Environmental Exposure to Endocrine Disrupting Chemicals Influences Genomic Imprinting, Growth, and Metabolism
Abstract
:1. Introduction
2. Genomic Imprinting: An Epigenetic Target of the Environment
3. EDCs Impact on Genomic Imprinting
3.1. Bisphenol A
3.2. Phthalates
3.3. Pesticides
3.4. Dioxin
EDC(s) | Dose(s) | Route of Exposure | Rodent Strain | F1 Exposure Window | F1 Age(s) at Endpoint | Tissue(s) Assayed | Genomic Imprinting Change(s) | Reference |
---|---|---|---|---|---|---|---|---|
BPA | 0.5, 20, or 50 μg/kg/d | Oral (pipette) | B6 | E11—birth | PND0, PND4, PND28 | F3 generation brain regions | Gene expression: BPA exposed males had significantly higher mRNA expression of Meg3 than females DNA methylation: no changes in the IG-DMR methylation status. At the Meg3 promoter, 3 CpG sites were hypermethylated in male brains | [70] |
BPA, DEHP, VZ | BPA: 0.2 mg/kg/d DEHP: 750 mg/kg/d VZ: 100 mg/kg/d | Oral (gavage) | JF1 × OG2 hybrid mice | E8.5–E12.5 | E13.5 | Whole embryo Lung and placenta Yolk sac | Relaxation of imprinted gene expression of: Slc22a18 (BPA) Rtl1as (BPA) Rtl1 (DEHP) | [29] |
BPA | Low: 10 μg/kg/d High: 10 mg/kg/d | Oral (feed) | B6 × C7 hybrid mice | E0–E9.5 E0–E12.5 | E9.5, E12.5 | Whole embryo, Placenta | Allele-specific expression: LOI at imprinted genes Ascl2, Kcnq1ot1, Snrpn, Igf2 Gene expression: total mRNA expression increased for imprinted genes Snrpn, Igf2, Kcnq1ot1, decreased for Cdkn1c and Ube3a DNA methylation: reduced at Snrpn ICR, increased at Igf2 DMR1, reduced global DNA methylation | [25] |
BPA, DEHP, VZ | BPA: 0.2 mg/kg/d DEHP: 750 mg/kg/d VZ: 100 mg/kg/d | Oral (gavage) | JF1 × OG2 hybrid mice JF1 × 129S1 | E8.5–13.5 E12.5–E16.5 | E13.5 E13.5 | Female germ cells (FGCs) Male germ cells (MGCs) | Allele-specific expression: FGCs: LOI at imprinted genes Meg3 (BPA) and H19 (DEHP) MGCs: LOI at the imprinted gene Meg3 (VZ) Allele-specific DNA methylation: LOI at the IG-DMR in liver and head (VZ), Rasgrf1 DMR in head and heart (DEHP), Rasgrf1 DMR in head (VZ) | [65] |
BPA | 0, 40, 80, 160 μg/kg/d | Oral (gavage) | CD-1 mice | E0.5–E12.5 | E12.5 | Fetal mouse germ cells (Primordial Germ Cells) | DNA methylation: decreased in imprinted genes Igf2r, Peg3 and H19 DMRs | [64] |
BPA | 0, 20, 40 μg/kg/d | Dermal (hypodermical injection) | CD-1 mice | PND7–PND15 PND5–PND20 (injection every 5 days) | PND15 PND21 | Mouse oocytes | DNA methylation: decreased at the DMRs of the imprinted genes Peg3 and Igf2r | [66] |
BPA | 50 μg/kg/d | Oral (feed) | B6 × Avy/a (viable yellow agouti) | E0–PND21 | 10 months | Brain cortex and midbrain | Gene expression: higher gene expression of Kcnq1 DNA methylation: no alterations in 5mC levels | [72] |
BPA | 50 μg/kg/d | Oral (feed) | a/a × Avy/a | E0–PND21 | 10 months | Tail | DNA methylation: decreased at H19, Igf2, IAP, and LINE-1 | [109] |
BPA, BPS | 200 μg/kg/d | Oral (feed) | B6 | E0–E12.5 | E12.5 | Placenta | Gene expression: reduced mRNA levels of Ascl2 | [69] |
VZ | 50 mg/kg/d | Dermal (injection) | B6 × C7 hybrid mice | E9.5–E18.5 | PND84 | Sperm | DNA methylation: reduced at H19/Igf2 ICR | [92] |
VZ | 50 mg/kg/d | Dermal (i.p. injection) | FVB/N mice | E10–E18 | PND56 | Sperm | DNA methylation: number of methylated CpGs decreased in H19 and Gtl2, and increased in Peg1, Snrpn and Peg3 | [110] |
TCDD (dioxin) | 2, 10 ng/kg/d | Dermal (i.p. injection) | FVB/N mice | E9–E19 | PND56 | Sperm, liver, muscle | Gene expression: increased mRNA levels of imprinted genes Snrpn, Peg3 and Igf2r (sperm), decreased expression of Igf2r (muscle) DNA methylation: increased the number of methylated CpGs in Igf2r (muscle) | [108] |
