Polly Wants a Genome: The Lack of Genetic Testing for Pet Parrot Species
Abstract
:1. Introduction
2. Parrot Domestication
- 1.
- Domestication is defined as that condition wherein the breeding, care and feeding of animals are more or less controlled by humans and/or;
- 2.
- The adaptation to captivity via population genetic mechanisms in which natural selection is largely replaced by artificial selection.
3. Genomic Research
4. Selection Criteria Used in the Breeding of Parrots
5. Plumage Colour Variations
6. Parentage and Individual Identification Research
7. Sexing
8. Health and Behaviour Screening Tests
9. Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forshaw, J. Parrots of the World, 3rd ed.; Princeton University Press: Princeton, NJ, USA, 1989. [Google Scholar]
- Pires, S.F.; Olah, G.; Nandika, D.; Agustina DHeinsohn, R. What drives the illegal parrot trade? Applying a criminological model to market and seizure data in Indonesia. Biol. Conserv. 2021, 257, 109098. [Google Scholar] [CrossRef]
- Andersen, P.K. A bird in the house: An Anthropological perspective on companion parrots. Soc. Anim. 2003, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.-Y.; Ye, Y.-C.; Newman, C.; Buesching, C.D.; Macdonald, D.W.; Luo, Y.; Zhou, Z.-M. China’s online parrot trade: Generation length and body mass determine sales volume via price. Glob. Ecol. Conserv. 2020, 23, e01047. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, G.A.; Engebretson, M. Parrot breeding and keeping: The impact of capture and captivity. Policy paper: How the pet trade results in long-term harm to wild and captive birds. Anim. Soc. Inst. 2013. Available online: www.animalsandsociety.org (accessed on 15 January 2021).
- Ribeiro, J.; Reino, L.; Schindler, S.; Strubbe, D.; Vall-llosera, M.; Araújo, M.B.; Capinha, C.; Carrete, M.; Mazzoni, S.; Monteiro, M.; et al. Trends in legal and illegal trade of wild birds: A global assessment based on expert knowledge. Biodivers Conserv. 2019, 28, 3343–3369. [Google Scholar] [CrossRef]
- Poole, C.M.; Shepherd, C.R. Shades of grey: The legal trade in CITES-listed birds in Singapore, notably the globally threatened African grey parrot Psittacus Erithacus. Oryx 2017, 51, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Morrison, C.E.; Johnson, R.N.; Grueber, C.E.; Hogg, C.J. Genetic impacts of conservation management actions in a critically endangered parrot species. Conserv. Genet. 2021, 21, 869–877. [Google Scholar] [CrossRef]
- Vergara-Tabares, D.; Cordier, J.; Landi, M.; Olah GNori, J. Global trends of habitat destruction and consequences for parrot conservation. Glob. Chang. Biol. 2020, 26, 4251–4262. [Google Scholar] [CrossRef] [PubMed]
- Joyner, L.K.; Portillo-Reyes, H. Seven years of parrot conservation in La Moskitia, Honduras. J. Avian Med. Surg. 2018, 32, 144–151. [Google Scholar] [CrossRef] [PubMed]
- DeNise, S.; Johnston, E.; Halverson, J.; Marshall, K.; Rosenfeld, D.; McKenna, S.; Sharp TEdwards, J. Power of exclusion for parentage verification and probability of match for identity in American kennel club breeds using 17 canine microsatellite markers. Anim. Genet. 2003, 35, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, M.J.; Amigues, Y.; Blasi, M.; Broad, T.E.; Cherbonnel, C.; Cho, G.J.; Corley, S.; Daftari, P.; Delattre, D.R.; Dileanis, S.; et al. An international parentage and identification panel for the domestic cat (Felis catus). Anim. Genet. 2007, 38, 371–377. [Google Scholar] [CrossRef]
- Downs, L.M.; Wallin-Håkansson, B.; Bergström, T.; Mellersh, C.S. A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever. Canine Genet. Epidemiol. 2014, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Lyons, L.A.; Biller, D.S.; Erdman, C.A.; Lipinski, M.J.; Young, A.E.; Roe, B.A.; Qin, B.; Grahn, R.A. Feline Polycistic Kidney Disease mutation identified in PKD1. JASN 2004, 15, 2548–2555. [Google Scholar] [CrossRef] [Green Version]
