Plant Variety Protection: Current Practices and Insights
Abstract
:1. Introduction
2. Protection of the Breeder’s Right
3. The Distinctness, Uniformity, and Stability (DUS) Test
4. Phenotypes-Based DUS Test
5. Limitations of the Conventional Phenotypes-Based DUS Test Results
6. Molecular Markers-Based DUS Test
7. Sequencing-Based DUS Test
8. Noteworthy Subjects in Addition to the Current UPOV and DUS Tests
9. Closing Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Acquaah, G. Overview and historical perspectives. In Principles of Plant Genetics and Breeding, 2nd ed.; Acquaah, G., Ed.; Blackwell: Oxford, UK, 2012; pp. 3–40. [Google Scholar]
- Kaiser, N.; Douches, D.; Dhingra, A.; Glenn, K.C.; Herzig, P.R.; Stowe, E.C.; Swarup, S. The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends Food Sci. Technol. 2020, 100, 51–66. [Google Scholar] [CrossRef]
- Butruille, D.V.; Birru, F.H.; Boerboom, M.L.; Cargill, E.J.; Davis, D.A.; Dhungana, P.; Dill, G.M., Jr.; Dong, F.; Fonseca, A.E.; Gardunia, B.W.; et al. Maize breeding in the United States: Views from within Monsanto. In Plant Breeding Reviews; Janick, J., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2015; Volume 39, pp. 199–282. [Google Scholar]
- Glenn, K.C.; Alsop, B.; Bell, E.; Goley, M.; Jenkinson, J.; Liu, B.; Martin, C.; Parrott, W.; Souder, C.; Sparks, O.; et al. Bringing new plant varieties to market: Plant breeding and selection practices advance beneficial characteristics while minimizing unintended changes. Crop Sci. 2017, 57, 2906–2921. [Google Scholar] [CrossRef]
- Jamali, S.H.; Cockram, J.; Hickey, L.T. Insights into deployment of DNA markers in plant variety protection and registration. Theor. Appl. Genet. 2019, 132, 1911–1929. [Google Scholar] [CrossRef]
- Curtis, F.; Nilsson, M. Collection systems for royalties in wheat: An international study. Bio Sci. Law Rev. 2012, 12, 215. [Google Scholar]
- da Silva, A.F.; Sediyama, T.; Borem, A.; da Silva, F.L.; dos Santos Silva, F.C.; Bezerra, A.R.G. Registration and protection of cultivars. In Soybean Breeding; Lopes da Silva, F., Borém, A., Sediyama, T., Ludke, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 427–440. [Google Scholar]
- UPOV. International Convention for the Protection of New Varieties of Plants of December 2, 1961, as Revised at Geneva on November 10, 1972, on October 23, 1978, and on March 19, 1991. Available online: https://www.upov.int/edocs/pubdocs/en/upov_pub_221.pdf (accessed on 9 June 2021).
- Jördens, R. Progress of plant variety protection based on the international convention for the protection of new varieties of plants (UPOV Convention). World Pat. Inf. 2005, 27, 232–243. [Google Scholar] [CrossRef]
- Srinivasan, C.S. Plant variety protection, innovation, and transferability: Some empirical evidence. Rev. Agric. Econ. 2004, 26, 445–471. [Google Scholar] [CrossRef]
- Cooke, R.J.; Reeves, J.C. Plant genetic resources and molecular markers: Variety registration in a new era. Plant Genet. Resour. 2003, 1, 81–87. [Google Scholar] [CrossRef]
- Wang, J.; Cogan, N.O.; Forster, J.W. Prospects for applications of genomic tools in registration testing and seed certification of ryegrass varieties. Plant Breed. 2016, 135, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Achard, F.; Butruille, M.; Madjarac, S.; Nelson, P.T.; Duesing, J.; Laffont, J.-L.; Nelson, B.; Xiong, J.; Mikel, M.A.; Smith, J.S.C. Single nucleotide polymorphisms facilitate Distinctness-uniformity-stability testing of soybean cultivars for plant variety protection. Crop Sci. 2020, 60, 2280–2303. [Google Scholar] [CrossRef]