DEHP | 40 μg/kg/d | Oral (gavage) | CD-1 mice | E0.5–E12.5 | E12.5 | Primordial germ cells | DNA Methylation: reduced at Igf2r and Peg3 DMRs | [81] |
DEHP | 125, 250, 500 mg/kg/d | Oral (gavage) | CD-1 mice | E1–E9 E1–E13 | E9, E13 | Placenta | Gene expression: reduced mRNA levels of Ascl2 | [80] |
3.5. Human Studies
EDC(s) | Study Design | Study Population | Gestational Age at Sampling and Sampling Site | EDC Levels | Outcomes | Reference |
---|---|---|---|---|---|---|
Phthalates | CHAMACOS Longitudinal Birth Cohort | United States Mexican-American women and their newborn children n = 296 | 296 first and third trimester maternal urine and whole cord blood (148 girls, 148 boys) | Phthalates (μg/g creatinine): Σ DEHP: 60.9 MEHP: 3.9 MEOHP: 12.1 MEP: 214.2 MECPP: 26.7 MEHHP: 16.1 | Positive association between pregnancy DEHP metabolites and HMW phthalates and methylation percent at MEG3 DMR; negative associations between DEHP metabolites and MEG3 expression. Lower average MEG3 DMR methylation associated with low birth weight | [111] |
Phthalates | Case-Control Study | China n = 220 | Third trimester urine samples from 220 mother-newborn pairs and term placentas | Σ DEHP: 25.5 ng/mL, MBP: 25.7 ng/mL, MMP: 8.1 ng/mL, MEHP: 3.8 ng/mL, MEHHP: 10.8 ng/mL, MEOHP: 4.2 ng/mL | Inverse association between placental Igf2 DNA methylation and maternal third trimester urinary phthalate metabolite concentrations. This association was stronger in the fetal growth restriction newborns. | [112] |
BPA (n = 56), phthalates (n = 109) | Michigan Mother Infant-Pairs (MMIP) Birth Cohort | United States n = 116 | First trimester (18–14 weeks pregnancy) Maternal urine samples and infant cord blood | BPA: 0.57 ng/mL (urine) BPA: 0.78 ng/mL (plasma) Sum DEHP Metabolites: 0.09 nMol (urine), 0.9 ng/mL (plasma) | Inverse correlation between Igf2 methylation and urinary BPA concentration (females only). | [114] |
Phthalates (MEP, MBP, MIBP, MCPP, MBzP, MECPP, MEHHP, MEHP, MEOHP, DEHP) | Second and third cohort of the ELEMENT longitudinal study | Mexico n = 1079 mothers n = 250 children | First, second and third trimester maternal spot urine (phthalate metabolites analysis) Children (9–17 years) whole blood (DNA methylation analysis) | Third trimester concentrations: MEP: 112.8 μg/L MBP: 57.27 μg/L MIBP: 2.12 μg/L MCPP: 1.13 μg/L MBzP: 4.30 μg/L MECPP: 31.75 μg/L MEHHP: 19.38 μg/L MEHP: 5.42 μg/L MEOHP: 11.89 Σ DEHP: 76.69 | MBzP exposure increases H19 DNA methylation, which is positively associated with increased adiposity in girls. | [115] |
BPA | Congenital Anomaly Study cohort (mothers) Environment and Development of Children (EDC) prospective cohort (children) | Seoul, Korea n = 726 children [2-year old (n = 425) and 4-year old (n = 301)] | Second trimester maternal urine (n = 59 mothers) Whole blood (n = 59 children) | Urinary BPA: 1.34 μg/g creatinine | Increase Igf2r methylation levels in the high dose BPA group at age 2 years but not at the age 6. Positive association between BMI at 2 years and Igf2r DNA methylation (in girls but not in boys). | [116] |
4. Early-Life Edc Exposure: A Potential Risk Factor for Adult Metabolic Diseases
5. Conclusions
6. Recommendations for Future Research on Edcs and Environmental Epigenetics
- Windows of EDC susceptibility: Incorporate periconceptional (preconception) and/or early postnatal (lactation) developmental windows in future environmental epigenetic studies.
