Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Curation of Genome Annotation and Gold Standard Protein Identification
2.2. Additional Bioinformatics Tools
3. Results
3.1. The Respiratory Chain and Oxidative Decarboxylation
3.2. Amino Acid Metabolism
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | isofunc | %seq_id | Locus tag | UniProt | Reference | PMID | Comment |
2a | HVO_0047 | argW | no | 54% | TT_C1544 | Q72HE5 | [128] | 25392000 | for Arg, not for Lys biosynthesis |
2a | HVO_0047 (cont.) | yes/no | 39% | Saci_0753 | Q4JAQ0 | only for Arg, not for Lys biosynthesis | |||
2a | HVO_0047 (cont.) | yes/no | 61% | TK0279 | Q5JFV9 | [125] | 27566549 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0046 | argX | no | 44% | TT_C1543 | Q72HE6 | [124] | 19620981 | for Arg, not for Lys biosynthesis |
2a | HVO_0046 (cont.) | yes | 30% | Saci_1621 | Q4J8E7 | only for Arg, not for Lys biosynthesis | |||
2a | HVO_0046 (cont.) | yes/no | 37% | TK0278 | Q5JFW0 | [125] | 27566549 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0044 | argB | no | 41% | TT_C1541 | O50147 | [124] [128] | 19620981 25392000 | for Arg, not for Lys biosynthesis |
2a | HVO_0044 (cont.) | yes/no | 33% | Saci_0751 | Q4JAQ2 | [126] | 23434852 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0044 (cont.) | yes/no | 32% | TK0276 | Q5JFW2 | [125] | 27566549 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0045 | argC | no | 48% | TT_C1542 | O50146 | [124] [129] | 19620981 26966182 | for Arg, not for Lys biosynthesis |
2a | HVO_0045 (cont.) | yes/no | 42% | Saci_0750 | Q4JAQ3 | [126] | 23434852 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0045 (cont.) | yes/no | 46% | TK0277 | Q5JFW1 | [125] | 27566549 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0043 | argD | no | 45% | TT_C1393 | Q93R93 | [130] | 11489859 | for Arg, not for Lys biosynthesis |
2a | HVO_0043 (cont.) | yes/no | 40% | Saci_0755 | Q4JAP8 | [126] | 23434852 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0043 (cont.) | yes/no | 42% | TK0275 | Q5JFW3 | [125] | 27566549 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0042 | argE | no | 36% | TT_C1396 | Q8VUS5 | [124] [131] | 19620981 28720495 | for Arg, not for Lys biosynthesis |
2a | HVO_0042 (cont.) | yes/no | 29% | Saci_0756 | Q4JAP7 | [126] | 23434852 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0042 (cont.) | yes/no | 37% | TK0274 | Q5JFW4 | [125] | 27566549 | only for Arg, not for Lys biosynthesis | |
2a | HVO_0041 | argF | yes | 50% | P18186 | BSU11250 | [132] | 4216455 | |
2a | HVO_0041 (cont.) | yes | 47% | OE_5205R | B0R9X3 | [133] | 7868583 | ||
2a | HVO_0049 | argG | yes | 35% | - | P00966 | [134] | 8792870 | human |
2a | HVO_0049 (cont.) | yes | 23% | b3172 | P0A6E4 | [135] | 10666579 | E. coli | |
2a | HVO_0048 | argH | yes | 38% | MMP0013 | O74026 | [136] | 10220900 | |
2a | HVO_0008 | lysC | yes | 32% | BSU28470 | P08495 | [137] | 15033471 | |
2a | HVO_2487 | asd | yes | 51% | MJ0205 | Q57658 | [138] | 16225889 | |
2a/9e | HVO_1101 | dapA | yes | 45% | PA1010 | Q9I4W3 | [139] | 21396954 | |
2a | HVO_1100 | dapB | yes | 33% | b0031 | P04036 | [140] | 7893644 | |
2a | HVO_1099 | dapD | yes | 32% | b0166 | P0A9D8 | [141] | 6365916 | |
2a | HVO_1096 | dapE | yes | 29% | b2472 | P0AED7 | [142] | 3276674 | function supported by gene clustering |
2a | HVO_1097 | dapF | yes | 35% | b3809 | P0A6K1 | [143] | 6378903 | |
2a | HVO_1098 | lysA | yes | 38% | b2838 | P00861 | [144] | 14343156 | |
2a | HVO_A0634 | - | unknown | 25% | b2472 | P0AED7 | [142] | 3276674 | function assigned to HVO_1096 in dap cluster |
2b | HVO_0790 | fba2 | special | 67% | OE_1472F | B0R334 | [145] | 25216252 | EC 2.2.1.10 activity of OE_1472F not yet confirmed in vitro |
2b | HVO_0790 (cont.) | special | 45% | MJ0400 | Q57843 | [146] | 15182204 | substrate uncertain | |
2b | HVO_0792 | aroB | yes | 69% | OE_1475F | B0R336 | [145] | 25216252 | OE_1475F only partially characterized |
2b | HVO_0792 (cont.) | yes | 44% | MJ1249 | Q58646 | [146] | 15182204 | ||
2b | HVO_0602 | aroD1 | yes | 44% | OE_1477R | B0R338 | [145] | 25216252 | |
2b | HVO_0602 (cont.) | yes | 31% | MMP1394 | Q6LXF7 | [147] | 15262931 | ||
2c | HVO_0009 | tnaA | yes | 41% | b3708 | P0A853 | [148] [149] | 2659590 14284727 | |
2d | HVO_A0559 | hutH | yes | 42% | BSU39350 | P10944 | [150] [151] | 2454913 14066617 | |
2d | HVO_A0562 | hutU | yes | 62% | BSU39360 | P25503 | [152] | 4990470 | |
2d | HVO_A0560 | hutI | yes | 42% | BSU39370 | P42084 | [153] | 16990261 | |
2d | HVO_A0561 | hutG | yes | 33% | BSU39380 | P42068 | [152] | 4990470 | |
2e | HVO_0431 | - | - | no GSP available | |||||
2e | HVO_0644 | leuA1 | yes/no | 47% | MJ1392 | Q58787 | [154] | 9864346 | HVO_0644 monofunc (CimA) or bifunc (CimA+LeuA); MJ1392 CimA |
2e | HVO_0644 (cont.) | unclear | 44% | MJ1195 | Q58595 | [155] | 9665716 | HVO_0644 monofunc (CimA) or bifunc (CimA+LeuA); MJ1195 LeuA | |
2e/2f | HVO_1510 | leuA2 | yes | 47% | MJ1195 | Q58595 | [155] | 9665716 | HVO_1510 LeuA; MJ1195 LeuA |
2e/2f | HVO_1510 (cont.) | no | 41% | MJ1392 | Q58787 | [154] | 9864346 | HVO_1510 LeuA MJ1392 CimA | |
2e | HVO_A0489 | - | no | 31% | MJ1392 | Q58787 | [154] | 9864346 | HVO_A0489 general function only; MJ1392 CimA |
2e | HVO_A0489 (cont.) | no | 30% | MJ1195 | Q58595 | [155] | 9665716 | HVO_A0489 general function only; MJ1195 LeuA | |
2e | HVO_1153 | - | - | function unassigned; no GSP |
3.3. Coenzymes I: Cobalamin and Heme
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
3a | HVO_B0054 | cbiX1 | yes | 30% | - | O87690 | [163] | 12408752 | cobaltochelatase |
3a | HVO_B0054 (cont.) | yes | 27% | MTH_1397 | O27448 | [164] | 12686546 | cobaltochelatase | |
3a | HVO_1128 | cbiX2 | no | 29% | AF0721 | O29537 | [165] | 16835730 | cobaltochelatase |
3a | HVO_1128 (cont.) | no | 28% | MTH_1397 | O27448 | [164] | 12686546 | cobaltochelatase | |
3a | HVO_1128 (cont.) | no | 29% | AF0721 | O29537 | [165] | 16835730 | cobaltochelatase | |
3a | NP_0734A | cbiX3 | - | function unassigned; no GSP; distantly related to paralogs | |||||
3a | HVO_2312 | sirC | yes/no | 31% | Mbar_A1461 | Q46CH4 | [166] | 21197080 | precorrin-2 DH; no analysis for Fe-chelatase |
3a | HVO_2312 (cont.) | yes/no | 29% | STM3477 | P25924 | [167] [168] | 14595395 32054833 | matches to the N-term domain which is bifunctional as precorrin-2 DH and Fe-chelatase | |
3a | HVO_2312 (cont.) | yes/no | 29% | - | P61818 | [163] [169] | 12408752 18588505 | precorrin-2 DH; devoid of Fe-chelatase activity | |
3b | HVO_B0061 | cbiL | no | 32% | STM2024 | Q05593 | [170] | 1451790 | equivalent reaction on cobalt-free substrate |
3b | HVO_B0057 | cbiH2 | yes | 45% | - | O87689 | [160] | 23922391 | corresponds to N-term of O87689 which has a C-term extension |
3b | HVO_B0057 (cont.) | no | 40% | STM2027 | Q05590 | [171] [172] | 9331403 16198574 | equivalent reaction on cobalt-free substrate | |
3b | HVO_B0058 | cbiH1 | special | 32% | - | O87689 | [160] | 23922391 | corresponds to N-term of O87689 which has a C-term extension; more distant to O87689 than CbiH2 |
3b | HVO_B0058 (cont.) | no | 30% | STM2027 | Q05590 | [171] [172] | 9331403 16198574 | equivalent reaction on cobalt-free substrate | |
3b | HVO_B0060 | cbiF | no | 40% | STM2029 | P0A2G9 | [170] [173] | 1451790 16866557 | equivalent reaction on cobalt-free substrate |
3b | HVO_B0060 (cont.) | yes | 38% | - | O87686 | [160] | 23922391 | ||
3b | HVO_B0059 | cbiG | yes | 24% | - | O87687 | [160] | 23922391 | |
3b | pathway gap | EC 2.1.1.195 | |||||||
3b | pathway gap | EC 1.3.1.106 | |||||||
3b | HVO_B0062 | cbiT | yes | 36% | - | O87694 | [160] | 23922391 | corresponds to the C-term of bifunctional O87694 |
3b | HVO_B0048 | cbiE | yes | 28% | - | O87694 | [160] | 23922391 | corresponds to the N-term of bifunctional O87694 |
3b | HVO_B0049 | cbiC | yes | 33% | - | O87692 | [160] | 23922391 | |
3b | HVO_A0487 | cbiA | no | 37% | STM2035 | P29946 | [174] | 15311923 | equivalent reaction on cobalt-free substrate |
3b | HVO_B0052 | - | - | function unassigned; no GSP | |||||
3b | HVO_B0053 | - | - | function unassigned; no GSP | |||||
3b | HVO_B0055 | - | - | function unassigned; no GSP | |||||
3b | HVO_B0056 | - | - | function unassigned; no GSP | |||||
3c | HVO_A0488 | cobA | yes | 31% | MM_3138 | Q8PSE1 | [175] | 16672609 | |
3c | HVO_A0488 (cont.) | yes | 30% | STM1718 | P31570 | [176] | 12080060 | ||
3c | HVO_2395 | pduO | yes | 37% | - | Q9XDN2 | [177] | 11160088 | PduO and CobA are isofunctional; In Q9XDN2, the PduO domain (N-term) is fused to a DUF336 domain |
3c | HVO_A0553 | cbiP | yes | 63% | VNG_1576G OE_3246F | Q9HPL5 B0R5X2 | [178] | 14645280 | |
3c | HVO_0587 | cbiB | yes | 58% | VNG_1578H OE_3253F | Q9HPL3 B0R5X4 | [178] | 14645280 | |
3c | HVO_0592 | cbiZ | yes | 57% | VNG_1583C OE_3261F | Q9HPL3 B0R5X8 | [179] | 14990804 | |
3c | HVO_0589 | cobY | yes | 47% | VNG_1581C OE_3257F | Q9HPL1 B0R5X6 | [180] | 12486068 | |
3c | HVO_0588 | cobS | yes | 30% | STM2017 | Q05602 | [181] | 17209023 | |
3c | - | STM0643 | P39701 | [182] | 7929373 | EC 3.1.3.73; CobC; no homolog in haloarchaea | |||
3c | HVO_0586 | - | prediction | - | - | - | [161] | 12869542 | EC 3.1.3.73; prediction for HSL01294 (VNG_1577C) |
3c | pathway gap | EC 2.7.1.177 | |||||||
3c | HVO_0591 | cobD1 | yes | 31% | STM0644 | P97084 | [183] | 9446573 | |
3c | HVO_0593 | cobD2 | yes | no GSP; 51% seq_id to HVO_0591 (cobD1) | |||||
3c | HVO_0590 | cobT | prediction | [161] | 12869542 | prediction for VNG_1572C | |||
3c | halTADL_3045 | cobT | yes | 39% | STM0644 | Q05603 | [184] | 8206834 | |
3d | HVO_B0051 | cobN | yes | 34% | - | P29929 | [185] | 1429466 | |
3d | HVO_B0051 (cont.) | no | 29% | - | Q55284 | [186] [187] | 8663186 9716491 | Mg chelatase | |
3d | HVO_B0050 | chlID | no | 46% | slr1030 | P51634 | [186] [187] | 8663186 9716491 | match to N-term; Mg chelatase |
3d | HVO_B0050 (cont.) | no | 33% | slr1777 | P52772 | [186] [187] | 8663186 9716491 | match to complete sequence, incl distant match to N-term; Mg chelatase | |
3e | HVO_2227 | ahbA | yes | 35% | - | I6UH61 | [158] | 21969545 | |
3e | HVO_2313 | ahbB | yes | 32% | - | I6UH61 | [158] | 21969545 | |
3f | HVO_1121 | ahbC | yes | 47% | Mbar_A1793 | Q46BK8 | [158] [188] | 21969545 24669201 | |
3f | HVO_2144 | ahbD | self | [162] | 29284023 | EC 1.3.98.6 | |||
3f | HVO_2144 (cont.) | yes | 42% | Mbar_A1458 | Q46CH7 | [188] | 24669201 | ||
3f | HVO_1871 | chdC | self | [162] | 29284023 | EC 1.3.98.5 | |||
3f | HVO_1871 (cont.) | yes | 46% | BSU37670 | P39645 | [189] | 28123057 |
3.4. Coenzymes II: Coenzyme F420
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
4a | HVO_2198 | cofH | yes | 35% | MJ1431 | Q58826 | [198] [199] | 14593448 25781338 | |
4a | HVO_2201 | cofG | yes | 43% | MJ0446 | Q57888 | [198] [200] [199] | 14593448 23072415 25781338 | |
4a | HVO_2202 | cofC | yes | 25% | MJ0887 | Q58297 | [194] [195] [196] | 18260642 30952857 31469543 | |
4a | HVO_2479 | cofD | yes | 39% | MM_1874 | Q8PVT6 | [201] [196] | 18252724 31469543 | |
4a | HVO_2479 (cont.) | yes | 32% | MJ1256 | Q58653 | [202] | 11888293 | ||
4a | HVO_1936 | cofE | yes | 47% | AF_2256 | O28028 | [203] | 17669425 | |
4a | HVO_1936 (cont.) | yes | 38% | MJ0768 | Q58178 | [204] | 12911320 | ||
4b | HVO_0433 | npdG | yes | 38% | AF_0892 | O29370 | [205] | not in PubMed | |
4b | HVO_B0113 | - | no | 27% | Rv0132c | P96809 | [206] | 24349169 | too distant to assume isofunctionality |
4b | HVO_B0342 | - | unknown | 29% | - | O93734 | [207] [208] | 8706724 15016352 | too distant to assume isofunctionality |
4b | NP_1902A | - | no | 28% | - | Q9UXP0 | [209] [210] | 1735436 9933933 | too distant to assume isofunctionality |
4b | NP_4006A | - | no | 27% | MJ0870 | Q58280 | [211] | 16048999 | too distant to assume isofunctionality |
4c/5c | HVO_1937 | mer | no | 38% | MTH_1752 | O27784 | [212] [213] [214] | 2298726 7649177 10891279 | |
4d | HVO_2911 | phr2 | yes | 62% | VNG_1335G OE_2907R | Q9HQ46 B0R5D6 | [215] [216] | 2681164 12773185 | |
4d | HVO_2843 | phr1 | no | 45% | sll1629 | P77967 | [217] | 12535521 | sll1629 implicated in transcription regulation |
4d | HVO_2843 (cont.) | possibly | 45% | At5g24850 | Q84KJ5 | [218] [219] | 12834405 17062752 | mediates photo-repair of ssDNA | |
4d | HVO_1234 | phr3 | possibly | 40% | Atu4765 | A9CH39 | [220] | 23589886 |
3.5. Coenzymes III: Coenzymes of C1 Metabolism: Tetrahydrofolate in Haloarchaea and Methanopterin in Methanogens
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
5a | HVO_0709 | pabA | no | 47% | TTHA1843 | P05379 | [225] | 2844259 | Trp biosynthesis |
5a | HVO_0709 (cont.) | yes/no | 39% | BSU00750 | P28819 | [226] | 2123867 | TrpG works with TrpE and with PabB | |
5a | HVO_0710 | pabB | no | 46% | TTHA1844 | P05378 | [225] | 2844259 | Trp biosynthesis |
5a | HVO_0710 (cont.) | yes | 44% | BSU00740 | P28820 | [227] | 19275258 | PabB; para-aminobenzoate biosynthesis | |
5a | HVO_0708 | pabC | no | 36% | AF_0933 | O29329 | [228] | 30733943 | branched-chain amino acids |
5b | HVO_2348 | mptA | self | [229] | 19478918 | gene deletion phenotypes | |||
5b | HVO_2348 (cont.) | yes | 41% | MJ0775 | Q58185 | [230] | 17497938 | common part of methanopterin and tetrahydrofolate biosynthesis | |
5b | HVO_A0533 | - | unknown | 27% | MJ0837 | Q58247 | [231] | 19746965 | if isofunctional would resolve a pathway gap |