- Petra, J. Potential, challenges, and threats for the application of new breeding techniques by the private plant breeding sector in the EU. Front. Plant Sci. 2020, 11, 1463. [Google Scholar]
- Heckenberger, M.; Bohn, M.; Frisch, M.; Maurer, H.; Melchinger, A. Identification of essentially derived varieties with molecular markers: An approach based on statistical test theory and computer simulations. Theor. Appl. Genet. 2005, 111, 598–608. [Google Scholar] [CrossRef]
- Yang, C.J.; Russell, J.; Ramsay, L.; Thomas, W.; Powell, W.; Mack, I. Overcoming barriers to the registration of new plant varieties under the DUS system. Commun. Biol. 2021, 4, 302. [Google Scholar] [CrossRef]
- Cockram, J.; Jones, H.; Norris, C.; O’Sullivan, D.M. Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theor. Appl. Genet. 2012, 125, 1735–1749. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Singh, I.S. Comparative evaluation of maize inbred lines (Zea mays L.) according to DUS testing using morphological, physiological and molecular markers. Agric. Sci. 2010, 1, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Norris, C.; Smith, D.; Cockram, J.; Lee, D.; O’Sullivan, D.M.; Mackay, I. Evaluation of the use of high-density SNP genotyping to implement UPOV Model 2 for DUS testing in barley. Theor. Appl. Genet. 2013, 126, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Kage, U.; Kumar, A.; Dhokane, D.; Karre, S.; Kushalappa, A.C. Functional molecular markers for crop improvement. Crit. Rev. Biotechnol. 2015, 16, 1–14. [Google Scholar] [CrossRef]
- Bonow, S.; Von Pinho, E.V.R.; Vieira, M.G.C.; Vosman, B. Microsatellite markers in and around rice genes: Applications in variety identification and DUS Testing. Crop Sci. 2009, 49, 880–886. [Google Scholar] [CrossRef]
- Reid, A.; Kerr, E.M. A rapid simple sequence repeat (SSR)-based identification method for potato cultivars. Plant Genet. Resour. 2007, 5, 7–13. [Google Scholar] [CrossRef]
- Pourabed, E.; Jazayeri Noushabadi, M.R.; Jamali, S.H.; Moheb Alipour, N.; Zareyan, A.; Sadeghi, L. Identification and DUS testing of rice varieties through microsatellite markers. Int. J. Plant Genom. 2015, 2015, 965073. [Google Scholar] [CrossRef]
- Arens, P.; Mansilla, C.; Deinum, D.; Cavellini, L.; Moretti, A.; Rolland, S.; van der Schoot, H.; Calvache, D.; Ponz, F.; Collonnier, C.; et al. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor. Appl. Genet. 2010, 120, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Annicchiarico, P.; Nazzicari, N.; Ananta, A.; Carelli, M.; Wei, Y.; Brummer, E.C. Assessment of cultivar distinctness in alfalfa: A comparison of genotyping-by-sequencing, simple-sequence repeat marker, and morphophysiological observations. Plant Genome 2016, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-X.; Jun, Q.; Chang, L.F.; Liu, L.-H.; Li, H.-B.; Pang, B.S.; Zhao, C.-P. Assessment of wheat variety distinctness using SSR markers. J. Integr. Agric. 2015, 14, 1923–1935. [Google Scholar] [CrossRef] [Green Version]
- Gunjaca, J.; Buhinicek, I.; Jukic, M.; Sarcevic, H.; Vragolovic, A.; Kozic, Z.; Jambrovic, A.; Pejic, I. Discriminating maize inbred lines using molecular and DUS data. Euphytica 2008, 161, 165–172. [Google Scholar] [CrossRef]
- Sarao, N.K.; Vikal, Y.; Singh, K.; MJoshi, M.A.; Sharma, R.C. SSR marker-based DNA fingerprinting and cultivar identification of rice (Oryza sativa L.) in Punjab state of India. Plant Genet. Resour. 2009, 8, 42–44. [Google Scholar] [CrossRef]
- Wang, L.X.; Li, H.B.; Gu, T.C.; Liu, L.H.; Pang, B.J.; Qiu, J.; Zhao, C.P. Assessment of wheat variety stability using SSR markers. Euphytica 2014, 195, 435–452. [Google Scholar] [CrossRef]