- Toxic doses vs. physiological doses: Focus on the physiological and molecular effects of EDCs at low doses.
- Individual compounds vs. mixtures: Integrate EDC mixtures in future investigations to determine if these mixtures have additive or diminished effects on fetal growth and metabolism.
- Dose administration and rodent strains: Establish an agreement between multiple labs to use similar dose of administration and rodent strains to compare the reproducibility of EDC effects. Use dose administration in the animal feed because is more relevant to the main route of human exposure (ingestion).
- Sex-specificity: Report both molecular and physiological endpoints by sex of the fetus.
- Epigenetic modifications: Include other epigenetic marks (i.e., histone modifications) in the molecular analyses of EDC exposure models.
- Mechanisms: Future work should focus on the mechanism(s) driving ICR dysregulation after EDC exposure.
7. Methods
7.1. Experimental Animals
7.2. Glucose Tolerance Tests (GTTs)
7.3. DEXA
7.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gore, A.C. Endocrine-disrupting chemicals. JAMA Intern. Med. 2016, 176, 1705. [Google Scholar] [CrossRef] [PubMed]
- Kiyama, R.; Wada-Kiyama, Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. Environ. Int. 2015, 83, 11–40. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R., Jr.; Lee, D.H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef] [PubMed]
- Xin, F.; Susiarjo, M.; Bartolomei, M.S. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin. Cell Dev. Biol. 2015, 43, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heindel, J.J.; Newbold, R.R.; Schug, T.T. Endocrine disruptors and obesity. Nat. Rev. Endocrinol. 2015, 11, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamorro-García, R.; Blumberg, B. Transgenerational effects of obesogens and the obesity epidemic. Curr. Opin. Pharmacol. 2014, 19, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, B.A.G.; Faniband, M.; Lindh, C. Human biological monitoring of suspected endocrine-disrupting compounds. Asian J. Androl. 2014, 16, 5–16. [Google Scholar] [CrossRef]
- Bansal, A.; Robles-Matos, N.; Wang, P.Z.; Condon, D.E.; Joshi, A.; Pinney, S.E. In utero bisphenol a exposure is linked with sex specific changes in the transcriptome and methylome of human amniocytes. J. Clin. Endocrinol. Metab. 2020, 105, 453–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Meer, T.P.; Van Faassen, M.; Van Beek, A.P.; Snieder, H.; Kema, I.P.; Wolffenbuttel, B.H.R.; Van Vliet-Ostaptchouk, J.V. Exposure to endocrine disrupting chemicals in the Dutch general population is associated with adiposity-related traits. Sci. Rep. 2020, 10, 9311. [Google Scholar] [CrossRef]
- Tang, Z.-R.; Xu, X.-L.; Deng, S.-L.; Lian, Z.-X.; Yu, K. Oestrogenic endocrine disruptors in the placenta and the fetus. Int. J. Mol. Sci. 2020, 21, 1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, D.; Jansson, I.; Schenkman, J.; Sarfarazi, M.; Stoilov, I. Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch. Biochem. Biophys. 2003, 414, 91–100. [Google Scholar] [CrossRef]
- Latini, G.; De Felice, C.; Verrotti, A. Plasticizers, infant nutrition and reproductive health. Reprod. Toxicol. 2004, 19, 27–33. [Google Scholar] [CrossRef]
- Weaver, J.R.; Susiarjo, M.; Bartolomei, M.S. Imprinting and epigenetic changes in the early embryo. Mamm. Genome 2009, 20, 532–543. [Google Scholar] [CrossRef]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 127, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Mandy, M.; Nyirenda, M. Developmental origins of health and disease: The relevance to developing nations. Int. Health 2018, 10, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dover, G.J. The Barker hypothesis: How pediatricans will diagnose and prevent common adult-onset diseases. Trans. Am. Clin. Climatol. Assoc. 2009, 120, 199–207. [Google Scholar] [PubMed]
- Barker, D.; Osmond, C.; Winter, P.; Margetts, B.; Simmonds, S. Weight in infancy and death from ischaemic heart disease. Lancet 1989, 334, 577–580. [Google Scholar] [CrossRef]
- Veiga-Lopez, A.; Pu, Y.; Gingrich, J.; Padmanabhan, V. Obesogenic endocrine disrupting chemicals: Identifying knowledge gaps. Trends Endocrinol. Metab. 2018, 29, 607–625. [Google Scholar] [CrossRef]
- Desai, M.; Jellyman, J.K.; Ross, M.G. Epigenomics, gestational programming and risk of metabolic syndrome. Int. J. Obes. 2015, 39, 633–641. [Google Scholar] [CrossRef]
- Anderson, O.S.; Kim, J.H.; Peterson, K.E.; Sanchez, B.N.; Sant, K.; Sartor, M.A.; Weinhouse, C.; Dolinoy, D.C. Novel epigenetic biomarkers mediating bisphenol A exposure and metabolic phenotypes in female mice. Endocrinology 2017, 158, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neel, B.A.; Sargis, R.M. The paradox of progress: Environmental disruption of metabolism and the diabetes epidemic. Diabetes 2011, 60, 1838–1848. [Google Scholar] [CrossRef] [Green Version]
- Marraudino, M.; Bonaldo, B.; Farinetti, A.; Panzica, G.; Ponti, G.; Gotti, S. Metabolism disrupting chemicals and alteration of neuroendocrine circuits controlling food intake and energy metabolism. Front. Endocrinol. 2018, 9, 766. [Google Scholar] [CrossRef]
- Oxford Academic. Potential Significance of Genomic Imprinting Defects for Reproduction and Assisted Reproductive Technology, Human Reproduction Up-Date. Available online: https://academic.oup.com/humupd/article/10/1/3/687437 (accessed on 29 November 2020).