5b | HVO_2628 | - | no | 31% | AF_2089 | O28190 | [232] | 12142414 | first committed step to methanopterin biosynthesis |
5b | HVO_2628 (cont.) | no | 26% | MJ1427 | Q58822 | [233] | 15262968 | first committed step to methanopterin biosynthesis | |
5c | HVO_2573 | mch | no | 45% | MK0625 | P94954 | [234] | 9676239 | acts on a one-carbon attached to methanopterin |
4c/5c | HVO_1937 | mer | no | 38% | MTH_1752 | O27784 | [212] [213] [214] | 2298726 7649177 10891279 | acts on a one-carbon compound attached to methanopterin |
3.6. Coenzymes IV: NAD and FAD (Riboflavin)
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
6a | HVO_2363 | nadK1 | unclear | 37% | Rv1695 | P9WHV7 | [237] | 11006082 | can use ATP and PP |
6a | HVO_2363 (cont.) | unclear | 31% | AF_2373 | O30297 | ATP or PP usage unresolved | |||
6a | HVO_0837 | nadK2 | unclear | 28% | Rv1695 | P9WHV7 | can use ATP and PP | ||
6a | HVO_0837 (cont.) | unclear | partial | AF_2373 | O30297 | ATP or PP usage unresolved | |||
6b | HVO_0782 | nadM | yes | 53% | MJ0541 | Q57961 | [238] [239] | 9401030 10331644 | |
6b | HVO_0781 | - | unknown | 42% | Sare_1364 | A8M783 | [240] | 18720493 | |
6b | HVO_0781 (cont.) | unknown | 35% | PH0463 | O58212 | [241] | 18551689 | ||
6c | HVO_0327 | ribB | yes | 43% | MJ0055 | Q60364 | [242] | 12200440 | |
6c | HVO_0974 | ribH | yes | 45% | MJ0303 | Q57751 | [243] | 12603336 | |
6c | HVO_1284 | arfA | self | [244] | 21999246 | gene deletion leads to riboflavin auxotrophy | |||
6c | HVO_1284 (cont.) | yes | 44% | MJ0145 | Q57609 | [245] | 12475257 | ||
6c | HVO_1235 | - | prediction | [236] | 28073944 | arfB candidate | |||
6c | HVO_1341 | arfC | yes | 36% | MJ0671 | Q58085 | [246] [247] | 11889103 18671734 | |
6c | HVO_2483 | - | prediction | 34% | MJ0699 | Q58110 | [236] | 28073944 | also predicted for MJ0699 |
6c | pathway gap | EC 3.1.3.104 | |||||||
6c | HVO_0326 | rbkR | yes | 37% | TA1064 | Q9HJA6 | [236] | 28073944 | bifunctional as gene regulator and enzyme |
6c | HVO_0326 (cont.) | yes/no | 32% | MJ0056 | Q60365 | [248] | 18073108 | enzyme only; lacks an N-terminal HTH domain | |
6c | HVO_1015 | ribL | yes | 50% | MJ1179 | Q58579 | [249] | 20822113 |
3.7. Biosynthesis of Membrane Lipids, Bacterioruberin and Menaquinone
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
7a | NP_0604A | idsA2 | yes | 32% | GACE_1337 | A0A0A7GEY4 | [266] | 30062607 | ortholog of HVO_0303 (66%); produces a C20 isoprenoid (same assignment for NP_0604A) |
7a | NP_0604A (cont.) | idsA2 | no | 30% | APE_1764 | Q9YB31 Q9UWR6 | [267] | 10632701 | produces a C25 isoprenoid (C20 assigned to NP_0604A) |
7a | NP_3996A | idsA3 | yes | 44% | GACE_1337 | A0A0A7GEY4 | [266] | 30062607 | ortholog of HVO_2725 (67%); produces a C20 isoprenoid (same assignment for NP_3996A) |
7a | NP_3996A (cont.) | idsA2 | no | 36% | APE_1764 | Q9YB31 Q9UWR6 | [267] | 10632701 | produces a C25 isoprenoid (C20 assigned to NP_3996A) |
7a | NP_4556A | idsA1 | no | 34% | GACE_1337 | A0A0A7GEY4 | [266] | 30062607 | no ortholog in Hfx. volcanii; produces a C20 isoprenoid (C25 assigned to NP_4556A) |
7a | NP_4556A (cont.) | idsA1 | yes | 29% | APE_1764 | Q9YB31 Q9UWR6 | [267] | 10632701 | produces a C25 isoprenoid (same assignment for NP_4556A) |
7b | HVO_0332 | carS | yes | 45% | AF_1740 | O28537 | [268] | 25219966 | |
7b | HVO_1143 | assA | yes | 32% | MTH_1027 | O27106 | [269] | 12562787 | gene synonym: pgsA3 |
7b | HVO_1297 | aisA | yes | 25% | MTH_1691 | O27726 | [270] | 19740749 | gene synonym: pgsA2 |
7b | HVO_1136 | pgsA1 | - | only distant partial matches to GSPs | |||||
7b | HVO_1971 | pgsA4 | unclear | 26% | MTH_1027 | O27106 | [269] | 12562787 | MTH_1027 is less distant to HVO_1143 |
7b | HVO_0146 | asd | no | 39% | SMc00551 | Q9FDI9 | [271] | 18708506 | equivalent function for the bacterial lipid |
7b | HVO_1295 | hisC | self | [272] | 2345144 | complements a His auxotrophy mutant | |||
7b | HVO_1295 (cont.) | yes | 31% | b2021 | P06986 | [273] | 2999081 | weak support, see text | |
7b | HVO_1296 | adk2 | unclear | 34% | PAB0757 | Q9UZK4 | [274] | 24823650 | Pyrococcus: involved in ribosome biogenesis |
7b | HVO_1296 (cont.) | unclear | 32% | - | Q9Y3D8 | [275] | 15630091 | human: adenylate kinase; HVO_1296 may be inositol kinase | |
7b | HVO_2496 | adk1 | yes | 45% | BSU01370 | P16304 | [276] | 31111079 | Bacillus: adenylate kinase |
7b | HVO_B0213 | - | yes | 43% | AF_1794 | O28480 | [277] [278] | 11015222 22261071 | Archaeoglobus: adenylate kinase |
7b | HVO_1135 | - | - | a SAM-dependent methyltransferase | |||||
7c | HVO_2524 | crtB | self | [9] [279] | 25488358 29038254 | crtB mutants are colorless | |||
7c | HVO_2524 (cont.) | yes | 32% | Synpcc7942 _1984 | P37269 | [280] | 1537409 | ||
7c | HVO_2527 | lyeJ | self | [259] | 21840984 | ||||
7c | HVO_2527 (cont.) | yes | 65% | VNG_1682C OE_3380R | Q9HPD9 B0R651 | [259] | 21840984 | ||
7c | HVO_2527 (cont.) | yes | 61% | C444_12922 | M0L7V9 | [257] | 25712483 | ||
7c | HVO_2528 | crtD | self | [279] | 29038254 | a HVO_2528 mutant was white | |||
7c | HVO_2528 (cont.) | yes | 71% | C444_12917 | A0A0A1GKA2 | [257] | 25712483 | ||
7c | HVO_2526 | cruF | yes | 59% | C444_12927 | A0A0A1GNF2 | [257] | 25712483 | |
7d | HVO_1470 | menF | yes | 38% | PA4231 | Q51508 | [281] | 7500944 | |
7d | HVO_1469 | menD | yes | 37% | BSU30820 | P23970 | [282] | 20600129 | |
7d | pathway gap | EC 4.2.99.20 | |||||||
7d | HVO_1461 | menC | no | 29% | BSU12980 | O34508 | [283] | 11747447 | Ala/Glu epimerase |
7d | HVO_1461 (cont.) | yes | 24% | BSU30780 | O34514 | [284] | 10194342 | o-succinylbenzoate synthase | |
7d | HVO_1375 | menE | yes | 36% | BSU30790 | P23971 | [285] | 27933791 | |
7d | HVO_1465 | menB | yes | 66% | Rv0548c | P9WNP5 | [286] | 20643650 | |
7d | pathway gap | EC 3.1.2.28 | |||||||
7d | HVO_1462 | menA | yes | 37% | b3930 | P32166 | [287] | 9573170 | |
7d | HVO_0309 | menG | yes/no | 44% | At3g63410 | Q9LY74 | [288] | 14508009 | A. thaliana enzyme also involved in tocopherol biosynthesis |
7d | HVO_0309 (cont.) | yes | 27% | - | O86169 | [289] | 9139683 |
3.8. Issues Concerning RNA Polymerase, Protein Translation Components and Signal Peptide Degradation
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
8a | OE_1279R | rpoeps | self | [290] [291] | 2495365 6852054 | ||||
8b | HVO_0360 | rps10a | yes | 94% | rrnAC2405 | P23357 | [296] | 1764513 | |
8b | HVO_1392 | rps10b | - | no GSP; 24% seq_id to HVO_0360 (rps10a) | |||||
8b | NP_4882A | rps14a | yes | 72% | rrnAC1597.1 | P26816 | [297] | 1832208 | full-length similarity; Haloarcula protein was not isolated or characterized |
8b | NP_4882A (cont.) | yes | 57% | YDL061C | P41058 | [298] | 18782943 | yeast YS29B; N-term 20 aa divergent | |
8b | NP_1768A | rps14b | unclear | 80% | rrnAC1597.1 | P26816 | [297] | 1832208 | N-term 20 aa divergent |
8c | OE_1373R | rpl43e | yes | 69% | rrnAC1669 | P60619 | [299] | 10937989 | |
8c | OE_1373R (cont.) | yes | 39% | YPR043W | P0CX25 | [292] [300] | 10588896 11866512 | ||
8c | HVO_0654 | rpl43e | yes | 54% | rrnAC1669 | P60619 | [299] | 10937989 | Haloarcula: has zinc finger; Haloferax; lacks zinc finger |
8d | HVO_1631 | dph2 | yes | 35% | PH1105 | O58832 | [301] | 20931132 | |
8d | HVO_0916 | dph5 | yes | 39% | PH0725 | O58456 | [302] | 20873788 | |
8d | HVO_1077 | dph6 | yes | 31% | YLR143W | Q12429 | [303] [304] | 23169644 23468660 | |
8e | HVO_0881 | sppA1 | yes | 33% | BSU19530 | O34525 | [305] [306] | 10455123 22472423 | |
8e | HVO_1987 | sppA2 | probably | 23% | BSU19530 | O34525 | [305] [306] | 10455123 22472423 | |
8e | HVO_1107 | - | prediction | no GSP |
3.9. Miscellaneous Metabolic Enzymes and Proteins with Other Functions
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
9a | HVO_1812 | - | prediction | no GSP | |||||
9b | halTADL_1913 | - | yes | 37% | - | P26984 | [312] | 1809835 | |
9b | halTADL_1913 (cont.) | - | yes | 31% | OCC_03567 | Q7LYW8 H3ZP68 | [313] | 15138858 | |
9c | HVO_1711 | - | probably | 33% | - | P29761 | [314] | 1633799 | P29761 matches to C-term half of HVO_1711 |
9c | HVO_1711 (cont.) | - | probably | 51% | SAMN 04487937_ 2677 | A0A1I6HD35 | [310] | 8305855 | correlation between PMID:8305855 and A0A1I6HD35 likely (see text) |
9d | HVO_1967 | pgi | yes | 36% | MJ1605 | Q59000 | [311] | 14655001 | |
9e | OE_1665R | kdgA | no | 31% | PA1010 | Q9I4W3 | [139] | 21396954 | GSP for dapA (see under 2a) |
9e | OE_1665R (cont.) | probably | 30% | TTX_1156.1 TTX_1156a | G4RJQ2 | [315] | 15869466 | ||
9e | OE_1665R (cont.) | probably | 25% | SSO3197 | Q97U28 | [315] | 15869466 | ||
9f | HVO_1692 | ludB | self | [21] | 30707467 | ||||
9f | HVO_1692 (cont.) | probably | 35% | BSU34040 | O07021 | [316] | 19201793 | matches up to HVO_1692 pos 490 of 733 | |
9f | HVO_1692 (cont.) | probably | 35% | PST_3338 | O4VPR6 | [317] | 25917905 | matches up to HVO_1692 pos 400 of 733 | |
9f | HVO_1693 | ludC | self | [21] | 30707467 | ||||
9f | HVO_1693 (cont.) | probably | 30% | BSU34030 | O32259 | [316] | 19201793 | ||
9f | HVO_1693 (cont.) | probably | 33% | PST_3339 | O4VPR7 | [317] | 25917905 | partial match | |
9f | HVO_1697 | - | unclear | 24% | PST_3340 | O4VPR8 | [317] | 25917905 | |
9f | HVO_1696 | lctP | probably | 44% | PST_3336 | O4VPR4 | [317] | 25917905 | |
9g | HVO_B0300 | pucL1 | yes | 49% | BSU32450 | O32141 | [318] | 20168977 | Bacillus: bifunctional, matches to C-term |
9g | HVO_B0299 | pucM | yes | 43% | BSU32460 | O32142 | [319] | 16098976 | |
9g | HVO_B0301 | pucL2 | yes | 43% | BSU32450 | O32141 | [320] | 17567580 | Bacillus: bifunctional, matches to N-term |
9g | HVO_B0302 | pucH1 | no | 33% | - | Q8VTT5 | [321] | 12148274 | paper in Chinese, abstract in English; pyrimidine degradation |
9g | HVO_B0302 (cont.) | yes | 30% | STM0523 | Q7CR08 | [322] | 23287969 | purine degradation | |
9g | HVO_B0302 (cont.) | yes | 29% | BSU32410 | O32137 | [323] | 11344136 | purine degradation | |
9g | HVO_B0306 | amaB4 | no | 39% | - | Q53389 | [324] | 22904279 | carbamoyl-AA hydrolysis |
9g | HVO_B0306 (cont.) | yes | 34% | At5g43600 | Q8VXY9 | [325] [326] | 19935661 23940254 | purine degradation | |
9g | HVO_B0308 | coxS | no | 46% | Saci_2270 | Q4J6M5 | [327] | 10095793 | GAPDH |
9g | HVO_B0308 (cont.) | no | 41% | - | P19915 | [328] | 10482497 | CO-DH | |
9g | HVO_B0308 (cont.) | yes | 39% | b2868 | Q46801 | [329] | 10986234 | xanthine DH | |
9g | HVO_B0309 | coxL | yes | 33% | b2866 | Q46799 | [329] | 10986234 | xanthine DH |
9g | HVO_B0309 (cont.) | no | 28% | - | P19913 | [328] | 10482497 | CO-DH | |
9g | HVO_B0309 (cont.) | no | 26% | Saci_2271 | Q4J6M3 | [327] | 10095793 | GAPDH | |
9g | HVO_B0310 | coxM | no | 31% | Saci_2269 | Q4J6M6 | [327] | 10095793 | GAPDH |
9g | HVO_B0310 (cont.) | no | 31% | - | P19914 | [328] | 10482497 | CO-DH | |
9g | HVO_B0310 (cont.) | yes | 25% | b2867 | Q46800 | [329] | 10986234 | xanthine DH | |
9g | HVO_B0303 | uraA4 | yes | 38% | b3654 | P0AGM9 | [330] | 16096267 | |
9h | HVO_0197 | - | possibly | 39% | lp_0105 | F9UST0 | [331] | 27114550 | LarB family protein |
9h | HVO_2381 | - | possibly | 31% | lp_0106/ lp_0107 | F9UST1 | [331] | 27114550 | LarC family protein |
9h | HVO_0190 | - | possibly | 34% | lp_0109 | F9UST4 | [331] | 27114550 | LarE family protein |
9i | HVO_1660 | dacZ | self | [37] | 30884174 | ||||
9i | HVO_0756 | - | prediction | [332] | 32095817 | ||||
9i | HVO_0990 | - | prediction | [332] | 32095817 | ||||
9i | HVO_1690 | - | prediction | [332] | 32095817 | ||||
9j | HVO_2763 | - | self | [333] | 22350204 | no function could be assigned | |||
9j | HVO_2763 (cont.) | no | 27% | HVO_0144 | D4GZ88 | [334] | 18437358 | Rnase Z | |
9k | HVO_2410 | dabA | yes | 33% | Hneap_0211 | D0KWS7 | [335] | 31406332 | |
9k | HVO_2411 | dabB | yes | 31% | Hneap_0212 | D0KWS8 | [335] | 31406332 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartman, A.L.; Norais, C.; Badger, J.H.; Delmas, S.; Haldenby, S.; Madupu, R.; Robinson, J.; Khouri, H.; Ren, Q.; Lowe, T.M.; et al. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE 2010, 5, e9605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, S.; Adams, Z.; Cerletti, M.; De Castro, R.; Ferreira-Cerca, S.; Fufezan, C.; Gimenez, M.I.; Hippler, M.; Jevtic, Z.; Knuppel, R.; et al. The Archaeal Proteome Project advances knowledge about archaeal cell biology through comprehensive proteomics. Nat. Commun. 2020, 11, 3145. [Google Scholar] [CrossRef]
- Leigh, J.A.; Albers, S.V.; Atomi, H.; Allers, T. Model organisms for genetics in the domain Archaea: Methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol. Rev. 2011, 35, 577–608. [Google Scholar] [CrossRef] [Green Version]
- Perez-Arnaiz, P.; Dattani, A.; Smith, V.; Allers, T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020, 10, 200293. [Google Scholar] [CrossRef]
- Soppa, J. Functional genomic and advanced genetic studies reveal novel insights into the metabolism, regulation, and biology of Haloferax volcanii. Archaea 2011, 2011, 602408. [Google Scholar] [CrossRef] [Green Version]
- Haque, R.U.; Paradisi, F.; Allers, T. Haloferax volcanii for biotechnology applications: Challenges, current state and perspectives. Appl Microbiol Biotechnol 2020, 104, 1371–1382. [Google Scholar] [CrossRef] [Green Version]
- Allers, T.; Barak, S.; Liddell, S.; Wardell, K.; Mevarech, M. Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 2010, 76, 1759–1769. [Google Scholar] [CrossRef] [Green Version]