- Lyons, L.A.; Foe, I.T.; Rah, H.C.; Grahn, R.A. Chocolate coated cats: TYRP1 mutations for brown color in domestic cats. Mamm. Genome 2005, 16, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, S.M.; Berryere, T.G. Genes affecting coat colour and pattern in domestic dogs: A review. Anim. Genet. 2007, 38, 539–549. [Google Scholar] [CrossRef]
- Morinha, F.; Cabral, J.A.; Bastos, E. Molecular sexing of birds: A comparative review of polymerase chain reaction (PCR)-based methods. Theriogenology 2012, 78, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Heath, L.; Martin, D.P.; Warburton, L.; Perrin, M.; Horsfield, W.; Kingsley, C.; Rybicki, E.P.; Williamson, A.-L. Evidence of unique genotypes of Beak and Feather Disease Virus in Southern Africa. J. Virol. 2004, 78, 9277–9284. [Google Scholar] [CrossRef] [Green Version]
- Capriles, J.M.; Santoro, C.M.; George, R.J.; Bedregal, E.F.; Kennett, D.J.; Kistler, L.; Rothhammer, F. Pre-Columbian transregional captive rearing of Amazonian parrots in the Atacama Desert. Proc. Natl. Acad. Sci. USA 2021, 118, e2020020118. [Google Scholar] [CrossRef]
- Boehrer, B.T. Parrot Culture: Our 2500-Year-Long Fascination with the World’s Most Talkative Bird, 1st ed.; University of Pennsylvania Press: Philadelphia, PA, USA, 2004. [Google Scholar]
- Sossinka, R. Domestication in Birds. In Avian Biology Volume VI, 1st ed.; Farner, D.S., King, J.R., Parkes , K.C., Eds.; Academic Press Inc.: New York, NY, USA, 1982; Volume VI. [Google Scholar]
- Hayward, J. Lovebirds and their Colour Mutations, 1st ed.; Blandford Press Ltd.: London, UK, 1979. [Google Scholar]
- Warburton, L.S.; Perrin, M.R. Nest-site characteristics and breeding biology of the Black-cheeked Lovebird Agapornis nigrigenis in Zambia. Ostrich 2005, 76, 162–174. [Google Scholar] [CrossRef]
- Stojanovic, D.; Neeman, T.; Hogg, C.J.; Everaardt, A.; Wicker, L.; Young, C.M.; Alves, F.; Magrath, M.J.L.; Heinsohn, R. Differences in wing shape of captive, critically endangered, migratory orange-bellied parrots Neophema chrysogaster relative to wild conspecifics. Emu Austral Ornithol. 2021. [Google Scholar] [CrossRef]
- Marshall, T.C. Extinction or Domestication? Am. Fed. Avic. Watchb. Mag. 1995, 22, 6. [Google Scholar]
- O’Connor, R.E.; Farré, M.; Joseph, S.; Damas, J.; Kiazim, L.; Jennings, R.; Bennett, S.; Slack, E.A.; Allanson, E.; Larkin, D.M.; et al. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol. 2018, 19, 171. [Google Scholar] [CrossRef] [Green Version]
- Oleksyk, T.K.; Pombert, J.-F.; Siu, D.; Mazo-Vargas, A.; Ramos, B.; Guiblet, W.; Afanador, Y.; Ruiz-Rodriguez, C.T.; Nickerson, M.L.; Logue, D.M.; et al. A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education. GigaScience 2012, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Seabury, C.M.; Dowd, S.E.; Seabury, P.M.; Raudsepp, T.; Brightsmith, D.J.; Liboriussen, P.; Halley, Y.; Fisher, C.A.; Owens, E.; Viswanathan GTizard, I.R. Multi-Platform Draft de novo Genome Assembly and Comparative Analysis for the Scarlet Macaw (Ara macao). PLoS ONE 2013, 8, e62415. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy GHoward, J.T.; Ward, J.M.; Li, J.; Li, B.; Li, Y.; Xiong, Y.; Zhang, Y.; Zhou, S.; Schwartz, D.C.; Schatz, M.; et al. High-coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience 2014, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Van der Zwan, H.; van der Westhuizen, F.; Visser, C.; van der Sluis, R. Draft de novo genome sequence of Agapornis roseicollis for application in avian breeding. Anim. Biotechnol. 