- Susiarjo, M.; Sasson, I.; Mesaros, C.; Bartolomei, M.S. Bisphenol A exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013, 9, e1003401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobi, E.; Goeman, J.; Monajemi, R.; Gu, H.; Putter, H.; Zhang, Y.; Slieker, R.; Stok, A.P.; Thijssen, P.E.; Müller, F.; et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat. Commun. 2014, 5, 5592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 2013, 14, 204–220. [Google Scholar] [CrossRef]
- Bernal, A.J.; Jirtle, R.L. Epigenomic disruption: The effects of early developmental exposures. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, E.-R.; Iqbal, K.; Tran, D.A.; Rivas, G.E.; Singh, P.; Pfeifer, G.P.; Szabó, P.E. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics 2011, 6, 937–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, D.P.; Bartolomei, M. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 2014, 6, a018382. [Google Scholar] [CrossRef] [Green Version]
- Barlow, D.P. Genomic imprinting: A mammalian epigenetic discovery model. Annu. Rev. Genet. 2011, 45, 379–403. [Google Scholar] [CrossRef] [PubMed]
- SanMiguel, J.M.; Bartolomei, M. DNA methylation dynamics of genomic imprinting in mouse development. Biol. Reprod. 2018, 99, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Strogantsev, R.; Takahashi, N.; Kazachenka, A.; Lorincz, M.C.; Hemberger, M.; Ferguson-Smith, A.C. ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains. Epigenet. Chromatin 2019, 12, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zhu, J.; Li, Y.; Lin, T.; Gan, L.; Yuan, X.; Xu, M.; Wei, G. Dynamic effect of di-2-(ethylhexyl) phthalate on testicular toxicity: Epigenetic changes and their impact on gene expression. Int. J. Toxicol. 2010, 29, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Monk, D.; Mackay, D.J.; Eggermann, T.; Maher, E.R.; Riccio, A. Genomic imprinting disorders: Lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 2019, 20, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Dolinoy, D.C.; Das, R.; Weidman, J.R.; Jirtle, R.L. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr. Res. 2007, 61, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Neier, K.; Cheatham, D.; Bedrosian, L.D.; Gregg, B.E.; Song, P.X.K.; Dolinoy, D.C. Longitudinal metabolic impacts of perinatal exposure to phthalates and phthalate mixtures in mice. Endocrinology 2019, 160, 1613–1630. [Google Scholar] [CrossRef]
- Tian, M.; Liu, L.; Zhang, J.; Huang, Q.; Shen, H. Positive association of low-level environmental phthalate exposure with sperm motility was mediated by DNA methylation: A pilot study. Chemosphere 2019, 220, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, B.T.; Tobi, E.; Stein, A.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [Green Version]
- Schulz, L.C. The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl. Acad. Sci. USA 2010, 107, 16757–16758. [Google Scholar] [CrossRef] [Green Version]
- De Rooij, S.R.; Painter, R.C.; Phillips, D.I.W.; Osmond, C.; Michels, R.P.J.; Godsland, I.F.; Bossuyt, P.M.M.; Bleker, O.P.; Roseboom, T.J. Impaired insulin secretion after prenatal exposure to the Dutch Famine. Diabetes Care 2006, 29, 1897–1901. [Google Scholar] [CrossRef] [Green Version]
- Lumey, L.H.; Stein, A.D.; Kahn, H.S.; Romijn, J.A. Lipid profiles in middle-aged men and women after famine exposure during gestation: The Dutch Hunger Winter Families Study. Am. J. Clin. Nutr. 2009, 89, 1737–1743. [Google Scholar] [CrossRef] [Green Version]
- Ravelli, A.C.; Van Der Meulen, J.H.; Osmond, C.; Barker, D.J.; Bleker, O.P. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 1999, 70, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Robins, J.C.; Marsit, C.J.; Padbury, J.F.; Sharma, S.S. Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front. Biosci. Elite Ed. 2011, 3, 690–700. [Google Scholar] [PubMed] [Green Version]
- Marsit, C.J. Influence of environmental exposure on human epigenetic regulation. J. Exp. Biol. 2015, 218, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorvaldsen, J.L.; Bartolomei, M.S. SnapShot: Imprinted gene clusters. Cell 2007, 130, 958.e1–958.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeChiara, T.M.; Efstratiadis, A.; Robertsen, E.J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990, 345, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Thorvaldsen, J.L.; Duran, K.L.; Bartolomei, M.S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 1998, 12, 3693–3702. [Google Scholar] [CrossRef] [Green Version]