- Allers, T.; Mevarech, M. Archaeal genetics—the third way. Nat. Rev. Genet. 2005, 6, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Kiljunen, S.; Pajunen, M.I.; Dilks, K.; Storf, S.; Pohlschroder, M.; Savilahti, H. Generation of comprehensive transposon insertion mutant library for the model archaeon, Haloferax volcanii, and its use for gene discovery. BMC Biol. 2014, 12, 103. [Google Scholar]
- Pfeiffer, F.; Broicher, A.; Gillich, T.; Klee, K.; Mejia, J.; Rampp, M.; Oesterhelt, D. Genome information management and integrated data analysis with HaloLex. Arch. Microbiol. 2008, 190, 281–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, F.; Oesterhelt, D. A manual curation strategy to improve genome annotation: Application to a set of haloarchael genomes. Life (Basel) 2015, 5, 1427–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkowyd, B.; Schreiber, S.; Wortz, J.; Segal, E.S.; Mevarech, M.; Duggin, I.G.; Marchfelder, A.; Endesfelder, U. Establishing live-cell single-molecule localization microscopy imaging and single-particle tracking in the archaeon Haloferax volcanii. Front. Microbiol. 2020, 11, 583010. [Google Scholar] [CrossRef]
- Walsh, J.C.; Angstmann, C.N.; Bisson-Filho, A.W.; Garner, E.C.; Duggin, I.G.; Curmi, P.M.G. Division plane placement in pleomorphic archaea is dynamically coupled to cell shape. Mol. Microbiol. 2019, 112, 785–799. [Google Scholar] [CrossRef] [PubMed]
- de Silva, R.T.; Abdul-Halim, M.F.; Pittrich, D.A.; Brown, H.J.; Pohlschroder, M.; Duggin, I.G. Improved growth and morphological plasticity of Haloferax volcanii. Microbiology (Reading) 2021, 167, 001012. [Google Scholar] [CrossRef]
- Duggin, I.G.; Aylett, C.H.; Walsh, J.C.; Michie, K.A.; Wang, Q.; Turnbull, L.; Dawson, E.M.; Harry, E.J.; Whitchurch, C.B.; Amos, L.A.; et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 2015, 519, 362–365. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Ithurbide, S.; Evenhuis, C.; Lowe, J.; Duggin, I.G. Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction. Nat. Microbiol. 2021, 6, 594–605. [Google Scholar] [CrossRef]
- Brasen, C.; Schonheit, P. Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch. Microbiol. 2001, 175, 360–368. [Google Scholar] [CrossRef]
- Johnsen, U.; Dambeck, M.; Zaiss, H.; Fuhrer, T.; Soppa, J.; Sauer, U.; Schonheit, P. D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J. Biol. Chem. 2009, 284, 27290–27303. [Google Scholar] [CrossRef] [Green Version]
- Pickl, A.; Johnsen, U.; Schonheit, P. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase. J. Bacteriol. 2012, 194, 3088–3097. [Google Scholar] [CrossRef] [Green Version]
- Sutter, J.M.; Tastensen, J.B.; Johnsen, U.; Soppa, J.; Schonheit, P. Key enzymes of the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii: Characterization of glucose dehydrogenase, gluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. J. Bacteriol. 2016, 198, 2251–2262. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, A.; Johnsen, U.; Schonheit, P. L-Rhamnose catabolism in archaea. Mol. Microbiol. 2019, 111, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Kuprat, T.; Ortjohann, M.; Johnsen, U.; Schonheit, P. Glucose metabolism and acetate switch in Archaea: The enzymes in Haloferax volcanii. J. Bacteriol. 2021, 203, e00690-20. [Google Scholar] [CrossRef]
- Kuprat, T.; Johnsen, U.; Ortjohann, M.; Schonheit, P. Acetate metabolism in Archaea: Characterization of an acetate transporter and of enzymes involved in acetate activation and gluconeogenesis in Haloferax volcanii. Front. Microbiol. 2020, 11, 604926. [Google Scholar] [CrossRef]
- Sutter, J.M.; Johnsen, U.; Reinhardt, A.; Schonheit, P. Pentose degradation in archaea: Halorhabdus species degrade D-xylose, L-arabinose and D-ribose via bacterial-type pathways. Extremophiles 2020, 24, 759–772. [Google Scholar] [CrossRef]
- Tästensen, J.B.; Johnsen, U.; Reinhardt, A.; Ortjohann, M.; Schonheit, P. D-galactose catabolism in archaea: Operation of the DeLey-Doudoroff pathway in Haloferax volcanii. FEMS Microbiol. Lett. 2020, 367, fnaa029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Halim, M.F.; Schulze, S.; DiLucido, A.; Pfeiffer, F.; Bisson Filho, A.W.; Pohlschroder, M. Lipid anchoring of archaeosortase substrates and midcell growth in haloarchaea. mBio 2020, 11, e00349-20. [Google Scholar] [CrossRef] [Green Version]
- Abdul Halim, M.F.; Rodriguez, R.; Stoltzfus, J.D.; Duggin, I.G.; Pohlschroder, M. Conserved residues are critical for Haloferax volcanii archaeosortase catalytic activity: Implications for convergent evolution of the catalytic mechanisms of non-homologous sortases from archaea and bacteria. Mol. Microbiol. 2018, 108, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Abdul Halim, M.F.; Pfeiffer, F.; Zou, J.; Frisch, A.; Haft, D.; Wu, S.; Tolic, N.; Brewer, H.; Payne, S.H.; Pasa-Tolic, L.; et al. . Haloferax volcanii archaeosortase is required for motility, mating, and C-terminal processing of the S-layer glycoprotein. Mol. Microbiol. 2013, 88, 1164–1175. [Google Scholar] [CrossRef]
- Storf, S.; Pfeiffer, F.; Dilks, K.; Chen, Z.Q.; Imam, S.; Pohlschroder, M. Mutational and bioinformatic analysis of haloarchaeal lipobox-containing proteins. Archaea 2010, 2010, 410975. [Google Scholar] [CrossRef] [Green Version]
- Schiller, H.; Schulze, S.; Mutan, Z.; de Vaulx, C.; Runcie, C.; Schwartz, J.; Rados, T.; Bisson Filho, A.W.; Pohlschroder, M. Haloferax volcanii immersed liquid biofilms develop independently of known biofilm machineries and exhibit rapid honeycomb pattern formation. mSphere 2020, 5, e00976-20. [Google Scholar] [CrossRef]
- Pohlschroder, M.; Esquivel, R.N. Archaeal type IV pili and their involvement in biofilm formation. Front. Microbiol. 2015, 6, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Rodriguez-Franco, M.; Albers, S.V.; Quax, T.E.F. The switch complex ArlCDE connects the chemotaxis system and the archaellum. Mol. Microbiol. 2020, 114, 468–479. [Google Scholar] [CrossRef]
- Collins, M.; Afolayan, S.; Igiraneza, A.B.; Schiller, H.; Krespan, E.; Beiting, D.P.; Dyall-Smith, M.; Pfeiffer, F.; Pohlschroder, M. Mutations affecting HVO_1357 or HVO_2248 cause hypermotility in Haloferax volcanii, suggesting roles in motility regulation. Genes (Basel) 2020, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Quax, T.E.F.; Altegoer, F.; Rossi, F.; Li, Z.; Rodriguez-Franco, M.; Kraus, F.; Bange, G.; Albers, S.V. Structure and function of the archaeal response regulator CheY. Proc. Natl. Acad. Sci. USA 2018, 115, E1259–E1268. [Google Scholar] [CrossRef] [Green Version]
- Nussbaum, P.; Ithurbide, S.; Walsh, J.C.; Patro, M.; Delpech, F.; Rodriguez-Franco, M.; Curmi, P.M.G.; Duggin, I.G.; Quax, T.E.F.; Albers, S.V. An oscillating MinD protein determines the cellular positioning of the motility machinery in Archaea. Curr. Biol. 2020, 30, 4956–4972. [Google Scholar] [CrossRef]
- Shalev, Y.; Turgeman-Grott, I.; Tamir, A.; Eichler, J.; Gophna, U. Cell surface glycosylation is required for efficient mating of Haloferax volcanii. Front. Microbiol. 2017, 8, 1253. [Google Scholar] [CrossRef] [Green Version]
- Braun, F.; Thomalla, L.; van der Does, C.; Quax, T.E.F.; Allers, T.; Kaever, V.; Albers, S.V. Cyclic nucleotides in archaea: Cyclic di-AMP in the archaeon Haloferax volcanii and its putative role. Microbiologyopen 2019, 8, e00829. [Google Scholar] [CrossRef] [Green Version]
- Maier, L.K.; Stachler, A.E.; Brendel, J.; Stoll, B.; Fischer, S.; Haas, K.A.; Schwarz, T.S.; Alkhnbashi, O.S.; Sharma, K.; Urlaub, H.; et al. The nuts and bolts of the Haloferax CRISPR-Cas system I-B. RNA Biol. 2019, 16, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Reuter, C.J.; Maupin-Furlow, J.A. Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins. Appl. Environ. Microbiol. 2004, 70, 7530–7538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, C.J.; Uthandi, S.; Puentes, J.A.; Maupin-Furlow, J.A. Hydrophobic carboxy-terminal residues dramatically reduce protein levels in the haloarchaeon Haloferax volcanii. Microbiology (Reading) 2010, 156, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Prunetti, L.; Reuter, C.J.; Hepowit, N.L.; Wu, Y.; Barrueto, L.; Miranda, H.V.; Kelly, K.; Maupin-Furlow, J.A. Structural and biochemical properties of an extreme ’salt-loving’ proteasome activating nucleotidase from the archaeon Haloferax volcanii. Extremophiles 2014, 18, 283–293. [Google Scholar] [CrossRef]
- Cerletti, M.; Paggi, R.; Troetschel, C.; Ferrari, M.C.; Guevara, C.R.; Albaum, S.; Poetsch, A.; De Castro, R. LonB protease is a novel regulator of carotenogenesis controlling degradation of phytoene synthase in Haloferax volcanii. J. Proteome Res. 2018, 17, 1158–1171. [Google Scholar] [CrossRef] [Green Version]
- Cerletti, M.; Martinez, M.J.; Gimenez, M.I.; Sastre, D.E.; Paggi, R.A.; De Castro, R.E. The LonB protease controls membrane lipids composition and is essential for viability in the extremophilic haloarchaeon Haloferax volcanii. Environ. Microbiol. 2014, 16, 1779–1792. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.I.; Cerletti, M.; Paggi, R.A.; Trotschel, C.; De Castro, R.E.; Poetsch, A.; Gimenez, M.I. Haloferax volcanii proteome response to deletion of a rhomboid protease gene. J. Proteome Res. 2018, 17, 961–977. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Hepowit, N.; Maupin-Furlow, J.A. Ubiquitin-like protein SAMP1 and JAMM/MPN+ metalloprotease HvJAMM1 constitute a system for reversible regulation of metabolic enzyme activity in Archaea. PLoS ONE 2015, 10, e0128399. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, L.; Eichler, J. Haloferax volcanii N-glycosylation: Delineating the pathway of dTDP-rhamnose biosynthesis. PLoS ONE 2014, 9, e97441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripepi, M.; You, J.; Temel, S.; Onder, O.; Brisson, D.; Pohlschroder, M. N-Glycosylation of Haloferax volcanii flagellins requires known Agl proteins and Is essential for biosynthesis of stable flagella. J. Bacteriol. 2012, 194, 4876–4887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gribaldo, S.; Schulze, S.; Pfeiffer, F.; Garcia, B.A.; Pohlschroder, M. Comprehensive glycoproteomics shines new light on the complexity and extent of glycosylation in archaea. PLoS Biol. 2021, 19, e3001277. [Google Scholar]
- Shalev, Y.; Soucy, S.M.; Papke, R.T.; Gogarten, J.P.; Eichler, J.; Gophna, U. Comparative analysis of surface layer glycoproteins and genes involved in protein glycosylation in the genus Haloferax. Genes (Basel) 2018, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Kandiba, L.; Lin, C.W.; Aebi, M.; Eichler, J.; Guerardel, Y. Structural characterization of the N-linked pentasaccharide decorating glycoproteins of the halophilic archaeon Haloferax volcanii. Glycobiology 2016, 26, 745–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Q.; Ito, Y.; Yoshimatsu, K.; Fujiwara, T. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii. Extremophiles 2016, 20, 27–36. [Google Scholar] [CrossRef]
- Rawls, K.S.; Yacovone, S.K.; Maupin-Furlow, J.A. GlpR represses fructose and glucose metabolic enzymes at the level of transcription in the haloarchaeon Haloferax volcanii. J. Bacteriol. 2010, 192, 6251–6260. [Google Scholar] [CrossRef] [Green Version]
- Hattori, T.; Shiba, H.; Ashiki, K.; Araki, T.; Nagashima, Y.K.; Yoshimatsu, K.; Fujiwara, T. Anaerobic growth of haloarchaeon Haloferax volcanii by denitrification is controlled by the transcription regulator NarO. J. Bacteriol. 2016, 198, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Cordova, B.; Abdo, M.; Pfeiffer, F.; Maupin-Furlow, J.A. ThiN as a versatile domain of transcriptional repressors and catalytic enzymes of thiamine biosynthesis. J. Bacteriol. 2017, 199, e00810–e00816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnsen, U.; Sutter, J.M.; Schulz, A.C.; Tastensen, J.B.; Schonheit, P. XacR—A novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. Environ. Microbiol. 2015, 17, 1663–1676. [Google Scholar] [CrossRef]
- Zahn, S.; Kubatova, N.; Pyper, D.J.; Cassidy, L.; Saxena, K.; Tholey, A.; Schwalbe, H.; Soppa, J. Biological functions, genetic and biochemical characterization, and NMR structure determination of the small zinc finger protein HVO_2753 from Haloferax volcanii. FEBS J. 2021, 288, 2042–2062. [Google Scholar] [CrossRef]
- Nagel, C.; Machulla, A.; Zahn, S.; Soppa, J. Several one-domain zinc finger micro-proteins of Haloferax volcanii are important for stress adaptation, biofilm formation, and swarming. Genes (Basel) 2019, 10, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubatova, N.; Jonker, H.R.A.; Saxena, K.; Richter, C.; Vogel, V.; Schreiber, S.; Marchfelder, A.; Schwalbe, H. Solution Structure and Dynamics of the Small Protein HVO_2922 from Haloferax volcanii. ChemBioChem 2020, 21, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Straub, J.; Brenneis, M.; Jellen-Ritter, A.; Heyer, R.; Soppa, J.; Marchfelder, A. Small RNAs in haloarchaea: Identification, differential expression and biological function. RNA Biol. 2009, 6, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyer, R.; Dorr, M.; Jellen-Ritter, A.; Spath, B.; Babski, J.; Jaschinski, K.; Soppa, J.; Marchfelder, A. High throughput sequencing reveals a plethora of small RNAs including tRNA derived fragments in Haloferax volcanii. RNA Biol. 2012, 9, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Babski, J.; Maier, L.K.; Heyer, R.; Jaschinski, K.; Prasse, D.; Jager, D.; Randau, L.; Schmitz, R.A.; Marchfelder, A.; Soppa, J. Small regulatory RNAs in Archaea. RNA Biol. 2014, 11, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Wyss, L.; Waser, M.; Gebetsberger, J.; Zywicki, M.; Polacek, N. mRNA-specific translation regulation by a ribosome-associated ncRNA in Haloferax volcanii. Sci. Rep. 2018, 8, 12502. [Google Scholar] [CrossRef]