2018, 29, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Li, C.; Li, Q.; Li, B.; Larkin, D.M.; Lee, C.; Storz, J.F.; Antunes, A.; Greenwold, M.J.; Meredith, R.W.; et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014, 346, 1311–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirthlin, M.; Lima, N.C.B.; Guedes, R.L.M.; Soares, A.E.R.; Almeida, L.G.; Caveleiro, N.P.; de Morais, G.L.; Chaves, A.V.; Howard, J.T.; de Melo Teixeira, M.; et al. Parrot genomes and the evolution of heightened longevity and cognition. Curr. Biol. 2018, 28, 4001–4008. [Google Scholar] [CrossRef] [Green Version]
- Gelabert, P.; Sandoval-Velasco, M.; Serres, A.; Manuel, M.; Remon, P.; Margaryan, A.; Stiller, J.; Dios, T.; Fang, Q.; Feng, S.; et al. Evolutionary History, Genomic Adaptation to toxic diet and extinction of the Carolina parakeet. Curr. Biol. 2020, 30, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koepfli, K.-P.; Paten, B.; O’Brien, S.J. The Genome 10K Community of Scientists. The Genome10K Project: A way forward. Annu. Rev. Anim. Biosci. 2015, 3, 57–111. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Furo, I.; Peona, V.; Liu, J.; Gomes, A.B.; Cen, W.; Huang, H.; Zhang, Y.; Chen, D.; Ting, X.; et al. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. bioRxiv 2021. [Google Scholar] [CrossRef]
- Hains, T.; O’Neill, K.; Velez, J.; Speed, N.; Clubb, S.; Oleksyk, T.; Pirro, S. The complete genome sequences of 22 parrot species (Psittaciformes, Aves) [version1; peer review: Awaiting peer review]. F1000Research 2020, 9, 1318. [Google Scholar] [CrossRef]
- Van der Zwan, H.; Visser, C.; van der Sluis, R. Plumage colour variations in the Agapornis genus: A review. Ostrich 2019, 90, 1–10. [Google Scholar] [CrossRef]
- Pepperberg, I.M. Cognitive and communicative abilities of Grey parrots. Appl. Anim. Behav. Sci. 2006, 100, 77–86. [Google Scholar] [CrossRef]
- Su, S.; Cassey, P.; Vall-Ilosera, M.; Blackburn, T.M. Going Cheap: Determinants of Bird Price in the Taiwanese Pet Market. PLoS ONE 2015, 10, e0127482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustam, B.; Indonesian Lovebird Association, Jakarta, Indonesia. Personal Communication, 2020.
- Van den Abeele, D. Lovebirds Compendium, Genus Agapornis, 1st ed.; About Pets Publishing: Den Haag, The Netherlands, 2016. [Google Scholar]
- Seth-Smith, D. Mutant of A personata. In In Proceedings of the Zoological Society of London; Publishing Section, The Royal Society: London, UK, 1931; Volume 101, p. 1418. [Google Scholar]
- Delacour, J. Bird breeding in France. Avic. Mag. 1942, 7, 28. [Google Scholar]
- Moreau, R. Aspects of evolution in the parrot genus Agapornis. IBIS 1948, 90, 206–239. [Google Scholar] [CrossRef]
- Toerien, M.J. On the change of colour in a rosy-faced lovebird. Ostrich 1950, 21, 19–21. [Google Scholar] [CrossRef]
- White, K.L.; Eason, D.K.; Jamieson IGRobertson, B.C. Evidence of inbreeding depression in the critically endangered parrot, the kakapo. Anim. Conserv. 2015, 18, 341–347. [Google Scholar] [CrossRef]
- Swinnerton, K.J.; Groombridge, J.J.; Jones, C.G.; Burn RWMungroo, Y. Inbreeding depression and founder diversity among captive and free-living populations of the endangered pink pigeon Columba mayeri. Anim. Conserv. 2006, 7, 353–364. [Google Scholar] [CrossRef]
- Bruslund, S. (Marlow Birdpark, Kölzower Chaussee 1, Marlow, Germany). Personal Communication. 2021. [Google Scholar]