- Leighton, P.A.; Saam, J.R.; Ingram, R.S.; Stewart, C.L.; Tilghman, S.M. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 1995, 9, 2079–2089. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Park, M.S.; Lee, H.S. Endocrine disrupting chemicals: Human exposure and health risks. J. Environ. Sci. Health Part C 2006, 24, 183–224. [Google Scholar] [CrossRef]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Shelby, M.D. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. NTP CERHR Monogr. 2008, 22, 1–64. [Google Scholar]
- Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol. Lett. 2006, 167, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Dolinoy, D.C.; Huang, D.; Jirtle, R.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. USA 2007, 104, 13056–13061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolinoy, D.C. The agouti mouse model: An epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev. 2008, 66, S7–S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettitt, S.J.; Liang, Q.; Rairdan, X.Y.; Moran, J.; Prosser, H.M.; Beier, D.R.; Lloyd, K.C.; Bradley, A.; Skarnes, W.C. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods 2009, 6, 493–495. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.S. Animal models to study environmental epigenetics1. Biol. Reprod. 2010, 82, 473–488. [Google Scholar] [CrossRef] [Green Version]
- Weinhouse, C.; Anderson, O.S.; Bergin, I.L.; Vandenbergh, D.; Gyekis, J.P.; Dingman, M.A.; Yang, J.; Dolinoy, D.C. Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol, A. Environ. Health Perspect. 2014, 122, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Jirtle, R.L. The Agouti mouse: A biosensor for environmental epigenomics studies investigating the developmental origins of health and disease. Epigenomics 2014, 6, 447–450. [Google Scholar] [CrossRef]
- Li, Y.; Sasaki, H. Genomic imprinting in mammals: Its life cycle, molecular mechanisms and reprogramming. Cell Res. 2011, 21, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Palanza, P.; Nagel, S.C.; Parmigiani, S.; Saal, F.S.V. Perinatal exposure to endocrine disruptors: Sex, timing and behavioral endpoints. Curr. Opin. Behav. Sci. 2016, 7, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud, P. Genomic imprinting in germ cells: Imprints are under control. Reproduction 2010, 140, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Bartolomei, M.S. Genomic imprinting: Employing and avoiding epigenetic processes. Genes Dev. 2009, 23, 2124–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-F.; Zhang, L.-J.; Feng, Y.-N.; Chen, B.; Feng, Y.-M.; Liang, G.-J.; Li, L.; Shen, W. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol. Biol. Rep. 2012, 39, 8621–8628. [Google Scholar] [CrossRef]
- Iqbal, K.; Tran, D.A.; Li, A.X.; Warden, C.; Bai, A.Y.; Singh, P.; Wu, X.; Pfeifer, G.P.; Szabó, P.E. Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming. Genome Biol. 2015, 16, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, H.-H.; Zhang, X.-F.; Chen, B.; Pan, B.; Zhang, L.-J.; Li, L.; Sun, X.-F.; Shi, Q.-H.; Shen, W. Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem. Cell Biol. 2012, 137, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Fowden, A.L.; Thornburg, K.L. Placental origins of chronic disease. Physiol. Rev. 2016, 96, 1509–1565. [Google Scholar] [CrossRef]
- Coan, P.; Burton, G.; Ferguson-Smith, A. Imprinted genes in the placenta—A review. Placenta 2005, 26, S10–S20. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Jain, A.; Denslow, N.D.; Nouri, M.-Z.; Chen, S.; Wang, T.; Zhu, N.; Koh, J.; Sarma, S.J.; Sumner, B.W.; et al. Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc. Natl. Acad. Sci. USA 2020, 117, 4642–4652. [Google Scholar] [CrossRef]
- Drobná, Z.; Henriksen, A.D.; Wolstenholme, J.T.; Montiel, C.; Lambeth, P.S.; Shang, S.; Harris, E.; Zhou, C.; Flaws, J.; Adli, M.; et al. Transgenerational effects of bisphenol A on gene expression and DNA methylation of imprinted genes in brain. Endocrinology 2018, 159, 132–144. [Google Scholar] [CrossRef]
- Kochmanski, J.; Marchlewicz, E.H.; Savidge, M.; Montrose, L.; Faulk, C.; Dolinoy, D.C. Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice. Reprod. Toxicol. 2017, 68, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Malloy, M.A.; Kochmanski, J.J.; Jones, T.R.; Colacino, J.A.; Goodrich, J.M.; Dolinoy, D.C.; Svoboda, L.K. Perinatal bisphenol A exposure and reprogramming of imprinted gene expression in the adult mouse brain. Front. Genet. 2019, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Committee on the Health Risks of Phthalates. Phthalate Exposure Assessment in Humans; National Academies Press: Washington, DC, USA, 2008. Available online: https://www.ncbi.nlm.nih.gov/books/NBK215044/ (accessed on 1 May 2021).