- Schnoes, A.M.; Brown, S.D.; Dodevski, I.; Babbitt, P.C. Annotation error in public databases: Misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 2009, 5, e1000605. [Google Scholar] [CrossRef]
- Promponas, V.J.; Iliopoulos, I.; Ouzounis, C.A. Annotation inconsistencies beyond sequence similarity-based function prediction—Phylogeny and genome structure. Stand Genomic Sci 2015, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Danchin, A.; Ouzounis, C.; Tokuyasu, T.; Zucker, J.D. No wisdom in the crowd: Genome annotation in the era of big—Current status and future prospects. Microb. Biotechnol. 2018, 11, 588–605. [Google Scholar] [CrossRef] [PubMed]
- Falb, M.; Muller, K.; Konigsmaier, L.; Oberwinkler, T.; Horn, P.; von Gronau, S.; Gonzalez, O.; Pfeiffer, F.; Bornberg-Bauer, E.; Oesterhelt, D. Metabolism of halophilic archaea. Extremophiles 2008, 12, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y.; Furumichi, M.; Morishima, K.; Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019, 47, D590–D595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UniProt, C. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar]
- Pfeiffer, F.; Losensky, G.; Marchfelder, A.; Habermann, B.; Dyall-Smith, M. Whole-genome comparison between the type strain of Halobacterium salinarum (DSM 3754(T) ) and the laboratory strains R1 and NRC-1. Microbiologyopen 2020, 9, e974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tittes, C.; Schwarzer, S.; Pfeiffer, F.; Dyall-Smith, M.; Rodriguez-Franco, M.; Oksanen, H.M.; Quax, T.E.F. Cellular and genomic properties of Haloferax gibbonsii LR2-5, the host of euryarchaeal virus HFTV1. Front. Microbiol. 2021, 12, 625599. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Bork, P.; Das, U.; Daugherty, L.; Duquenne, L.; et al. InterPro: The integrative protein signature database. Nucleic Acids Res. 2009, 37, D211–D215. [Google Scholar] [CrossRef] [Green Version]
- Kriventseva, E.V.; Kuznetsov, D.; Tegenfeldt, F.; Manni, M.; Dias, R.; Simao, F.A.; Zdobnov, E.M. OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019, 47, D807–D811. [Google Scholar] [CrossRef] [Green Version]
- Oberto, J. SyntTax: A web server linking synteny to prokaryotic taxonomy. BMC Bioinformatics 2013, 14, 4. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Rich, P.R.; Marechal, A. The mitochondrial respiratory chain. Essays Biochem. 2010, 47, 1–23. [Google Scholar] [PubMed] [Green Version]
- Guo, R.; Gu, J.; Zong, S.; Wu, M.; Yang, M. Structure and mechanism of mitochondrial electron transport chain. Biomed. J. 2018, 41, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Crofts, A.R.; Hong, S.; Wilson, C.; Burton, R.; Victoria, D.; Harrison, C.; Schulten, K. The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. Biochim. Biophys. Acta 2013, 1827, 1362–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaila, V.R.I.; Wikstrom, M. Architecture of bacterial respiratory chains. Nat. Rev. Microbiol. 2021, 19, 319–330. [Google Scholar] [CrossRef]
- Schafer, G.; Engelhard, M.; Muller, V. Bioenergetics of the Archaea. Microbiol. Mol. Biol. Rev. 1999, 63, 570–620. [Google Scholar] [CrossRef] [Green Version]
- Scharf, B.; Wittenberg, R.; Engelhard, M. Electron transfer proteins from the haloalkaliphilic archaeon Natronobacterium pharaonis: Possible components of the respiratory chain include cytochrome bc and a terminal oxidase cytochrome ba3. Biochemistry 1997, 36, 4471–4479. [Google Scholar] [CrossRef] [PubMed]
- Sreeramulu, K.; Schmidt, C.L.; Schafer, G.; Anemuller, S. Studies of the electron transport chain of the euryarcheon Halobacterium salinarum: Indications for a type II NADH dehydrogenase and a complex III analog. J. Bioenerg. Biomembr. 1998, 30, 443–453. [Google Scholar] [CrossRef]
- Gradin, C.H.; Hederstedt, L.; Baltscheffsky, H. Soluble succinate dehydrogenase from the halophilic archaebacterium, Halobacterium halobium. Arch. Biochem. Biophys. 1985, 239, 200–205. [Google Scholar] [CrossRef]
- Steinert, K.; Wagner, V.; Kroth Pancic, P.G.; Bickel Sandkoetter, S. Characterization and subunit structure of the ATP synthase of the halophilic archaeon Haloferax volcanii and organization of the ATP synthase genes. J. Biol. Chem. 1997, 272, 6261–6269. [Google Scholar] [CrossRef] [Green Version]
- Nanba, T.; Mukohata, Y. A membrane-bound ATPase from Halobacterium halobium: Purification and characterization. J. Biochem. (Tokyo) 1987, 102, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Kerscher, L.; Oesterhelt, D. Ferredoxin is the coenzyme of α-ketoacid oxidoreductases in Halobacterium halobium. FEBS Lett. 1977, 83, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Plaga, W.; Lottspeich, F.; Oesterhelt, D. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium. Eur. J. Biochem. 1992, 205, 391–397. [Google Scholar] [CrossRef]
- Kerscher, L.; Oesterhelt, D. Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. Eur. J. Biochem. 1981, 116, 587–594. [Google Scholar] [CrossRef]
- Kerscher, L.; Oesterhelt, D. The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. One-electron transfer at two distinct steps of the catalytic cycle. Eur. J. Biochem. 1981, 116, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla, B.; Martinez-Espinosa, R.M.; Bonete, M.J.; Butt, J.N.; Richardson, D.J.; Gates, A.J. A haloarchaeal ferredoxin electron donor that plays an essential role in nitrate assimilation. Biochem. Soc. Trans. 2011, 39, 1844–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falb, M.; Pfeiffer, F.; Palm, P.; Rodewald, K.; Hickmann, V.; Tittor, J.; Oesterhelt, D. Living with two extremes: Conclusions from the genome sequence of Natronomonas pharaonis. Genome Res. 2005, 15, 1336–1343. [Google Scholar] [CrossRef] [Green Version]
- Leif, H.; Sled, V.D.; Ohnishi, T.; Weiss, H.; Friedrich, T. Isolation and characterization of the proton-translocating NADH: Ubiquinone oxidoreductase from Escherichia coli. Eur. J. Biochem. 1995, 230, 538–548. [Google Scholar] [CrossRef]
- Braun, M.; Bungert, S.; Friedrich, T. Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry 1998, 37, 1861–1867. [Google Scholar] [CrossRef] [PubMed]
- Mattar, S. Molekularbiologische und Biochemische Charakterisierung zweier Komplexe der Atmungskette von Natronobacterium pharaonis. Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany, 1996. [Google Scholar]
- Kletzin, A.; Heimerl, T.; Flechsler, J.; van Niftrik, L.; Rachel, R.; Klingl, A. Cytochromes c in Archaea: Distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front. Microbiol. 2015, 6, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreeramulu, K. Purification and partial characterization of cytochrome c552 from Halobacterium salinarium. Indian J. Biochem. Biophys. 2003, 40, 274–277. [Google Scholar]
- Mattar, S.; Scharf, B.; Kent, S.B.; Rodewald, K.; Oesterhelt, D.; Engelhard, M. The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J. Biol. Chem. 1994, 269, 14939–14945. [Google Scholar] [CrossRef]
- Scharf, B.; Engelhard, M. Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis. Biochemistry 1993, 32, 12894–12900. [Google Scholar] [CrossRef]
- Hildebrandt, P.; Matysik, J.; Schrader, B.; Scharf, B.; Engelhard, M. Raman spectroscopic study of the blue copper protein halocyanin from Natronobacterium pharaonis. Biochemistry 1994, 33, 11426–11431. [Google Scholar] [CrossRef] [PubMed]
- Kerscher, L.; Oesterhelt, D. A ferredoxin from halobacteria. FEBS Lett. 1976, 67, 320–322. [Google Scholar] [CrossRef] [Green Version]
- Kerscher, L.; Oesterhelt, D.; Cammack, R.; Hall, D.O. A new plant-type ferredoxin from halobacteria. Eur. J. Biochem. 1976, 71, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Battchikova, N.; Paakkarinen, V.; Katoh, H.; Iwai, M.; Ikeuchi, M.; Pakrasi, H.B.; Ogawa, T.; Aro, E.M. Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1. Biochem. J. 2005, 390, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuller, J.M.; Birrell, J.A.; Tanaka, H.; Konuma, T.; Wulfhorst, H.; Cox, N.; Schuller, S.K.; Thiemann, J.; Lubitz, W.; Setif, P.; et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 2019, 363, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Cao, D.; Xie, F.; Xu, F.; Su, X.; Mi, H.; Zhang, X.; Li, M. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. Nat. Commun. 2020, 11, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Krulwich, T.A.; Hicks, D.B. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4. Biochim. Biophys. Acta 2008, 1777, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.-X.; Metzger, S.U.; Cho, Y.S.; Whitmarsh, J.; Kallas, T. Modification of inhibitor binding sites in the cytochrome bf complex by directed mutagenesis of cytochrome b6 in Synechococcus sp. PCC 7002. Biochim. Biophys. Acta 2001, 1504, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Mattar, S.; Engelhard, M. Cytochrome ba3 from Natronobacterium pharaonis—An archaeal four-subunit cytochrome-c-type oxidase. Eur. J. Biochem. 1997, 250, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Ogawa, N.; Ihara, K.; Sugiyama, Y.; Mukohata, Y. Cytochrome aa(3) in Haloferax volcanii. J. Bacteriol. 2002, 184, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, T.; Fukumori, Y.; Yamanaka, T. Purification and properties of Halobacterium halobium “cytochrome aa3” which lacks CuA and CuB. J. Biochem. (Tokyo) 1989, 105, 287–292. [Google Scholar] [CrossRef]
- Denda, K.; Fujiwara, T.; Seki, M.; Yoshida, M.; Fukumori, Y.; Yamanaka, T. Molecular cloning of the cytochrome aa3 gene from the archaeon (Archaebacterium) Halobacterium halobium. Biochem. Biophys. Res. Commun. 1991, 181, 316–322. [Google Scholar] [CrossRef]
- Ishikawa, R.; Ishido, Y.; Tachikawa, A.; Kawasaki, H.; Matsuzawa, H.; Wakagi, T. Aeropyrum pernix K1, a strictly aerobic and hyperthermophilic archaeon, has two terminal oxidases, cytochrome ba3 and cytochrome aa3. Arch. Microbiol. 2002, 179, 42–49. [Google Scholar] [CrossRef]
- Moshiri, F.; Chawla, A.; Maier, R.J. Cloning, characterization, and expression in Escherichia coli of the genes encoding the cytochrome d oxidase complex from Azotobacter vinelandii. J. Bacteriol. 1991, 173, 6230–6241. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.J.; Gennis, R.B. The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J. Biol. Chem. 1983, 258, 9159–9165. [Google Scholar] [CrossRef]
- Zimmermann, B.H.; Nitsche, C.I.; Fee, J.A.; Rusnak, F.; Munck, E. Properties of a copper-containing cytochrome ba3: A second terminal oxidase from the extreme thermophile Thermus thermophilus. Proc. Natl. Acad. Sci. USA 1988, 85, 5779–5783. [Google Scholar] [CrossRef] [Green Version]
- Keightley, J.A.; Zimmermann, B.H.; Mather, M.W.; Springer, P.; Pastuszyn, A.; Lawrence, D.M.; Fee, J.A. Molecular genetic and protein chemical characterization of the cytochrome ba3 from Thermus thermophilus HB8. J. Biol. Chem. 1995, 270, 20345–20358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisignano, M.; Morbitzer, D.; Gatgens, J.; Oldiges, M.; Soppa, J. A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not on other branched-chain amino acids. Microbiology 2010, 156, 521–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolley, K.A.; Maddocks, D.G.; Gyles, S.L.; Mullan, Z.; Tang, S.L.; Dyall-Smith, M.L.; Hough, D.W.; Danson, M.J. 2-Oxoacid dehydrogenase multienzyme complexes in the halophilic Archaea? Gene sequences and protein structural predictions. Microbiology (Reading) 2000, 146 Pt 5, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Al-Mailem, D.M.; Hough, D.W.; Danson, M.J. The 2-oxoacid dehydrogenase multienzyme complex of Haloferax volcanii. Extremophiles 2008, 12, 89–96. [Google Scholar] [CrossRef]
- van Ooyen, J.; Soppa, J. Three 2-oxoacid dehydrogenase operons in Haloferax volcanii: Expression, deletion mutants and evolution. Microbiology 2007, 153, 3303–3313. [Google Scholar] [CrossRef] [Green Version]
- Wanner, C.; Soppa, J. Functional role for a 2-oxo acid dehydrogenase in the halophilic archaeon Haloferax volcanii. J. Bacteriol. 2002, 184, 3114–3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, C.; Posner, M.G.; Aass, H.C.; Upadhyay, A.; Scott, D.J.; Hough, D.W.; Danson, M.J. The 2-oxoacid dehydrogenase multi-enzyme complex of the archaeon Thermoplasma acidophilum—Recombinant expression, assembly and characterization. FEBS J. 2007, 274, 5406–5415. [Google Scholar] [CrossRef]