- Smỳkal, P.; Horacek, J.; Dostalova, R.; Hybl, M. Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J. Appl. Genet. 2008, 49, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, T.; Coll, R.; Calsyn, E.; De Loose, M.; Van Eijk, M.; Roldán-Ruiz, I. Estimating genetic conformity between related ryegrass (Lolium) varieties. 1. Morphology and biochemical characterization. Mol. Breed. 2000, 6, 569–580. [Google Scholar] [CrossRef]
- Saccomanno, B.; Wallace, M.; O’Sullivan, D.M.; Cockram, J. Use of genetic markers for the detection of off-types for DUS phenotypic traits in the inbreeding crop, barley. Mol. Breed. 2020, 40, 13. [Google Scholar] [CrossRef] [Green Version]
- Noli, E.; Teriaca, M.S.; Conti, S. Identification of a threshold level to assess essential derivation in durum wheat. Mol. Breed. 2012, 29, 687–698. [Google Scholar] [CrossRef]
- Noli, E.; Teriaca, M.S.; Conti, S. Criteria for the defining of similarity thresholds for identifying essentially derived varieties. Plant Breed. 2013, 132, 525–531. [Google Scholar] [CrossRef]
- Van Eeuwijk, F.; Law, J. Statistical aspects of essential derivation, with illustrations based on lettuce and barley. Euphytica 2004, 137, 129–137. [Google Scholar] [CrossRef]
- Ameur, A. CRISPR and long-read sequencing: A perfect match. CRISPR J. 2020, 425–427. [Google Scholar] [CrossRef] [PubMed]
- López-Girona, E.; Davy, M.W.; Albert, N.W.; Hilario, E.; Smart, M.E.M.; Kirk, C.; Thomson, S.J.; Chagné, D. CRISPR-Cas9 enrichment and long read sequencing for fine mapping in plants. Plant Methods 2020, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Giolai, M.; Paajanen, P.; Verweij, W.; Witek, K.; Jones, J.D.G.; Clark, M.D. Comparative analysis of targeted long read sequencing approaches for characterization of a plant’s immune receptor repertoire. BMC Genom. 2017, 18, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Li, B.; Chen, Y.; Shaibu, A.S.; Zheng, H.; Sun, J. Molecular-assisted distinctness and uniformity testing using SLAF-Sequencing approach in soybean. Genes 2020, 11, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haun, W.; Coffman, A.; Clasen, B.M.; Demorest, Z.L.; Lowy, A.; Ray, E.; Retterath, A.; Stoddard, T.; Juillerat, A.; Cedrone, F.; et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 2014, 12, 934–940. [Google Scholar] [CrossRef]
- Bao, A.; Burritt, D.J.; Chen, H.; Zhou, X.; Cao, D.; Tran, L.P. The CRISPR/Cas9 system and its applications in crop genome editing. Crit. Rev. Biotechnol. 2019, 39, 321–336. [Google Scholar] [CrossRef]
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for crop improvement: An update review. Front. Plant Sci. 2018, 9, 985. [Google Scholar] [CrossRef]
- Cao, H.X.; Wang, W.; Le, H.T.T.; Vu, G.T.H. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. Int. J. Plant Genom. 2016, 2016, 5078796. [Google Scholar] [CrossRef]
- Barabaschi, D.; Tondelli, A.; Desiderio, F.; Volante, A.; Vaccino, P.; Valè, G.; Cattivelli, L. Next generation breeding. Plant Sci. 2016, 242, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, T.J.; Gensollen, V. Review of the protocols used for assessment of DUS and VCU in Europe perspectives. In Sustainable Use of Genetic Diversity in Forage and Turf Breeding; Huyghe, C., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 261–275. [Google Scholar]
- Osman, A.M.; Bonthuis, H.; Van den Brink, L.; Struik, P.C.; Almekinders, C.J.M.; Lammerts van Bueren, E.T. Adapting value for cultivation and use testing to stimulate the release of improved varieties for the organic sector. The case of spring wheat in The Netherlands. Org. Agr. 2015, 5, 101–111. [Google Scholar] [CrossRef]
- Gilliland, T.J.; Annicchiarico, P.; Julier, B.; Ghesquière, M. A proposal for enhanced EU herbage VCU and DUS testing procedures. Grass Forage Sci. 2020, 75, 227–241. [Google Scholar] [CrossRef]