- Mundy, N.I. A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc. R. Soc. B 2006, 272, 1633–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundy, N.I. Genetic Basis of Color Variations in Wild birds. In Bird Coloration; Hill, G.E., McGraw, K.J., Eds.; Harvard University Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Stradi, R.; Pini, E.; Celentano, G. The chemical structure of the pigments in Ara macao plumage. Comp. Biochem. Physiol. Part B 2001, 130, 57–63. [Google Scholar] [CrossRef]
- Hudon, J.; Brush, A.H. Identification of carotenoid pigments in birds. FASEB J. 1990, 4, 2969. [Google Scholar]
- McGraw, K.J.; Nogare, M.C. Distribution of unique red feather pigments in parrots. Biol. Lett. 2004, 1, 38–43. [Google Scholar] [CrossRef]
- Stoddard, M.C.; Prum, R.O. How colourful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 2011, 22, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Dyck, J. Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana. Z. Zellforsch. Mikoskopische Anat. 1971, 115, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Dyck, J. Structure and spectral reflectance of green and blue feathers of the rose-faced lovebird (Agapornis roseicollis). Det. K. Dan. Vidensk. Selsk. Bilogiske Skr. 1971, 18, 2. [Google Scholar]
- Prum, R.O.; Morrison, R.L.; Ten Eyck, G.R. Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylaimidae). J. Morphol. 1994, 222, 61–72. [Google Scholar] [CrossRef]
- Prum, R.O. Anatomy, physics, and evolution of structural colours. In Bird Coloration Mechanisms and Measurements; Hill, G.E., McGraw, K.J., Eds.; Harvard University Press: Cambridge, MA, USA, 2006; Volume I. [Google Scholar]
- Elliot, F.S. Budgerigar Matings and Colour Expectations, 1st ed.; Read Books: Alcester, UK, 2013. [Google Scholar]
- Cooke, T.F.; Fischer, C.R.; Wu, P.; Khosla, C.; Chuong, C.-M.; Bustamante, C.D. Genetic mapping and biochemical basis of yellow feather pigmentation in budgerigars. Cell 2017, 171, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Matukumalli, L.K.; Lawley, C.T.; Schnabel, R.D.; Taylor, J.F.; Allan, M.F.; Heaton, M.P.; O’Connoll, J.; Moore, S.S.; Smith, T.P.L.; Sonstegard, T.S.; et al. Development and characterization of a high density SNP genotyping assay for cattle. PLoS ONE 2009, 4, e5350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, M.P.; Leymaster, K.A.; Kalbfleisch, T.S.; Kijas, J.W.; Clarke, S.M.; McEwan, J.; Maddox, J.F.; Basnayake, V.; Petrik, D.T.; Simpson, B.; et al. The International Sheep Genomics Consortium. SNPs for Parentage Testing and traceability in globally diverse breeds of sheep. PLoS ONE 2014, 9, e94851. [Google Scholar] [CrossRef] [Green Version]
- Gheyas, A.A.; Boschiero, C.; Eory, L.; Ralph, H.; Kuo, R.; Woolliams, J.A.; Burt, D.W. Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res. 2015, 22, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Fels, L.; Distl, O. Identification and validation of quantitative trait loci (QTL) for canine hip dysplasia (CHD) in German Shepherd dogs. PLoS ONE 2014, 9, e96618. [Google Scholar] [CrossRef]
- Qiu, J.; Simpson, B.; Kock, L.; Donner, J.; Cole, C.; Davison, S.; Dunn, M.; Bannasch, D.; Boyko, A. Evaluation of single nucleotide polymorphism (SNP) markers for canine parentage analysis. J. Anim. Sci. 2016, 94, 106–107. [Google Scholar] [CrossRef]
- Coetzer, W.G.; Downs, C.T.; Perrin, M.R.; Willows-Munro, S. Testing of microsatellite multiplexes for individual identification of Cape Parrots (Poicephalus robustus): Paternity testing and monitoring trade. PeerJ 2017, 5, e2900. [Google Scholar] [CrossRef] [Green Version]
- Jan, C.; Fumagalli, L. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae). PeerJ 2016, 4, e2416. [Google Scholar] [CrossRef] [Green Version]
- Willows-Munro, S.; Kleinhans, C. Testing microsatellite loci for individual identification of captive African grey parrots (Psittacus erithacus): A molecular tool for parentage analysis that will aid in monitoring legal trade. Conserv. Genet. Resour. 2020, 12, 489–495. [Google Scholar] [CrossRef]