- Oppermann, F.B.; Schmidt, B.; Steinbuchel, A. Purification and characterization of acetoin:2,6-dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J. Bacteriol. 1991, 173, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Oppermann-Sanio, F.B.; Steinbuchel, A. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J. Bacteriol. 1999, 181, 3837–3841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horie, A.; Tomita, T.; Saiki, A.; Kono, H.; Taka, H.; Mineki, R.; Fujimura, T.; Nishiyama, C.; Kuzuyama, T.; Nishiyama, M. Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat. Chem. Biol. 2009, 5, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Tomita, T.; Atomi, H.; Kuzuyama, T.; Nishiyama, M. Lysine biosynthesis of Thermococcus kodakarensis with the capacity to function as an ornithine biosynthetic system. J. Biol. Chem. 2016, 291, 21630–21643. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, T.; Tomita, T.; Horie, A.; Yoshida, A.; Takahashi, K.; Nishida, H.; Lassak, K.; Taka, H.; Mineki, R.; Fujimura, T.; et al. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus. Nat. Chem. Biol. 2013, 9, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Hochuli, M.; Patzelt, H.; Oesterhelt, D.; Wuthrich, K.; Szyperski, T. Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. J. Bacteriol. 1999, 181, 3226–3237. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, A.; Tomita, T.; Fujimura, T.; Nishiyama, C.; Kuzuyama, T.; Nishiyama, M. Structural insight into amino group-carrier protein-mediated lysine biosynthesis: Crystal structure of the LysZ.LysW complex from Thermus thermophilus. J. Biol. Chem. 2015, 290, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Tomita, T.; Kuzuyama, T.; Nishiyama, M. Crystal structure of the LysY.LysW complex from Thermus thermophilus. J. Biol. Chem. 2016, 291, 9948–9959. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, J.; Kobashi, N.; Nishiyama, M.; Yamane, H. Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through alpha-aminoadipate. J. Bacteriol. 2001, 183, 5067–5073. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Cho, S.H.; Yoshida, A.; Hasebe, F.; Tomita, T.; Kuzuyama, T.; Nishiyama, M. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW. Biochem. Biophys. Res. Commun. 2017, 491, 409–415. [Google Scholar] [CrossRef]
- Issaly, I.M.; Issaly, A.S. Control of ornithine carbamoyltransferase activityby arginase in Bacillus subtilis. Eur. J. Biochem. 1974, 49, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Ruepp, A.; Muller, H.N.; Lottspeich, F.; Soppa, J. Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium)—Purification, characterization, sequence determination, and evolution. J. Bacteriol. 1995, 177, 1129–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, N.; Kobayashi, K.; Terazono, H.; Fukushige, T.; Horiuchi, M.; Saheki, T. Characterization of human wild-type and mutant argininosuccinate synthetase proteins expressed in bacterial cells. Enzyme Protein 1994, 48, 251–264. [Google Scholar] [CrossRef]
- Lemke, C.; Yeung, M.; Howell, P.L. Expression, purification, crystallization and preliminary X-ray analysis of Escherichia coli argininosuccinate synthetase. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 2028–2030. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Kupiec, R.; Kupiec, M.; Sandbeck, K.; Leigh, J.A. Functional conservation between the argininosuccinate lyase of the archaeon Methanococcus maripaludis and the corresponding bacterial and eukaryal genes. FEMS Microbiol. Lett. 1999, 173, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Kato, C.; Kurihara, T.; Kobashi, N.; Yamane, H.; Nishiyama, M. Conversion of feedback regulation in aspartate kinase by domain exchange. Biochem. Biophys. Res. Commun. 2004, 316, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Faehnle, C.R.; Ohren, J.F.; Viola, R.E. A new branch in the family: Structure of aspartate-beta-semialdehyde dehydrogenase from Methanococcus jannaschii. J. Mol. Biol. 2005, 353, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Gautam, A.; Kumar, S.; Singh, A.; Singh, N.; Sharma, S.; Sharma, R.; Tewari, R.; Singh, T.P. Biochemical studies and crystal structure determination of dihydrodipicolinate synthase from Pseudomonas aeruginosa. Int. J. Biol. Macromol. 2011, 48, 779–787. [Google Scholar] [CrossRef]
- Reddy, S.G.; Sacchettini, J.C.; Blanchard, J.S. Expression, purification, and characterization of Escherichia coli dihydrodipicolinate reductase. Biochemistry 1995, 34, 3492–3501. [Google Scholar] [CrossRef]
- Simms, S.A.; Voige, W.H.; Gilvarg, C. Purification and characterization of succinyl-CoA: Tetrahydrodipicolinate N-succinyltransferase from Escherichia coli. J. Biol. Chem. 1984, 259, 2734–2741. [Google Scholar] [CrossRef]
- Lin, Y.K.; Myhrman, R.; Schrag, M.L.; Gelb, M.H. Bacterial N-succinyl-L-diaminopimelic acid desuccinylase. Purification, partial characterization, and substrate specificity. J. Biol. Chem. 1988, 263, 1622–1627. [Google Scholar] [CrossRef]
- Wiseman, J.S.; Nichols, J.S. Purification and properties of diaminopimelic acid epimerase from Escherichia coli. J. Biol. Chem. 1984, 259, 8907–8914. [Google Scholar] [CrossRef]
- White, P.J.; Kelly, B. Purification and properties of diaminopimelate decarboxylase from Escherichia coli. Biochem. J. 1965, 96, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulko, M.K.; Dyall-Smith, M.; Gonzalez, O.; Oesterhelt, D. How do haloarchaea synthesize aromatic amino acids? PLoS ONE 2014, 9, e107475. [Google Scholar] [CrossRef] [Green Version]
- White, R.H. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 2004, 43, 7618–7627. [Google Scholar] [CrossRef] [PubMed]
- Porat, I.; Waters, B.W.; Teng, Q.; Whitman, W.B. Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J. Bacteriol. 2004, 186, 4940–4950. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.S.; Gollnick, P.D. Evidence that cysteine 298 Is in the active site of tryptophan indole-lyase. J. Biol. Chem. 1989, 264, 10627–10632. [Google Scholar] [CrossRef]
- Newton, W.A.; Morino, Y.; Snell, E.E. Properties of crystalline tryptophanase. J. Biol. Chem. 1965, 240, 1211–1218. [Google Scholar] [CrossRef]
- Oda, M.; Sugishita, A.; Furukawa, K. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon. J. Bacteriol. 1988, 170, 3199–3205. [Google Scholar] [CrossRef] [Green Version]
- Hartwell, L.H.; Magasanik, B. The molecular basis of histidase induction in Bacillus subtilis. J. Mol. Biol. 1963, 7, 401–420. [Google Scholar] [CrossRef]
- Kaminskas, E.; Kimhi, Y.; Magasanik, B. Urocanase and N-formimino-L-glutamate formiminohydrolase of Bacillus subtilis, two enzymes of the histidine degradation pathway. J. Biol. Chem. 1970, 245, 3536–3544. [Google Scholar] [CrossRef]
- Yu, Y.; Liang, Y.H.; Brostromer, E.; Quan, J.M.; Panjikar, S.; Dong, Y.H.; Su, X.D. A catalytic mechanism revealed by the crystal structures of the imidazolonepropionase from Bacillus subtilis. J. Biol. Chem. 2006, 281, 36929–36936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, D.M.; Xu, H.; White, R.H. (R)-citramalate synthase in methanogenic archaea. J. Bacteriol. 1999, 181, 331–333. [Google Scholar] [CrossRef] [Green Version]
- Howell, D.M.; Harich, K.; Xu, H.M.; White, R.H. Alpha-keto acid chain elongation reactions involved in the biosynthesis of coenzyme b (7-mercaptoheptanoyl threonine phosphate) in methanogenic archaea. Biochemistry 1998, 37, 10108–10117. [Google Scholar] [CrossRef] [PubMed]
- Porat, I.; Sieprawska-Lupa, M.; Teng, Q.; Bohanon, F.J.; White, R.H.; Whitman, W.B. Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis. Mol. Microbiol. 2006, 62, 1117–1131. [Google Scholar] [CrossRef] [PubMed]
- Large, A.; Stamme, C.; Lange, C.; Duan, Z.; Allers, T.; Soppa, J.; Lund, P.A. Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene. Mol. Microbiol. 2007, 66, 1092–1106. [Google Scholar] [CrossRef]
- Bali, S.; Lawrence, A.D.; Lobo, S.A.; Saraiva, L.M.; Golding, B.T.; Palmer, D.J.; Howard, M.J.; Ferguson, S.J.; Warren, M.J. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc. Natl. Acad. Sci. USA 2011, 108, 18260–18265. [Google Scholar] [CrossRef] [Green Version]
- Siddaramappa, S.; Challacombe, J.F.; Decastro, R.E.; Pfeiffer, F.; Sastre, D.E.; Gimenez, M.I.; Paggi, R.A.; Detter, J.C.; Davenport, K.W.; Goodwin, L.A.; et al. A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. BMC Genomics 2012, 13, 165. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.J.; Lawrence, A.D.; Biedendieck, R.; Deery, E.; Frank, S.; Howard, M.J.; Rigby, S.E.; Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl. Acad. Sci. USA 2013, 110, 14906–14911. [Google Scholar] [CrossRef] [Green Version]
- Rodionov, D.A.; Vitreschak, A.G.; Mironov, A.A.; Gelfand, M.S. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J. Biol. Chem. 2003, 278, 41148–41159. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, N.; Araki, T.; Fujita, J.; Tanaka, S.; Fujiwara, T. Growth phenotype analysis of heme synthetic enzymes in a halophilic archaeon, Haloferax volcanii. PLoS ONE 2017, 12, e0189913. [Google Scholar] [CrossRef] [PubMed]
- Raux, E.; Leech, H.K.; Beck, R.; Schubert, H.L.; Santander, P.J.; Roessner, C.A.; Scott, A.I.; Martens, J.H.; Jahn, D.; Thermes, C.; et al. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem. J. 2003, 370, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Brindley, A.A.; Raux, E.; Leech, H.K.; Schubert, H.L.; Warren, M.J. A story of chelatase evolution: Identification and characterization of a small 13-15-kDa "ancestral" cobaltochelatase (CbiXS) in the archaea. J. Biol. Chem. 2003, 278, 22388–22395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Xu, L.X.; Cherney, M.M.; Raux-Deery, E.; Bindley, A.A.; Savchenko, A.; Walker, J.R.; Cuff, M.E.; Warren, M.J.; James, M.N. Crystal structure of the vitamin B12 biosynthetic cobaltochelatase, CbiXS, from Archaeoglobus fulgidus. J. Struct. Funct. Genomics 2006, 7, 37–50. [Google Scholar] [CrossRef]
- Storbeck, S.; Rolfes, S.; Raux-Deery, E.; Warren, M.J.; Jahn, D.; Layer, G. A novel pathway for the biosynthesis of heme in Archaea: Genome-based bioinformatic predictions and experimental evidence. Archaea 2010, 2010, 175050. [Google Scholar] [CrossRef] [Green Version]
- Stroupe, M.E.; Leech, H.K.; Daniels, D.S.; Warren, M.J.; Getzoff, E.D. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat. Struct. Biol. 2003, 10, 1064–1073. [Google Scholar] [CrossRef]
- Pennington, J.M.; Kemp, M.; McGarry, L.; Chen, Y.; Stroupe, M.E. Siroheme synthase orients substrates for dehydrogenase and chelatase activities in a common active site. Nat. Commun. 2020, 11, 864. [Google Scholar] [CrossRef]
- Schubert, H.L.; Rose, R.S.; Leech, H.K.; Brindley, A.A.; Hill, C.P.; Rigby, S.E.; Warren, M.J. Structure and function of SirC from Bacillus megaterium: A metal-binding precorrin-2 dehydrogenase. Biochem. J. 2008, 415, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Roessner, C.A.; Warren, M.J.; Santander, P.J.; Atshaves, B.P.; Ozaki, S.-i.; Stolowich, N.J.; Iida, K.; Scott, A.I. Expression of 9 Salmonella typhimurium enzymes for cobinamide synthesis. Identification of the 11-methyl and 20-methyl transferases of corrin biosynthesis. FEBS Lett. 1992, 301, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Santander, P.J.; Roessner, C.A.; Stolowich, N.J.; Holderman, M.T.; Scott, A.I. How corrinoids are synthesized without oxygen: Nature’s first pathway to vitamin B12. Chem. Biol. 1997, 4, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Santander, P.J.; Kajiwara, Y.; Williams, H.J.; Scott, A.I. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg. Med. Chem. 2006, 14, 724–731. [Google Scholar] [CrossRef]
- Kajiwara, Y.; Santander, P.J.; Roessner, C.A.; Perez, L.M.; Scott, A.I. Genetically engineered synthesis and structural characterization of cobalt-precorrin 5A and -5B, two new intermediates on the anaerobic pathway to vitamin B12: Definition of the roles of the CbiF and CbiG enzymes. J. Am. Chem. Soc. 2006, 128, 9971–9978. [Google Scholar] [CrossRef]
- Fresquet, V.; Williams, L.; Raushel, F.M. Mechanism of cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium LT2. Biochemistry 2004, 43, 10619–10627. [Google Scholar] [CrossRef]
- Buan, N.R.; Rehfeld, K.; Escalante-Semerena, J.C. Studies of the CobA-type ATP:Co(I)rrinoid adenosyltransferase enzyme of Methanosarcina mazei strain Go1. J. Bacteriol. 2006, 188, 3543–3550. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, M.V.; Buan, N.R.; Horswill, A.R.; Rayment, I.; Escalante-Semerena, J.C. The ATP:Co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica requires the 2’-OH group of ATP for function and yields inorganic triphosphate as its reaction byproduct. J. Biol. Chem. 2002, 277, 33127–33131. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.L.; Pechonick, E.; Park, S.D.; Havemann, G.D.; Leal, N.A.; Bobik, T.A. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J. Bacteriol. 2001, 183, 1577–1584. [Google Scholar] [CrossRef] [Green Version]
- Woodson, J.D.; Zayas, C.L.; Escalante-Semerena, J.C. A new pathway for salvaging the coenzyme B12 precursor cobinamide in archaea requires cobinamide-phosphate synthase (CbiB) enzyme activity. J. Bacteriol. 2003, 185, 7193–7201. [Google Scholar] [CrossRef] [Green Version]
- Woodson, J.D.; Escalante-Semerena, J.C. CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea. Proc. Natl. Acad. Sci. USA 2004, 101, 3591–3596. [Google Scholar] [CrossRef] [Green Version]
- Woodson, J.D.; Peck, R.F.; Krebs, M.P.; Escalante-Semerena, J.C. The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis. J. Bacteriol. 2003, 185, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zayas, C.L.; Escalante-Semerena, J.C. Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: Evidence that dephosphorylation of adenosylcobalamin-5’-phosphate by the CobC phosphatase is the last step of the pathway. J. Bacteriol. 2007, 189, 2210–2218. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, G.A.; Trzebiatowski, J.R.; Escalante-Semerena, J.C. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J. Biol. Chem. 1994, 269, 26503–26511. [Google Scholar] [CrossRef]