- Luby, C.H.; Goldman, I.L. Freeing crop genetics through the Open Source Seed Initiative. PLoS Biol. 2016, 14, e1002441. [Google Scholar] [CrossRef] [Green Version]
- Kotschi, J.; Horneburg, B. The Open Source Seed License: A novel approach to safeguarding access to plant germplasm. PLoS Biol. 2018, 16, e3000023. [Google Scholar] [CrossRef] [Green Version]
- Niels, L. Open source seed, a revolution in breeding or yet another attack on the breeder’s exemption? Front. Plant Sci. 2019, 10, 1127. [Google Scholar]
- Song, Q.; Hyten, D.L.; Jia, G.; Quigley, C.V.; Fickus, E.W.; Nelson, R.L.; Cregan, P.B. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 2013, 8, e54985. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Jayaswal, P.; Panda, K.; Singh, V.; Jayaswal, P.K.; Panda, K.; Mandal, P.; Kumar, V.; Singh, B.; Mishra, S.; et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci. Rep. 2015, 5, 11600. [Google Scholar] [CrossRef]
- Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.-L.; Wang, F.-G.; Zhao, J.-R.; Yi, H.-M.; Wang, L.; Wang, R.; Yang, Y.; Song, W. Development of maizeSNP3072, a high-through- put compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol. Breed. 2015, 35, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Yuan, Y.; Wang, H.; Yuan, T.; Wang, H.; Yu, D.; Liu, Y.; Zhang, A.; Gowda, M.; Nair, S.K.; et al. Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci. Rep. 2020, 10, 16308. [Google Scholar] [CrossRef]
- Beckett, T.J.; Morales, A.J.; Koehler, K.L.; Rocheford, T.R. Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds. PLoS ONE 2017, 12, e0189277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.R.; Mikel, M.A.; de Leon, N.; Kaeppler, S.M. Diversity and heterotic patterns in North American proprietary dent maize germplasm. Crop Sci. 2020, 60, 100–114. [Google Scholar] [CrossRef]
Barley | Cron | Rice | Soybean | Wheat |
---|---|---|---|---|
Kernel: color of aleurone layer | Leaf: angle between blade and stem | Leaf: intensity of green color | Hypocotyl: anthocyanin colorant | Seed: color |
Plant: growth habit | Leaf: attitude of blade | Leaf: anthocyanin coloration | Leaf: blistering | Seed: coloration with phenol |
Plant: intensity of green color | Stem: anthocyanin coloration of brace roots | Leaf: distribution of anthocyanin coloration | Leaf: shape of lateral leaflet | Coleoptile: anthocyanin coloration |
Lowest leaves: hairiness of leaf sheaths | Tassel: time of anthesis | Leaf: anthocyanin coloration of auricles | Leaf: size of lateral leaflet | Plant: growth habit |
Flag leaf: intensity of anthocyanin coloration of auricles | Tassel: anthocyanin coloration at base of glume | Leaf blade: length | Leaf: intensity of green color | Plants: frequency of plants with recurved flag leaves |
Flag leaf: attitude | Tassel: anthocyanin coloration of glumes excluding base | Leaf blade: width | Flower: color | Flag leaf: anthocyanin coloration of auricles |
Time of ear emergence | Tassel: anthocyanin coloration of anthers | Flag leaf: attitude of blade (early observation) | Plant: color of hairs of main stem | Time of ear emergence |
Flag leaf: glaucosity of sheath | Tassel: density of spikelets | Flag leaf: attitude of blade (late observation) | Plant: growth type | Flag leaf: glaucosity of sheath |
Awns: anthocyanin coloration of tips | Tassel: angle between main axis and lateral branches | Time of heading (50% of plants with heads) | Plant: growth habit | Flag leaf: glaucosity of blade |
Ear: glaucosity | Tassel: attitude of lateral branches | Male sterility | Plant: height | Ear: glaucosity |
