486-3p, mir-34a-5p |
Cell cycle | 3.61 × 10−4–4.48 × 10−2 | 6 | mir-27a-3p |
Cell morphology | 5.51 × 10−3–3.9 × 10−2 | 5 | mir-214-3p |
Cell-to-cell signaling and interaction | 1.37 × 10−2–2.46 × 10−2 | 5 | mir-34a-5p |
Cellular assembly and organization | 1.37 × 10−2–4.85 × 10−2 | 3 | mir-708-5p |
Cellular function and maintenance | 1.37 × 10−2–3.53 × 10−2 | 6 | mir-34a-5p |
DEG | FC-RNA-Seq | FC–qRT-PCR (SE) |
Cxcr3 | 0.406 | 0.687 (0.192) |
Marcks | 0.550 | 0.563 (0.128) |
Tek | 0.025 | 0.666 (0.517) |
Dock9 | 1.66 | 1.24 (0.330) |
Itga3 | 2.07 | 1.71 (0.313) |
DE miRNA | FC-RNA-Seq | FC–qRT-PCR (SE) |
mir-511-3p | 0.630 | 0.595 (0.113) |
mir-322-3p | 0.64 | 0.707 (0.059) |
mir-27a | 2.28 | 1.26 (0.134) |
mir-342-5p | 1.69 | 1.31 (0.340) |
mir-7a-5p | 1.79 | 1.57 (0.222) |
Representative Gene | Representative Reciprocal miRNA | ||||
---|---|---|---|---|---|
Gene | FC-RNA-seq | FC–qRT-PCR (SE) | miRNA | FC-RNA-Seq | FC-qRT-PCR (SE) |
Ccl5 | 5.75 | 3.08 (0.412) | mir-214-3p | 0.493 | 0.778 (0.226) |
Dusp-10 | 1.81 | 1.74 (0.26) | mir-450a-5p | 0.555 | 0.560 (0.241) |
Tgfb2 | 0.535 | 0.551 (0.029) | mir-92a-3p | 1.58 | 1.88 (0.15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Haberzettl, P.; Conklin, D.J.; Bhatnagar, A.; Rouchka, E.C.; Zhang, M.; O’Toole, T.E. Exposure to Fine Particulate Matter Air Pollution Alters mRNA and miRNA Expression in Bone Marrow-Derived Endothelial Progenitor Cells from Mice. Genes 2021, 12, 1058. https://doi.org/10.3390/genes12071058
Li X, Haberzettl P, Conklin DJ, Bhatnagar A, Rouchka EC, Zhang M, O’Toole TE. Exposure to Fine Particulate Matter Air Pollution Alters mRNA and miRNA Expression in Bone Marrow-Derived Endothelial Progenitor Cells from Mice. Genes. 2021; 12(7):1058. https://doi.org/10.3390/genes12071058
Chicago/Turabian StyleLi, Xiaohong, Petra Haberzettl, Daniel J. Conklin, Aruni Bhatnagar, Eric C. Rouchka, Mei Zhang, and Timothy E. O’Toole. 2021. "Exposure to Fine Particulate Matter Air Pollution Alters mRNA and miRNA Expression in Bone Marrow-Derived Endothelial Progenitor Cells from Mice" Genes 12, no. 7: 1058. https://doi.org/10.3390/genes12071058
APA StyleLi, X., Haberzettl, P., Conklin, D. J., Bhatnagar, A., Rouchka, E. C., Zhang, M., & O’Toole, T. E. (2021). Exposure to Fine Particulate Matter Air Pollution Alters mRNA and miRNA Expression in Bone Marrow-Derived Endothelial Progenitor Cells from Mice. Genes, 12(7), 1058. https://doi.org/10.3390/genes12071058