- Brushaber, K.R.; O’Toole, G.A.; Escalante-Semerena, J.C. CobD, a novel enzyme with L-threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-2-propanol O-2-phosphate, a proposed new intermediate in cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 1998, 273, 2684–2691. [Google Scholar] [CrossRef] [Green Version]
- Trzebiatowski, J.R.; O’Toole, G.A.; Escalante-Semerena, J.C. The cobT gene of Salmonella typhimurium encodes the NaMN: 5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J. Bacteriol. 1994, 176, 3568–3575. [Google Scholar]
- Debussche, L.; Couder, M.; Thibaut, D.; Cameron, B.; Crouzet, J.; Blanche, F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J. Bacteriol. 1992, 174, 7445–7451. [Google Scholar] [CrossRef] [Green Version]
- Jensen, P.E.; Gibson, L.C.; Henningsen, K.W.; Hunter, C.N. Expression of the chlI, chlD, and chlH genes from the Cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J. Biol. Chem. 1996, 271, 16662–16667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, P.E.; Gibson, L.C.; Hunter, C.N. Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803. Biochem. J. 1998, 334 Pt 2, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Kuhner, M.; Haufschildt, K.; Neumann, A.; Storbeck, S.; Streif, J.; Layer, G. The alternative route to heme in the methanogenic archaeon Methanosarcina barkeri. Archaea 2014, 2014, 327637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dailey, H.A.; Dailey, T.A.; Gerdes, S.; Jahn, D.; Jahn, M.; O’Brian, M.R.; Warren, M.J. Prokaryotic heme biosynthesis: Multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 2017, 81, e00048-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eirich, L.D.; Vogels, G.D.; Wolfe, R.S. Distribution of coenzyme F420 and properties of its hydrolytic fragments. J. Bacteriol. 1979, 140, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Jaenchen, R.; Schonheit, P.; Thauer, R.K. Studies on the biosynthesis of coenzyme F420 in methanogenic bacteria. Arch. Microbiol. 1984, 137, 362–365. [Google Scholar] [CrossRef]
- Lin, X.L.; White, R.H. Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J. Bacteriol. 1986, 168, 444–448. [Google Scholar] [CrossRef] [Green Version]
- de Wit, L.E.A.; Eker, A.P.M. 8-Hydroxy-5-deazaflavin-dependent electron transfer in the extreme halophile Halobacterium cutirubrum. FEMS Microbiol. Lett. 1987, 48, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Grochowski, L.L.; Xu, H.; White, R.H. Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis. Biochemistry 2008, 47, 3033–3037. [Google Scholar] [CrossRef]
- Bashiri, G.; Antoney, J.; Jirgis, E.N.M.; Shah, M.V.; Ney, B.; Copp, J.; Stuteley, S.M.; Sreebhavan, S.; Palmer, B.; Middleditch, M.; et al. A revised biosynthetic pathway for the cofactor F420 in prokaryotes. Nat. Commun. 2019, 10, 1558. [Google Scholar] [CrossRef]
- Braga, D.; Last, D.; Hasan, M.; Guo, H.; Leichnitz, D.; Uzum, Z.; Richter, I.; Schalk, F.; Beemelmanns, C.; Hertweck, C.; et al. Metabolic pathway rerouting in Paraburkholderia rhizoxinica evolved long-overlooked derivatives of coenzyme F420. ACS Chem. Biol. 2019, 14, 2088–2094. [Google Scholar] [CrossRef]
- Selengut, J.D.; Haft, D.H. Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria. J. Bacteriol. 2010, 192, 5788–5798. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.E.; Xu, H.; White, R.H. Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F(420) biosynthesis. Arch. Microbiol. 2003, 180, 455–464. [Google Scholar] [CrossRef]
- Philmus, B.; Decamps, L.; Berteau, O.; Begley, T.P. Biosynthetic versatility and coordinated action of 5’-deoxyadenosyl radicals in deazaflavin biosynthesis. J. Am. Chem. Soc. 2015, 137, 5406–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decamps, L.; Philmus, B.; Benjdia, A.; White, R.; Begley, T.P.; Berteau, O. Biosynthesis of F0, precursor of the F420 cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate. J. Am. Chem. Soc. 2012, 134, 18173–18176. [Google Scholar] [CrossRef] [PubMed]
- Forouhar, F.; Abashidze, M.; Xu, H.; Grochowski, L.L.; Seetharaman, J.; Hussain, M.; Kuzin, A.; Chen, Y.; Zhou, W.; Xiao, R.; et al. Molecular insights into the biosynthesis of the F420 coenzyme. J. Biol. Chem. 2008, 283, 11832–11840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graupner, M.; Xu, H.; White, R.H. Characterization of the 2-phospho-L-lactate transferase enzyme involved in coenzyme F(420) biosynthesis in Methanococcus jannaschii. Biochemistry 2002, 41, 3754–3761. [Google Scholar] [CrossRef]
- Nocek, B.; Evdokimova, E.; Proudfoot, M.; Kudritska, M.; Grochowski, L.L.; White, R.H.; Savchenko, A.; Yakunin, A.F.; Edwards, A.; Joachimiak, A. Structure of an amide bond forming F(420):gamma-glutamyl ligase from Archaeoglobus fulgidus—A member of a new family of non-ribosomal peptide synthases. J. Mol. Biol. 2007, 372, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Graupner, M.; Xu, H.; White, R.H. CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 2003, 42, 9771–9778. [Google Scholar] [CrossRef]
- Kunow, J.; Schwoërer, B.; Stetter, K.O.; Thauer, R.K. A F420-dependent NADP reductase in the extremely thermophilic sulfate-reducing Archaeoglobus fulgidus. Arch. Microbiol. 1993, 160, 199–205. [Google Scholar]
- Purwantini, E.; Mukhopadhyay, B. Rv0132c of Mycobacterium tuberculosis encodes a coenzyme F420-dependent hydroxymycolic acid dehydrogenase. PLoS ONE 2013, 8, e81985. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.R.; Berk, H.; Purwantini, E.; Daniels, L.; Thauer, R.K. Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis and F420-dependent alcohol dehydrogenase from Methanoculleus thermophilicus. Eur. J. Biochem. 1996, 239, 93–97. [Google Scholar] [CrossRef]
- Aufhammer, S.W.; Warkentin, E.; Berk, H.; Shima, S.; Thauer, R.K.; Ermler, U. Coenzyme binding in F420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 2004, 12, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, P.; Deppenmeier, U.; Blaut, M.; Gottschalk, G. Purification and characterization of F420H2-dehydrogenase from Methanolobus tindarius. Eur. J. Biochem. 1992, 203, 527–531. [Google Scholar] [CrossRef]
- Westenberg, D.J.; Braune, A.; Ruppert, C.; Muller, V.; Herzberg, C.; Gottschalk, G.; Blaut, M. The F420H2-dehydrogenase from Methanolobus tindarius: Cloning of the ffd operon and expression of the genes in Escherichia coli. FEMS Microbiol. Lett. 1999, 170, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.F.; Mukhopadhyay, B. A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J. Biol. Chem. 2005, 280, 38776–38786. [Google Scholar] [CrossRef] [Green Version]
- te Brömmelstroet, B.W.; Hensgens, C.M.; Keltjens, J.T.; van der Drift, C.; Vogels, G.D. Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain delta H. J. Biol. Chem. 1990, 265, 1852–1857. [Google Scholar] [CrossRef]
- Vaupel, M.; Thauer, R.K. Coenzyme F420-dependent N5,N10-methylenetetrahydromethanopterin reductase (Mer) from Methanobacterium thermoautotrophicum strain Marburg. Cloning, sequencing, transcriptional analysis, and functional expression in Escherichia coli of the mer gene. Eur. J. Biochem. 1995, 231, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Shima, S.; Warkentin, E.; Grabarse, W.; Sordel, M.; Wicke, M.; Thauer, R.K.; Ermler, U. Structure of coenzyme F(420) dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J. Mol. Biol. 2000, 300, 935–950. [Google Scholar] [CrossRef]
- Takao, M.; Kobayashi, T.; Oikawa, A.; Yasui, A. Tandem arrangement of photolyase and superoxide dismutase genes in Halobacterium halobium. J. Bacteriol. 1989, 171, 6323–6329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCready, S.; Marcello, L. Repair of UV damage in Halobacterium salinarum. Biochem. Soc. Trans. 2003, 31, 694–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudler, R.; Hitomi, K.; Daiyasu, H.; Toh, H.; Kucho, K.-i.; Ishiura, M.; Kanehisa, M.; Roberts, V.A.; Todo, T.; Tainer, J.A.; et al. Identification of a new cryptochrome class. Mol. Cell 2003, 11, 59–67. [Google Scholar] [CrossRef]
- Kleine, T.; Lockhart, P.; Batschauer, A. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J. 2003, 35, 93–103. [Google Scholar] [CrossRef]
- Selby, C.P.; Sancar, A. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. USA 2006, 103, 17696–17700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Scheerer, P.; Oberpichler, I.; Lamparter, T.; Krauss, N. Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore. Proc. Natl. Acad. Sci. USA 2013, 110, 7217–7222. [Google Scholar] [CrossRef] [Green Version]
- White, R.H. Analysis and characterization of the folates in the nonmethanogenic archaebacteria. J. Bacteriol. 1988, 170, 4608–4612. [Google Scholar] [CrossRef] [Green Version]
- Maden, B.E. Tetrahydrofolate and tetrahydromethanopterin compared: Functionally distinct carriers in C1 metabolism. Biochem. J. 2000, 350 Pt 3, 609–629. [Google Scholar] [CrossRef] [PubMed]
- de Crecy-Lagard, V. Variations in metabolic pathways create challenges for automated metabolic reconstructions: Examples from the tetrahydrofolate synthesis pathway. Comput. Struct. Biotechnol. J. 2014, 10, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, F.; Schuster, S.C.; Broicher, A.; Falb, M.; Palm, P.; Rodewald, K.; Ruepp, A.; Soppa, J.; Tittor, J.; Oesterhelt, D. Evolution in the laboratory: The genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics 2008, 91, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Nakada, Y.; Kanaya, S.; Tanaka, T. Molecular cloning and nucleotide sequence of Thermus thermophilus HB8 trpE and trpG. Biochim. Biophys. Acta 1988, 950, 303–312. [Google Scholar] [CrossRef]
- Slock, J.; Stahly, D.P.; Han, C.Y.; Six, E.W.; Crawford, I.P. An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J. Bacteriol. 1990, 172, 7211–7226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schadt, H.S.; Schadt, S.; Oldach, F.; Sussmuth, R.D. 2-Amino-2-deoxyisochorismate is a key intermediate in Bacillus subtilis p-aminobenzoic acid biosynthesis. J. Am. Chem. Soc. 2009, 131, 3481–3483. [Google Scholar] [CrossRef]
- Isupov, M.N.; Boyko, K.M.; Sutter, J.M.; James, P.; Sayer, C.; Schmidt, M.; Schonheit, P.; Nikolaeva, A.Y.; Stekhanova, T.N.; Mardanov, A.V.; et al. Thermostable branched-chain amino acid transaminases from the archaea Geoglobus acetivorans and Archaeoglobus fulgidus: Biochemical and structural characterization. Front. Bioeng. Biotechnol. 2019, 7, 7. [Google Scholar] [CrossRef]
- El Yacoubi, B.; Phillips, G.; Blaby, I.K.; Haas, C.E.; Cruz, Y.; Greenberg, J.; de Crecy-Lagard, V. A Gateway platform for functional genomics in Haloferax volcanii: Deletion of three tRNA modification genes. Archaea 2009, 2, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Grochowski, L.L.; Xu, H.; Leung, K.; White, R.H. Characterization of an Fe(2+)-dependent archaeal-specific GTP cyclohydrolase, MptA, from Methanocaldococcus jannaschii. Biochemistry 2007, 46, 6658–6667. [Google Scholar] [CrossRef]
- Mashhadi, Z.; Xu, H.; White, R.H. An Fe2+-dependent cyclic phosphodiesterase catalyzes the hydrolysis of 7,8-dihydro-D-neopterin 2’,3’-cyclic phosphate in methanopterin biosynthesis. Biochemistry 2009, 48, 9384–9392. [Google Scholar] [CrossRef]
- Scott, J.W.; Rasche, M.E. Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway. J. Bacteriol. 2002, 184, 4442–4448. [Google Scholar] [CrossRef] [Green Version]
- Dumitru, R.V.; Ragsdale, S.W. Mechanism of 4-(beta-D-ribofuranosyl)aminobenzene 5’-phosphate synthase, a key enzyme in the methanopterin biosynthetic pathway. J. Biol. Chem. 2004, 279, 39389–39395. [Google Scholar] [CrossRef] [Green Version]
- Vaupel, M.; Vorholt, J.A.; Thauer, R.K. Overproduction and one-step purification of the N5,N10-methenyltetrahydromethanopterin cyclohydrolase (Mch) from the hyperthermophilic Methanopyrus kandleri. Extremophiles 1998, 2, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Zerulla, K.; Chimileski, S.; Nather, D.; Gophna, U.; Papke, R.T.; Soppa, J. DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS ONE 2014, 9, e94819. [Google Scholar] [CrossRef] [Green Version]
- Rodionova, I.A.; Vetting, M.W.; Li, X.; Almo, S.C.; Osterman, A.L.; Rodionov, D.A. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea. Nucleic Acids Res. 2017, 45, 3785–3799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawai, S.; Mori, S.; Mukai, T.; Suzuki, S.; Yamada, T.; Hashimoto, W.; Murata, K. Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem. Biophys. Res. Commun. 2000, 276, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Raffaelli, N.; Pisani, F.M.; Lorenzi, T.; Emanuelli, M.; Amici, A.; Ruggieri, S.; Magni, G. Characterization of nicotinamide mononucleotide adenylyltransferase from thermophilic archaea. J. Bacteriol. 1997, 179, 7718–7723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffaelli, N.; Emanuelli, M.; Pisani, F.M.; Amici, A.; Lorenzi, T.; Ruggieri, S.; Magni, G. Identification of the archaeal NMN adenylyltransferase gene. Mol. Cell. Biochem. 1999, 193, 99–102. [Google Scholar] [CrossRef]
- Eustaquio, A.S.; Harle, J.; Noel, J.P.; Moore, B.S. S-Adenosyl-L-methionine hydrolase (adenosine-forming), a conserved bacterial and archaeal protein related to SAM-dependent halogenases. ChemBioChem 2008, 9, 2215–2219. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Botting, C.H.; Hamilton, J.T.; Russell, R.J.; O’Hagan, D. S-adenosyl-L-methionine:hydroxide adenosyltransferase: A SAM enzyme. Angew. Chem. Int. Ed. Engl. 2008, 47, 5357–5361. [Google Scholar] [CrossRef]