Ear: attitude | Ear: time of silk emergence | Lemma: anthocyanin coloration of keel (early observation) | Pod: intensity of brown color | Culm: glaucosity of neck |
Grain: anthocyanin coloration of nerves of lemma | Ear: anthocyanin coloration of silks | Lemma: anthocyanin coloration of area below apex (early observation) | Seed: size | Lower glume: hairiness on external surface |
Plant: length (stem, ear, and awns) | Leaf: anthocyanin coloration of sheath | Lemma: anthocyanin coloration of apex (early observation) | Seed: shape | Plant: length |
Ear: number of rows | Tassel: length of main axis above lowest side branch | Spikelet: color of stigma | Seed: ground color of testa (excluding hilum) | Straw: pith in cross section |
Ear: development of sterile spikelets | Inbred lines only: Plant: length | Non prostrate varieties only: Stem length (excluding panicle) | Seed: hilum color | Ear: density |
Sterile spikelet: attitude | Hybrids and open pollinated varieties only: Plant: length | Stem: anthocyanin coloration of nodes | Seed: color of hilum funicle | Ear: length excluding awns and scurs |
Ear: shape | Plant: ear placement | Stem: anthocyanin coloration of internodes | Plant: time of beginning of flowering | Ear: scurs or awns |
Ear: density | Leaf: width of blade | Panicle: length of main axis | Plant: time of maturity | Ear: length of scurs or awns at tip of ear |
Ear: length (excluding awns) | Ear: length without husk | Panicle: awns | Ear: color | |
Awn: length | Ear: diameter without husk | Panicle: distribution of awns | Ear: shape in profile | |
Rachis: length of first segment | Ear: shape | Panicle: length of longest awns | Apical rachis segment: area of hairiness on convex surface | |
Rachis: curvature of first segment | Ear: number of rows of grains | Spikelet: pubescence of lemma | Lower glume: shoulder width | |
Median spikelet: length of glume and its awn relative to grain | Ear: type of grain | Spikelet: color of tip of lemma | Lower glume: shoulder shape | |
Grain: rachilla hair type | Ear: color of top of grain | Panicle: attitude in relation to stem slightly drooping strongly drooping | Lower glume: length of beak | |
Grain: spiculation of inner lateral nerves of dorsal side of lemma | Ear: anthocyanin coloration of glumes of cob | Panicle: attitude of branches | Lower glume: shape of beak | |
Grain: type | Kernel: row arrangement | Panicle: exertion | Lower glume: area of hairiness on internal surface | |
Grain: hairiness of ventral furrow | Kernel: poppiness | Time of maturity | Seasonal type | |
Lemma: shape of base | Kernel: sweetness | Lemma: color | ||
Seasonal type | Kernel: waxiness | Grain: weight of 1000 fully developed grains | ||
Kernel: opaqueness | Grain: length | |||
Kernel: shape | Grain: width | |||
Kernel: 1000 kernel weight | Decorticated grain: length | |||
Decorticated grain: width | ||||
Decorticated grain: shape | ||||
Decorticated grain: color | ||||
Endosperm: type | ||||
Endosperm: content of amylose | ||||
Decorticated grain: aroma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.-K.; Chung, Y.-S. Plant Variety Protection: Current Practices and Insights. Genes 2021, 12, 1127. https://doi.org/10.3390/genes12081127
Yu J-K, Chung Y-S. Plant Variety Protection: Current Practices and Insights. Genes. 2021; 12(8):1127. https://doi.org/10.3390/genes12081127
Chicago/Turabian StyleYu, Ju-Kyung, and Yong-Suk Chung. 2021. "Plant Variety Protection: Current Practices and Insights" Genes 12, no. 8: 1127. https://doi.org/10.3390/genes12081127
APA StyleYu, J. -K., & Chung, Y. -S. (2021). Plant Variety Protection: Current Practices and Insights. Genes, 12(8), 1127. https://doi.org/10.3390/genes12081127