- Parlett, L.E.; Calafat, A.M.; Swan, S. Women’s exposure to phthalates in relation to use of personal care products. J. Expo. Sci. Environ. Epidemiol. 2012, 23, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Caudill, S.P.; Brock, J.W.; Needham, L.L.; Calafat, A.M. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 2004, 112, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-H.; Li, S.-S.; Wu, M.-H.; Pan, H.-A.; Lee, C.-C. Phthalates might interfere with testicular function by reducing testosterone and insulin-like factor 3 levels. Hum. Reprod. 2015, 30, 2658–2670. [Google Scholar] [CrossRef] [Green Version]
- Barakat, R.; Lin, P.-C.; Park, C.J.; Zeineldin, M.; Zhou, S.; Rattan, S.; Brehm, E.; Flaws, J.A.; Ko, C.J. Germline-dependent transmission of male reproductive traits induced by an endocrine disruptor, di-2-ethylhexyl phthalate, in future generations. Sci. Rep. 2020, 10, 5705–5718. [Google Scholar] [CrossRef] [PubMed]
- Radke, E.G.; Braun, J.M.; Meeker, J.D.; Cooper, G.S. Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. Environ. Int. 2018, 121, 764–793. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.S. Environmental anti-androgens and male reproductive health: Focus on phthalates and testicular dysgenesis syndrome. Reproduction 2004, 127, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, T.; Lai, L.; Hu, J.; Guo, M.; Li, M.; Zhang, L.; Zhong, C.; Yang, B.; Wu, L.; Zhang, D.; et al. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice. J. Hazard. Mater. 2015, 297, 25–33. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Qin, X.-S.; Ge, W.; Ma, H.-G.; Sun, L.-L.; Hou, Z.-M.; Chen, H.; Chen, P.; Qin, G.-Q.; et al. Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol. Biol. Rep. 2014, 41, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Grindler, N.M.; Vanderlinden, L.; Karthikraj, R.; Kannan, K.; Teal, S.; Polotsky, A.J.; Powell, T.L.; Yang, I.V.; Jansson, T. Exposure to phthalate, an endocrine disrupting chemical, alters the first trimester placental methylome and transcriptome in women. Sci. Rep. 2018, 8, 6086. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.F.; Souney, P.F.; Osathanondh, R. A review of possible toxicity of DI-2-ethylhexylphthalate (DEHP) in plastic intravenous containers: Effects on reproduction. Drug Intell. Clin. Pharm. 1982, 16, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Lovekamp-Swan, T.; Davis, B.J. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ. Health Perspect. 2003, 111, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Yu, C.; Gao, R.; Liu, X.; Lu, J.; Zhao, L.; Chen, X.; Ding, Y.; Wang, Y.; He, J. Effects of DEHP on endometrial receptivity and embryo implantation in pregnant mice. J. Hazard. Mater. 2012, 241–242, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Steeger, T.; Garber, K. Risks of Vinclozolin Use to Federally Threatened California Red-Legged Frog; Environmental Fate and Effects Division Office of Pesticide Programs: Washington, DC, USA, 2009. [Google Scholar]
- Kelce, W.; Monosson, E.; Gamcsik, M.; Laws, S.; Gray, L. Environmental hormone disruptors: Evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol. Appl. Pharmacol. 1994, 126, 276–285. [Google Scholar] [CrossRef]
- Environmental Health. Embryonic Exposure to the Fungicide Vinclozolin Causes Virilization of Females and Alteration of Progesterone Receptor Expression In Vivo: An Experimental Study in Mice. Available online: https://ehjournal.biomedcentral.com/articles/10.1186/1476-069X-5-4 (accessed on 1 May 2021).