- Fischer, M.; Romisch, W.; Schiffmann, S.; Kelly, M.; Oschkinat, H.; Steinbacher, S.; Huber, R.; Eisenreich, W.; Richter, G.; Bacher, A. Biosynthesis of riboflavin in archaea studies on the mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jannaschii. J. Biol. Chem. 2002, 277, 41410–41416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, I.; Mortl, S.; Kohler, P.; Bacher, A.; Fischer, M. Biosynthesis of riboflavin in archaea. 6,7-dimethyl-8-ribityllumazine synthase of Methanococcus jannaschii. Eur. J. Biochem. 2003, 270, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.; Grochowski, L.L.; Bonnett, S.; Xu, H.; Bailly, M.; Blaby-Haas, C.; El Yacoubi, B.; Iwata-Reuyl, D.; White, R.H.; de Crecy-Lagard, V. Functional promiscuity of the COG0720 family. ACS Chem. Biol. 2012, 7, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.E.; Xu, H.; White, R.H. A member of a new class of GTP cyclohydrolases produces formylaminopyrimidine nucleotide monophosphates. Biochemistry 2002, 41, 15074–15084. [Google Scholar] [CrossRef] [PubMed]
- Graupner, M.; Xu, H.; White, R.H. The pyrimidine nucleotide reductase step in riboflavin and F(420) biosynthesis in archaea proceeds by the eukaryotic route to riboflavin. J. Bacteriol. 2002, 184, 1952–1957. [Google Scholar] [CrossRef] [Green Version]
- Romisch-Margl, W.; Eisenreich, W.; Haase, I.; Bacher, A.; Fischer, M. 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5’-phosphate synthases of fungi and archaea. FEBS J. 2008, 275, 4403–4414. [Google Scholar] [CrossRef]
- Ammelburg, M.; Hartmann, M.D.; Djuranovic, S.; Alva, V.; Koretke, K.K.; Martin, J.; Sauer, G.; Truffault, V.; Zeth, K.; Lupas, A.N.; et al. A CTP-dependent archaeal riboflavin kinase forms a bridge in the evolution of cradle-loop barrels. Structure 2007, 15, 1577–1590. [Google Scholar] [CrossRef] [Green Version]
- Mashhadi, Z.; Xu, H.; Grochowski, L.L.; White, R.H. Archaeal RibL: A new FAD synthetase that is air sensitive. Biochemistry 2010, 49, 8748–8755. [Google Scholar] [CrossRef]
- Caforio, A.; Driessen, A.J.M. Archaeal phospholipids: Structural properties and biosynthesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1325–1339. [Google Scholar] [CrossRef]
- Vannice, J.C.; Skaff, D.A.; Keightley, A.; Addo, J.K.; Wyckoff, G.J.; Miziorko, H.M. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J. Bacteriol. 2014, 196, 1055–1063. [Google Scholar] [CrossRef]
- De Rosa, M.; Gambacorta, A. The lipids of archaebacteria. Prog. Lipid Res. 1988, 27, 153–175. [Google Scholar] [CrossRef]
- Dawson, K.S.; Freeman, K.H.; Macalady, J.L. Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Org. Geochem. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Oren, A.; Ventosa, A.; Grant, W.D. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int. J. Syst. Bacteriol. 1997, 47, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Oren, A. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol. Ecol. 2002, 39, 1–7. [Google Scholar] [CrossRef]
- Kushwaha, S.C.; Kramer, J.K.G.; Kates, M. Isolation and characterization of C50-carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum. Biochim. Biophys. Acta 1975, 398, 303–314. [Google Scholar] [CrossRef]
- Yang, Y.; Yatsunami, R.; Ando, A.; Miyoko, N.; Fukui, T.; Takaichi, S.; Nakamura, S. Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J. Bacteriol. 2015, 197, 1614–1623. [Google Scholar] [CrossRef] [Green Version]
- Giani, M.; Miralles-Robledillo, J.M.; Peiro, G.; Pire, C.; Martinez-Espinosa, R.M. Deciphering pathways for carotenogenesis in haloarchaea. Molecules 2020, 25, 1197. [Google Scholar] [CrossRef] [Green Version]
- Dummer, A.M.; Bonsall, J.C.; Cihla, J.B.; Lawry, S.M.; Johnson, G.C.; Peck, R.F. Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J. Bacteriol. 2011, 193, 5658–5667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachibana, A. A novel prenyltransferase, farnesylgeranyl diphosphate synthase, from the haloalkaliphilic archaeon, Natronobacterium pharaonis. FEBS Lett. 1994, 341, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Bale, N.J.; Sorokin, D.Y.; Hopmans, E.C.; Koenen, M.; Rijpstra, W.I.C.; Villanueva, L.; Wienk, H.; Sinninghe Damste, J.S. New insights into the polar lipid composition of extremely halo(alkali)philic euryarchaea from hypersaline lakes. Front. Microbiol. 2019, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Kates, M. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: Biosynthesis, function and evolutionary significance. Experientia 1993, 49, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Kates, M.; Moldoveanu, N.; Stewart, L.C. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim. Biophys. Acta 1993, 1169, 46–53. [Google Scholar] [CrossRef]
- Kellermann, M.Y.; Yoshinaga, M.Y.; Valentine, R.C.; Wormer, L.; Valentine, D.L. Important roles for membrane lipids in haloarchaeal bioenergetics. Biochim. Biophys. Acta 2016, 1858, 2940–2956. [Google Scholar] [CrossRef]
- Elling, F.J.; Becker, K.W.; Konneke, M.; Schroder, J.M.; Kellermann, M.Y.; Thomm, M.; Hinrichs, K.U. Respiratory quinones in Archaea: Phylogenetic distribution and application as biomarkers in the marine environment. Environ. Microbiol. 2016, 18, 692–707. [Google Scholar] [CrossRef]
- Petrova, T.E.; Boyko, K.M.; Nikolaeva, A.Y.; Stekhanova, T.N.; Gruzdev, E.V.; Mardanov, A.V.; Stroilov, V.S.; Littlechild, J.A.; Popov, V.O.; Bezsudnova, E.Y. Structural characterization of geranylgeranyl pyrophosphate synthase GACE1337 from the hyperthermophilic archaeon Geoglobus acetivorans. Extremophiles 2018, 22, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, A.; Yano, Y.; Otani, S.; Nomura, N.; Sako, Y.; Taniguchi, M. Novel prenyltransferase gene encoding farnesylgeranyl diphosphate synthase from a hyperthermophilic archaeon, Aeropyrum pernix—Molecular evolution with alteration in product specificity. Eur. J. Biochem. 2000, 267, 321–328. [Google Scholar] [CrossRef]
- Jain, S.; Caforio, A.; Fodran, P.; Lolkema, J.S.; Minnaard, A.J.; Driessen, A.J.M. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. Chem. Biol. 2014, 21, 1392–1401. [Google Scholar] [CrossRef] [Green Version]
- Morii, H.; Koga, Y. CDP-2,3-Di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) in the methanogenic archaeon Methanothermobacter thermautotrophicus. J. Bacteriol. 2003, 185, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- Morii, H.; Kiyonari, S.; Ishino, Y.; Koga, Y. A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells. J. Biol. Chem. 2009, 284, 30766–30774. [Google Scholar] [CrossRef] [Green Version]
- Vences-Guzman, M.A.; Geiger, O.; Sohlenkamp, C. Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. J. Bacteriol. 2008, 190, 6846–6856. [Google Scholar] [CrossRef] [Green Version]
- Conover, R.K.; Doolittle, W.F. Characterization of a gene involved in histidine biosynthesis in Halobacterium (Haloferax) volcanii: Isolation and rapid mapping by transformation of an auxotroph with cosmid DNA. J. Bacteriol. 1990, 172, 3244–3249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisolia, V.; Carlomagno, M.S.; Nappo, A.G.; Bruni, C.B. Cloning, structure, and expression of the Escherichia coli K-12 hisC gene. J. Bacteriol. 1985, 164, 1317–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loc’h, J.; Blaud, M.; Rety, S.; Lebaron, S.; Deschamps, P.; Bareille, J.; Jombart, J.; Robert-Paganin, J.; Delbos, L.; Chardon, F.; et al. RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis. PLoS Biol. 2014, 12, e1001860. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Wang, L.; Bennett, M.; Liang, Y.; Zheng, X.; Lu, F.; Li, L.; Nan, J.; Luo, M.; Eriksson, S.; et al. The crystal structure of human adenylate kinase 6: An adenylate kinase localized to the cell nucleus. Proc. Natl. Acad. Sci. USA 2005, 102, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.; Kim, J.; Koo, J.; Bae, E. Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability. Struct. Dyn. 2019, 6, 024702. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, C.; Yang, H.; Roberts, M.F. Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry 2000, 39, 12415–12423. [Google Scholar] [CrossRef]
- Neelon, K.; Roberts, M.F.; Stec, B. Crystal structure of a trapped catalytic intermediate suggests that forced atomic proximity drives the catalysis of mIPS. Biophys. J. 2011, 101, 2816–2824. [Google Scholar] [CrossRef] [Green Version]
- Maurer, S.; Ludt, K.; Soppa, J. Characterization of copy number control of two Haloferax volcanii replication origins using deletion mutants and haloarchaeal artificial chromosomes. J. Bacteriol. 2018, 200, e00517-17. [Google Scholar] [CrossRef] [Green Version]
- Chamovitz, D.; Misawa, N.; Sandmann, G.; Hirschberg, J. Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Lett. 1992, 296, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Serino, L.; Reimmann, C.; Baur, H.; Beyeler, M.; Visca, P.; Haas, D. Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol. Gen. Genet. 1995, 249, 217–228. [Google Scholar] [CrossRef]
- Dawson, A.; Chen, M.; Fyfe, P.K.; Guo, Z.; Hunter, W.N. Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis. J. Mol. Biol. 2010, 401, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.M.; Hubbard, B.K.; Gerlt, J.A. Evolution of enzymatic activities in the enolase superfamily: Functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases. Biochemistry 2001, 40, 15707–15715. [Google Scholar] [CrossRef]
- Palmer, D.R.; Garrett, J.B.; Sharma, V.; Meganathan, R.; Babbitt, P.C.; Gerlt, J.A. Unexpected divergence of enzyme function and sequence: "N-acylamino acid racemase" is o-succinylbenzoate synthase. Biochemistry 1999, 38, 4252–4258. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Guo, Z. Mechanistic insights from the crystal structure of Bacillus subtilis o-succinylbenzoyl-CoA synthetase complexed with the adenylate intermediate. Biochemistry 2016, 55, 6685–6695. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, M.; Guo, Z.F.; Guo, Z. A bicarbonate cofactor modulates 1,4-dihydroxy-2-naphthoyl-coenzyme a synthase in menaquinone biosynthesis of Escherichia coli. J. Biol. Chem. 2010, 285, 30159–30169. [Google Scholar] [CrossRef] [Green Version]
- Suvarna, K.; Stevenson, D.; Meganathan, R.; Hudspeth, M.E. Menaquinone (vitamin K2) biosynthesis: Localization and characterization of the menA gene from Escherichia coli. J. Bacteriol. 1998, 180, 2782–2787. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Sattler, S.; Maeda, H.; Sakuragi, Y.; Bryant, D.A.; DellaPenna, D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 2003, 15, 2343–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike-Takeshita, A.; Koyama, T.; Ogura, K. Identification of a novel gene cluster participating in menaquinone (vitamin K2) biosynthesis. Cloning and sequence determination of the 2-heptaprenyl-1,4-naphthoquinone methyltransferase gene of Bacillus stearothermophilus. J. Biol. Chem. 1997, 272, 12380–12383. [Google Scholar] [CrossRef] [Green Version]
- Leffers, H.; Gropp, F.; Lottspeich, F.; Zillig, W.; Garrett, R.A. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. J. Mol. Biol. 1989, 206, 1–17. [Google Scholar] [CrossRef]
- Madon, J.; Zillig, W. A form of the DNA-dependent RNA polymerase of Halobacterium halobium, containing an additional component, is able to transcribe native DNA. Eur. J. Biochem. 1983, 133, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Rivlin, A.A.; Chan, Y.L.; Wool, I.G. The contribution of a zinc finger motif to the function of yeast ribosomal protein YL37a. J. Mol. Biol. 1999, 294, 909–919. [Google Scholar] [CrossRef]
- de Crecy-Lagard, V.; Forouhar, F.; Brochier-Armanet, C.; Tong, L.; Hunt, J.F. Comparative genomic analysis of the DUF71/COG2102 family predicts roles in diphthamide biosynthesis and B12 salvage. Biol. Direct 2012, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.Y.; Chaban, B.; VanDyke, D.J.; Jarrell, K.F. Archaeal signal peptidases. Microbiology (Reading) 2007, 153, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Raut, P.; Glass, J.B.; Lieberman, R.L. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins 2021, 89, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Arndt, E.; Scholzen, T.; Kromer, W.; Hatakeyama, T.; Kimura, M. Primary structures of ribosomal proteins from the archaebacterium Halobacterium marismortui and the eubacterium Bacillus stearothermophilus. Biochimie 1991, 73, 657–668. [Google Scholar] [CrossRef]
- Scholzen, T.; Arndt, E. Organization and nucleotide sequence of ten ribosomal protein genes from the region equivalent to the spectinomycin operon in the archaebacterium Halobacterium marismortui. Mol. Genet. Genomics 1991, 228, 70–80. [Google Scholar] [CrossRef]
- Otaka, E.; Higo, K.; Itoh, T. Yeast ribosomal proteins. VIII. Isolation of two proteins and sequence characterization of twenty-four proteins from cytoplasmic ribosomes. Mol. Gen. Genet. 1984, 195, 544–546. [Google Scholar] [CrossRef]
- Ban, N.; Nissen, P.; Hansen, J.; Moore, P.B.; Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 2000, 289, 905–920. [Google Scholar] [CrossRef]
- Dresios, J.; Chan, Y.L.; Wool, I.G. The role of the zinc finger motif and of the residues at the amino terminus in the function of yeast ribosomal protein YL37a. J. Mol. Biol. 2002, 316, 475–488. [Google Scholar] [CrossRef]