- Van der Zwan, H.; Visser, C.; Schoonen, M.; van der Sluis, R. Development of an SNP-based parentage verification panel for lovebirds. Anim. Genet. 2019, 50, 764–776. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, R.; Daan, S.; Dijkstra, C. Sex identification in birds using two CHD genes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1996, 263, 1251–1256. [Google Scholar]
- Ellergren, H. First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc. R. Soc. Lond. B 1996, 263, 1635–1641. [Google Scholar]
- Miyaki, C.Y.; Griffiths, R.; Orr, K.; Nahum, L.A.; Pereira, S.L.; Wajntal, A. Sex identification of parrots, toucans, and curassows by PCR: Perspectives for wild and captive population studies. Zoo Biol. 1998, 17, 415–423. [Google Scholar] [CrossRef]
- Wang, L.-C.; Chen, C.-T.; Lee, H.-Y.; Li, S.-H.; Lir, J.-T.; Chin, S.-C.; Pu, C.-E.; Wang, C.-H. Sexing a wider range of avian species based on two CHD1 introns with a unified reaction condition. Zoo Biol. 2007, 26, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Vucicevic, M.; Stevanov-Pavloc, M.; Stevanovic, J.; Bosnjak, J.; Gajic, B.; Aleksic, N.; Stanimirovic, Z. Sex Determination in 58 Bird Species and Evaluation of CHD Gene as a Universal Molecular Marker in Bird Sexing. Zoo Biol. 2013, 32, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Nėmec, P.; Albrecht, T.; Lymberakis, P.; Kratochvíl, L.; Rovatsos, M. Long-term stability of sex chromosome gene content allows accurate qPCR-based molecular sexing across birds. Mol. Ecol. Resour. 2021. [Google Scholar] [CrossRef]
- Kroczak, A.; Woloszynska, M.; Wierzbicki, H.; Kurkowski, M.; Grabowski, K.A.; Piasecki, T.; Galosi, L.; Urantowka, A.D. New Bird sexing strategy developed in the order Psittaciformes involves multiple markers to avoid sex misidentification: Debunked myth of the Universal DNA marker. Genes 2021, 12, 878. [Google Scholar] [CrossRef]
- Daniell, A.; Murray, N.D. Effects of inbreeding in the budgerigar Melopsittacus undulatus (Aves: Psittacidae). Zoo Biol. 1986, 5, 233–238. [Google Scholar] [CrossRef]
- Jayson, S.L.; Williams, D.L.; Wood, J.L.N. Prevalence and Risk Factors of Feather Plucking in African Grey Parrots (Psittacus erithacus erithacus and Psittacus Erithacus timneh) and Cockatoos (Cacatua spp.). J. Exot. Pet Med. 2014, 23, 250–257. [Google Scholar] [CrossRef]
- Polverino, G.; Manciocco, A.; Alleva, E. Effects of spatial and social restrictions on the presence of stereotypies in the budgerigar (Melopsittacus undulatus): A pilot study. Ethol. Ecol. Evol. 2012, 24, 39–53. [Google Scholar] [CrossRef]
- Polverino, G.; Manciocco, A.; Vitale, A.; Alleva, E. Stereotypic behaviours in Melopsittacus undulatus: Behaviour consequences of social and spatial limitations. Appl. Anim. Behav. Sci. 2015, 165, 143–155. [Google Scholar] [CrossRef]
- Bourdon, R.M. Understanding Animal Breeding, 2nd ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Garner, J.P.; Meehan CLFamula, T.R.; Mench, J.A. Genetic, environmental, and neighbour effects on the severity of stereotypies and feather picking in Orange-winged Amazon parrots (Amazona amazonica): An epidemiological study. Appl. Anim. Behav. Sci. 2006, 96, 153–168. [Google Scholar] [CrossRef]
- Gaskins, L.A.; Hungerford, L. Nonmedical factors associated with feather picking in pet psittacine birds. J. Avian Med. Surg. 2014, 28, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhou, Q. The female-specific W chromosomes of birds have conserved gene contents but are not feminized. Genes 2020, 11, 1126. [Google Scholar] [CrossRef]