- Anway, M.D.; Leathers, C.; Skinner, M.K. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 2006, 147, 5515–5523. [Google Scholar] [CrossRef] [Green Version]
- Anway, M.D.; Cupp, A.S.; Uzumcu, M.; Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308, 1466–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stouder, C.; Paoloni-Giacobino, A. Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction 2011, 141, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Pietryk, E.W.; Clement, K.; Elnagheeb, M.; Kuster, R.; Kilpatrick, K.; Love, M.; Ideraabdullah, F.Y. Intergenerational response to the endocrine disruptor vinclozolin is influenced by maternal genotype and crossing scheme. Reprod. Toxicol. 2018, 78, 9–19. [Google Scholar] [CrossRef]
- Kociba, R.J.; Schwetz, B.A. Toxicity of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Drug Metab. Rev. 1982, 13, 387–406. [Google Scholar] [CrossRef]
- Dioxins and Their Effects on Human Health. Available online: https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health (accessed on 1 May 2021).
- Harrad, S.; Wang, Y.; Sandaradura, S.; Leeds, A. Human dietary intake and excretion of dioxin-like compounds. J. Environ. Monit. 2003, 5, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Malisch, R.; Kotz, A. Dioxins and PCBs in feed and food—Review from European perspective. Sci. Total Environ. 2014, 491–492, 2–10. [Google Scholar] [CrossRef]
- Pompa, G.; Caloni, F.; Fracchiolla, M.L. Dioxin and PCB contamination of fish and shellfish: Assessment of human exposure, Review of the international situation. Vet. Res. Commun. 2003, 27, 159–167. [Google Scholar] [CrossRef]
- Wroblewski, V. Hepatic metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the rat and guinea pig. Toxicol. Appl. Pharmacol. 1985, 81, 231–240. [Google Scholar] [CrossRef]
- Sorg, O.; Zennegg, M.; Schmid, P.; Fedosyuk, R.; Valikhnovskyi, R.; Gaide, O.; Kniazevych, V.; Saurat, J.-H. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) poisoning in Victor Yushchenko: Identification and measurement of TCDD metabolites. Lancet 2009, 374, 1179–1185. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee to Review the Health Effects in Vietnam Veterans of Exposure to Herbicides (Fourth Biennial Update). Veterans and Agent Orange: Update 2002; National Academies Press: Washington, DC, USA, 2003. Available online: http://www.ncbi.nlm.nih.gov/books/NBK221383/ (accessed on 1 May 2021).
- Tuyet, L.T.N.; Johansson, A. Impact of chemical warfare with agent orange on women’s reproductive lives in Vietnam: A pilot study. Reprod. Health Matters 2001, 9, 156–164. [Google Scholar] [CrossRef]
- Eskenazi, B.; Warner, M.; Brambilla, P.; Signorini, S.; Ames, J.; Mocarelli, P. The Seveso accident: A look at 40 years of health research and beyond. Environ. Int. 2018, 121, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Foster, W.G.; Maharaj-Briceño, S.; Cyr, D.G. Dioxin-induced changes in epididymal sperm count and spermatogenesis. Ciênc. Saúde Colet. 2011, 16, 2893–2905. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.R.; Clode, S.; Fan, M.Q.; Fernandes, A.; Foster, P.M.; Ji-Ang, T.; Loizou, G.; MacNicoll, A.; Miller, B.G.; Rose, M.; et al. Interpretation of studies on the developmental reproductive toxicology of 2,3,7,8-tetrachlorodibenzo-p-dioxin in male offspring. Food Chem. Toxicol. 2010, 48, 1439–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimler, I.; Trewin, A.L.; Chaffin, C.L.; Rawlins, R.G.; Hutz, R.J. Modulation of ovarian follicle maturation and effects on apoptotic cell death in holtzman rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero and lactationally. Reprod. Toxicol. 1998, 12, 69–73. [Google Scholar] [CrossRef]
- Heimler, I.; Rawlins, R.G.; Owen, H.; Hutz, R.J. Dioxin perturbs, in a dose- and time-dependent fashion, steroid secretion, and induces apoptosis of human luteinized granulosa cells. Endocrinology 1998, 139, 4373–4379. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Ohsako, S.; Ishimura, R.; Suzuki, J.S.; Tohyama, C. Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf21. Biol. Reprod. 2004, 70, 1790–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somm, E.; Stouder, C.; Paoloni-Giacobino, A. Effect of developmental dioxin exposure on methylation and expression of specific imprinted genes in mice. Reprod. Toxicol. 2013, 35, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Kochmanski, J.; Marchlewicz, E.H.; Dolinoy, D.C. Longitudinal effects of developmental bisphenol A, variable diet, and physical activity on age-related methylation in blood. Environ. Epigenet. 2018, 4, dvy017. [Google Scholar] [CrossRef]