- Zhu, X.; Dzikovski, B.; Su, X.; Torelli, A.T.; Zhang, Y.; Ealick, S.E.; Freed, J.H.; Lin, H. Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe-4S] enzyme required for diphthamide biosynthesis. Mol. Biosyst. 2011, 7, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Kim, J.; Su, X.; Lin, H. Reconstitution of diphthine synthase activity in vitro. Biochemistry 2010, 49, 9649–9657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, X.; Lin, Z.; Chen, W.; Jiang, H.; Zhang, S.; Lin, H. Chemogenomic approach identified yeast YLR143W as diphthamide synthetase. Proc. Natl. Acad. Sci. USA 2012, 109, 19983–19987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uthman, S.; Bar, C.; Scheidt, V.; Liu, S.; ten Have, S.; Giorgini, F.; Stark, M.J.; Schaffrath, R. The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network. PLoS Genet. 2013, 9, e1003334. [Google Scholar] [CrossRef] [Green Version]
- Bolhuis, A.; Matzen, A.; Hyyrylainen, H.L.; Kontinen, V.P.; Meima, R.; Chapuis, J.; Venema, G.; Bron, S.; Freudl, R.; van Dijl, J.M. Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J. Biol. Chem. 1999, 274, 24585–24592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, S.E.; Kim, A.C.; Paetzel, M. Crystal structure of Bacillus subtilis signal peptide peptidase A. J. Mol. Biol. 2012, 419, 347–358. [Google Scholar] [CrossRef]
- Rangaswamy, V.; Altekar, W. Ketohexokinase (ATP:D-fructose 1-phosphotransferase) from a halophilic archaebacterium, Haloarcula vallismortis: Purification and properties. J. Bacteriol. 1994, 176, 5505–5512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, I.; Scheuner, C.; Goker, M.; Mavromatis, K.; Hooper, S.D.; Porat, I.; Klenk, H.P.; Ivanova, N.; Kyrpides, N. Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS ONE 2011, 6, e20237. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.J.; Allen, M.A.; Liao, Y.; Raftery, M.J.; Cavicchioli, R. Sucrose metabolism in haloarchaea: Reassessment using genomics, proteomics, and metagenomics. Appl. Environ. Microbiol. 2019, 85, e02935-18. [Google Scholar] [CrossRef] [Green Version]
- Chaga, G.; Porath, J.; Illeni, T. Isolation and purification of amyloglucosidase from Halobacterium sodomense. Biomed. Chromatogr. 1993, 7, 256–261. [Google Scholar] [CrossRef]
- Rudolph, B.; Hansen, T.; Schonheit, P. Glucose-6-phosphate isomerase from the hyperthermophilic archaeon Methanococcus jannaschii: Characterization of the first archaeal member of the phosphoglucose isomerase superfamily. Arch. Microbiol. 2004, 181, 82–87. [Google Scholar]
- Aulkemeyer, P.; Ebner, R.; Heilenmann, G.; Jahreis, K.; Schmid, K.; Wrieden, S.; Lengeler, J.W. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol. Microbiol. 1991, 5, 2913–2922. [Google Scholar] [CrossRef]
- Qu, Q.; Lee, S.J.; Boos, W. Molecular and biochemical characterization of a fructose-6-phosphate-forming and ATP-dependent fructokinase of the hyperthermophilic archaeon Thermococcus litoralis. Extremophiles 2004, 8, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, H.; Kitamura, H.; Minowa, T.; Sakai, H.; Ohta, T. Molecular cloning of a glucoamylase gene from a thermophilic Clostridium and kinetics of the cloned enzyme. Eur. J. Biochem. 1992, 207, 413–418. [Google Scholar] [CrossRef]
- Ahmed, H.; Ettema, T.J.; Tjaden, B.; Geerling, A.C.; van der Oost, J.; Siebers, B. The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: A re-evaluation. Biochem. J. 2005, 390, 529–540. [Google Scholar] [CrossRef]
- Chai, Y.; Kolter, R.; Losick, R. A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J. Bacteriol. 2009, 191, 2423–2430. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Wang, Y.; Zhang, Y.; Lv, M.; Dou, P.; Xu, P.; Ma, C. NAD-independent L-lactate dehydrogenase required for L-lactate utilization in Pseudomonas stutzeri A1501. J. Bacteriol. 2015, 197, 2239–2247. [Google Scholar] [CrossRef] [Green Version]
- Pfrimer, P.; de Moraes, L.M.; Galdino, A.S.; Salles, L.P.; Reis, V.C.; De Marco, J.L.; Prates, M.V.; Bloch, C., Jr.; Torres, F.A. Cloning, purification, and partial characterization of Bacillus subtilis urate oxidase expressed in Escherichia coli. J. Biomed. Biotechnol. 2010, 2010, 674908. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Lee, D.H.; Kho, C.W.; Lee, A.Y.; Jang, M.; Cho, S.; Lee, C.H.; Lee, J.S.; Myung, P.K.; Park, B.C.; et al. Transthyretin-related proteins function to facilitate the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction. FEBS Lett. 2005, 579, 4769–4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Park, J.; Rhee, S. Structural and functional basis for (S)-allantoin formation in the ureide pathway. J. Biol. Chem. 2007, 282, 23457–23464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Jiang, W.H.; Jiao, R.S.; Yang, Y.L. [Cloning, sequencing and high expression in Escherichia coli of D-hydantoinase gene from Burkholderia pickettii]. Sheng Wu Gong Cheng Xue Bao 2002, 18, 149–154. [Google Scholar]
- Ho, Y.Y.; Huang, Y.H.; Huang, C.Y. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids. Amino Acids 2013, 44, 1181–1191. [Google Scholar] [CrossRef]
- Schultz, A.C.; Nygaard, P.; Saxild, H.H. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J. Bacteriol. 2001, 183, 3293–3302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Rodriguez, S.; Garcia-Pino, A.; Las Heras-Vazquez, F.J.; Clemente-Jimenez, J.M.; Rodriguez-Vico, F.; Garcia-Ruiz, J.M.; Loris, R.; Gavira, J.A. Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member. J. Bacteriol. 2012, 194, 5759–5768. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.K.; Romeis, T.; Witte, C.P. Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nat. Chem. Biol. 2010, 6, 19–21. [Google Scholar] [CrossRef]
- Werner, A.K.; Medina-Escobar, N.; Zulawski, M.; Sparkes, I.A.; Cao, F.Q.; Witte, C.P. The ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice. Plant Physiol. 2013, 163, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Kardinahl, S.; Schmidt, C.L.; Hansen, T.; Anemuller, S.; Petersen, A.; Schafer, G. The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme—An aldehyde oxidoreductase. Eur. J. Biochem. 1999, 260, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.S.; Kim, Y.M. Cloning and molecular characterization of the genes for carbon monoxide dehydrogenase and localization of molybdopterin, flavin adenine dinucleotide, and iron-sulfur centers in the enzyme of Hydrogenophaga pseudoflava. J. Bacteriol. 1999, 181, 5581–5590. [Google Scholar] [CrossRef] [Green Version]
- Xi, H.; Schneider, B.L.; Reitzer, L. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J. Bacteriol. 2000, 182, 5332–5341. [Google Scholar] [CrossRef] [Green Version]
- Karatza, P.; Frillingos, S. Cloning and functional characterization of two bacterial members of the NAT/NCS2 family in Escherichia coli. Mol. Membr. Biol. 2005, 22, 251–261. [Google Scholar] [CrossRef]
- Desguin, B.; Soumillion, P.; Hols, P.; Hausinger, R.P. Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion. Proc. Natl. Acad. Sci. USA 2016, 113, 5598–5603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Yin, W.; Galperin, M.Y.; Chou, S.H. Cyclic di-AMP, a second messenger of primary importance: Tertiary structures and binding mechanisms. Nucleic Acids Res. 2020, 48, 2807–2829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, S.; John von Freyend, S.; Sabag-Daigle, A.; Daniels, C.J.; Allers, T.; Marchfelder, A. Assigning a function to a conserved archaeal metallo-beta-lactamase from Haloferax volcanii. Extremophiles 2012, 16, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spath, B.; Schubert, S.; Lieberoth, A.; Settele, F.; Schutz, S.; Fischer, S.; Marchfelder, A. Two archaeal tRNase Z enzymes: Similar but different. Arch. Microbiol. 2008, 190, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Desmarais, J.J.; Flamholz, A.I.; Blikstad, C.; Dugan, E.J.; Laughlin, T.G.; Oltrogge, L.M.; Chen, A.W.; Wetmore, K.; Diamond, S.; Wang, J.Y.; et al. DABs are inorganic carbon pumps found throughout prokaryotic phyla. Nat. Microbiol. 2019, 4, 2204–2215. [Google Scholar] [CrossRef]
- Corrigan, R.M.; Grundling, A. Cyclic di-AMP: Another second messenger enters the fray. Nat. Rev. Microbiol. 2013, 11, 513–524. [Google Scholar] [CrossRef]
- Gundlach, J.; Mehne, F.M.; Herzberg, C.; Kampf, J.; Valerius, O.; Kaever, V.; Stulke, J. An essential poison: Synthesis and degradation of cyclic di-AMP in Bacillus subtilis. J. Bacteriol. 2015, 197, 3265–3274. [Google Scholar] [CrossRef] [Green Version]
- Commichau, F.M.; Heidemann, J.L.; Ficner, R.; Stulke, J. Making and breaking of an essential poison: The cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria. J. Bacteriol. 2019, 201, e00462-18. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Cai, X.; Ma, H.; Zhu, L.; Zhang, Y.; Chou, S.H.; Galperin, M.Y.; He, J. A decade of research on the second messenger c-di-AMP. FEMS Microbiol. Rev. 2020, 44, 701–724. [Google Scholar] [CrossRef]
Gold Standard Protein | |||||||||
---|---|---|---|---|---|---|---|---|---|
Section | Code | Gene | Isofunc | %seq_id | Locus Tag | UniProt | Reference | PMID | Comment |
1a | HVO_1305 HVO_1304 | porAB | yes | 67% 80% | OE2623R OE2622R | B0R4 × 6 B0R4 × 5 | [87] [88] [89] | 1555599 6266826 6266827 | |
1a | HVO_0888 HVO_0887 | korAB | yes | 77% 77% | OE1711R OE1710R | B0R3G0 B0R3F9 | [88] [89] | 6266826 6266827 | |
1a/1b | HVO_2995 | fdx | yes | 88% | OE4217R | B0R7I9 | [100] [101] [86] | 964365 188650 201489 | role in oxidative decarboxylation |
1a/1b | HVO_2995 (cont.) | self | D4GY89 | [90] | 22103537 | role in nitrate assimilation | |||
1c | HVO_0979 (complex) | nuoB | possibly | 50% | tlr0705 | Q8DKZ4 | [102] [103] [104] | 15910282 30573545 32001694 | reoxidizes ferredoxin |
1c | HVO_0979 (cont.) | no | 48% | b2287 | P0AFC7 | [92] [93] | 7607227 9485311 | reoxidizes NADH in E.coli | |
1d | NP_3508A | ndh1 | special | 26% (N-term 140 aa) | - | Q7ZAG8 | function of Q7ZAG8 was reassigned (from ndh1 to sqr) after annotation transfer | ||
1d | NP_3508A (cont.) | possibly | 30% | BpOF4_04810 | A7LKG4 | [105] | 18359284 | type II NADH dehydrogenase | |
1e | HVO_2620 HVO_0842 HVO_0841 | petABD | yes | 39% | SYNPCC7002_ A0842 | P28056 | [106] | 11245788 | HVO_0842 (petB) related to cytochrome b6 |
1f | HVO_2810 | sdhD | yes | 66% | NP_4268A | Q3INS7 | [81] [94] | 9109654 PhD_Mattar | |
1g | HVO_0943 | cbaD | yes | 57% | NP_2966A | A0A1U7EWW4 | [107] | 9428682 | |
HVO_0943 (cont.) | - | 63% | OE_4073R (C-term) | B0R7A9 | - | halocyanin/cbaD fusion protein, uncharacterized | |||
1g | HVO_2150 | hcpG | - | 44% | OE_4073R (N-term) | B0R7A9 | - | halocyanin/cbaD fusion protein, uncharacterized | |
1h | HVO_0945 (complex) | cbaA | yes | 64% | NP_2966A | A0A1U7EWW4 | [107] | 9428682 | |
1h | HVO_0907 (complex) | coxA1 | self | [108] | 11790755 | ||||
1h | HVO_0907 (cont.) | yes | 70% | VNG_0657G (OE_1979R) | P33588 | [109] [110] | 2542239 1659810 | ||
1h | HVO_1645 (complex) | coxAC2 | yes | 43% | APE_0793.1 | Q9YdX6 | [111] | 12471503 | |
1h | HVO_0462 HVO_0461 | cydAB | yes | 32% 24% | - - | Q09049 Q05780 | [112] | 1655703 | |
1h | HVO_0462 HVO_0461 (cont.) | yes | 30% 27% | b0733 b0734 | P0ABJ9 P0ABK2 | [113] | 6307994 | ||
1h | NP_4296A NP_4294A | coxA3 coxB3 | yes | 28% 33% | TTHA1135 TTHA1134 | Q5SJ79 Q5SJ80 | [114] [115] | 2842747 7657607 | |
1i | HVO_2958 HVO_2959 | oadhAB1 | self | D4GY15 D4GY17 | [116] | 19910413 | Ile indirectly assigned as substrate | ||
1i | HVO_2958 HVO_2959 (cont.) | self | [117] [118] [119] | 10832633 17571210 17906130 | no substrate was identified; pyruvate and alphaKG excluded | ||||
1i | HVO_2595 HVO_2596 | oadhAB2 | self | [120] [119] [116] | 12003954 17906130 19910413 | no substrate was identified; pyruvate and alphaKG excluded | |||
1i | HVO_0669 HVO_0668 | oadhAB3 | self | [119] [116] | 17906130 19910413 | no substrate was identified; pyruvate and alphaKG excluded | |||
1i | HVO_2209 | oadhA4 | self | not yet analyzed experimentally | |||||
1i | HVO_2958 HVO_2959 (cont.) | yes/no | 38% 52% | TA1438 TA1437 | Q9HIA3 Q9HIA4 | [121] | 17894823 | substrates are Ile, Leu, Val | |
1i | HVO_2595 HVO_2596 (cont.) | no | 41% 41% | - - | Q57102 Q57041 | [122] | 1898934 | substrate is acetoin | |
1i | HVO_2595 HVO_2596 (cont.) | unknown | 40% 43% | BSU08060 BSU08070 | O31404 O34591 | [123] | 10368162 | substrate is acetoin | |
1i | HVO_0669 HVO_0668 (cont.) | unknown | 54% 47% | BSU08060 BSU08070 | O31404 O34591 | [123] | 10368162 | substrate is acetoin | |
1i | HVO_0669 HVO_0668 (cont.) | unknown | 49% 43% | - - | Q57102 Q57041 | [122] | 1898934 | substrate is acetoin | |
1i | HVO_2209 (cont.) | unknown | 38% | TA1438 | Q9HIA3 | [121] | 17894823 | substrates are Ile, Leu, Val |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeiffer, F.; Dyall-Smith, M. Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes 2021, 12, 963. https://doi.org/10.3390/genes12070963
Pfeiffer F, Dyall-Smith M. Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes. 2021; 12(7):963. https://doi.org/10.3390/genes12070963
Chicago/Turabian StylePfeiffer, Friedhelm, and Mike Dyall-Smith. 2021. "Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea" Genes 12, no. 7: 963. https://doi.org/10.3390/genes12070963
APA StylePfeiffer, F., & Dyall-Smith, M. (2021). Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes, 12(7), 963. https://doi.org/10.3390/genes12070963