- Rheindt, F.E.; Edwards, S.V. Genetic introgression: An integral but neglected component of speciation in birds. Auk 2011, 128, 620–632. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R.S.; Morrissey, M.T. DNA-based methods for the identification of commercial fish and seafood species. Compr. Rev. Food Sci. Food Saf. 2008, 7, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Hohenlohe, P.A.; Amish SJCatchen, J.M.; Allendorf, F.W.; Luikart, G. Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol. Ecol. Resour. 2011, 11, 117–122. [Google Scholar] [CrossRef]
- vonHoldt, B.M.; Pollinger, J.P.; Earl, D.A.; Parker, H.G.; Ostrander, E.A.; Wayne, R.K. Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping. Mamm. Genome 2013, 24, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Patterson, E.I.; Baker, B.G.B.; Moldsworth, M.; Srker, S.; Ghorashi, S.A.; Raidal, R. Evidence of Psittacine beak and feather disease virus spillover into wild critically endangered orange-bellied parrots (Neophema chrysogaster). J. Wildl. Dis. 2014, 50, 288–296. [Google Scholar] [CrossRef]
- Luo, C.; Qu, H.; Ma, J.; Wang, J.; Hu, X.; Li, N.; Shu, D. A genome-wide association study identifies major loci affecting the immune response against infectious bronchitis virus in chicken. Infect. Genet. Evol. 2014, 21, 351–358. [Google Scholar] [CrossRef]
- Strucken, E.M.; Lee, S.H.; Song, K.D.; Gibson, J.P.; Gondro, G. How many markers are enough? Factors influencing parentage testing in different livestock populations. J. Anim. Breed. Genet. 2016, 133, 13–23. [Google Scholar] [CrossRef]
- Feng, S.; Stiller, J.; Deng, Y.; Armstrong, J.; Fang, Q.; Reeve, A.H.; Xie, D.; Chen, G.; Guo, C.; Faircloth, B.C.; et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 2020, 587, 252–257. [Google Scholar] [CrossRef]
- Silva-Junior, O.B.; Faria, D.A.; Grattapaglia, D. A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytol. 2015, 206, 1527–1540. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M.; Kijas, J.W.; Heaton, M.P.; McEwan, J.C.; Coltman, D.W. Consistent divergence times and allele sharing measured from cross-species application of SNP chips developed for three domestic species. Mol. Ecol. Resour. 2012, 12, 1145–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Common Name | Scientific Name | Genome Size (Gb) | Accession Number | Reference |
---|---|---|---|---|
Puerto Rican parrot | Amazona vittata | 1.58 | PRJNA171587 | [27] |
Scarlet Macaw | A. macao | 1.11–1.16 | PRJNA175470 | [28] |
Budgerigar | M. undulatus | 1.2 | GigaDB Accession: 1985454 | [29] |
Peach faced lovebird | A. roseicollis | 1.1 | NDXB01000000 | [30] |
Kea | Nestor notabilis | 1.1 | PRJNA212900 | [31] |
Blue fronted Amazon | Amazona aestival | 1.126 | LMAW00000000 | [32] |
Sun parakeet | Aratinga solstitialis | 1.16 | GCA_902168055.1 | [33] |
Kakapoo | Strigops habroptila | 1.148 | GCA_004011185.1 | [34] |
Monk parakeet | Myiopsitta monachus | 1.168 | GCA_017639245.1 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Zwan, H.; van der Sluis, R. Polly Wants a Genome: The Lack of Genetic Testing for Pet Parrot Species. Genes 2021, 12, 1097. https://doi.org/10.3390/genes12071097
van der Zwan H, van der Sluis R. Polly Wants a Genome: The Lack of Genetic Testing for Pet Parrot Species. Genes. 2021; 12(7):1097. https://doi.org/10.3390/genes12071097
Chicago/Turabian Stylevan der Zwan, Henriëtte, and Rencia van der Sluis. 2021. "Polly Wants a Genome: The Lack of Genetic Testing for Pet Parrot Species" Genes 12, no. 7: 1097. https://doi.org/10.3390/genes12071097
APA Stylevan der Zwan, H., & van der Sluis, R. (2021). Polly Wants a Genome: The Lack of Genetic Testing for Pet Parrot Species. Genes, 12(7), 1097. https://doi.org/10.3390/genes12071097