- Stouder, C.; Paoloni-Giacobino, A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 2010, 139, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Tindula, G.; Murphy, S.K.; Grenier, C.; Huang, Z.; Huen, K.; Escudero-Fung, M.; Bradman, A.; Eskenazi, B.; Hoyo, C.; Holland, N. DNA methylation of imprinted genes in Mexican-American newborn children with prenatal phthalate exposure. Epigenomics 2018, 10, 1011–1026. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Wang, X.; Song, Q.; Xu, H.-H.; Zhang, Y.-H. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. Sci. Rep. 2016, 6, 33449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaRocca, J.; Binder, A.M.; McElrath, T.F.; Michels, K.B. The impact of first trimester phthalate and phenol exposure on Igf2/H19 genomic imprinting and birth outcomes. Environ. Res. 2014, 133, 396–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodrich, J.M.; Ingle, M.E.; Domino, S.E.; Treadwell, M.C.; Dolinoy, D.C.; Burant, C.; Meeker, J.D.; Padmanabhan, V. First trimester maternal exposures to endocrine disrupting chemicals and metals and fetal size in the Michigan mother-infant pairs study. J. Dev. Orig. Health Dis. 2019, 10, 447–458. [Google Scholar] [CrossRef]
- Bowman, A.; Peterson, K.E.; Dolinoy, D.C.; Meeker, J.D.; Sánchez, B.N.; Mercado-Garcia, A.; Rojo, M.T.; Goodrich, J.M. Phthalate exposures, DNA methylation and adiposity in Mexican children through adolescence. Front. Public Health 2019, 7, 162. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Lee, Y.A.; Hong, Y.-C.; Cho, J.; Lee, K.-S.; Shin, C.H.; Kim, B.-N.; Kim, J.I.; Park, S.J.; Bisgaard, H.; et al. Effect of prenatal bisphenol A exposure on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (Igf2r) gene. Environ. Int. 2020, 143, 105929. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Zhang, L.; Zhang, H.; Wei, W.; Jia, L. Perinatal BPA Exposure induces hyperglycemia, oxidative stress and decreased adiponectin production in later life of male rat offspring. Int. J. Environ. Res. Public Health 2014, 11, 3728–3742. [Google Scholar] [CrossRef] [Green Version]
- Exposure to Bisphenol-A during Pregnancy Partially Mimics the Effects of a High-Fat Diet Altering Glucose Homeostasis and Gene Expression in Adult Male Mice. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100214 (accessed on 17 May 2021).
- Susiarjo, M.; Xin, F.; Bansal, A.; Stefaniak, M.; Li, C.; Simmons, R.A.; Bartolomei, M. Bisphenol A exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 2015, 156, 2049–2058. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Rashid, C.; Xin, F.; Li, C.; Polyak, E.; Duemler, A.; Van Der Meer, T.; Stefaniak, M.; Wajid, S.; Doliba, N.; et al. Sex- and dose-specific effects of maternal bisphenol A exposure on pancreatic islets of first- and second-generation adult mice offspring. Environ. Health Perspect. 2017, 125, 097022. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wei, J.; Li, Y.; Chen, J.; Zhou, Z.; Song, L.; Wei, Z.; Lv, Z.; Chen, X.; Xia, W.; et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am. J. Physiol. Metab. 2011, 301, E527–E538. [Google Scholar] [CrossRef]
- Rajesh, P.; Balasubramanian, K. Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J. Endocrinol. 2014, 223, 47–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campioli, E.; Martinezarguelles, D.B.; Papadopoulos, V.N. In utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate promotes local adipose and systemic inflammation in adult male offspring. Nutr. Diabetes 2014, 4, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trasande, L.; Spanier, A.J.; Sathyanarayana, S.; Attina, T.M.; Blustein, J. Urinary phthalates and increased insulin resistance in adolescents. Pediatrics 2013, 132, e646–e655. [Google Scholar] [CrossRef] [Green Version]
- Iughetti, L.; Lucaccioni, L.; Predieri, B. Childhood obesity and environmental pollutants: A dual relationship. Acta Biomed. Atenei Parm. 2015, 86, 5–16. [Google Scholar]
- Neier, K.; Cheatham, D.; Bedrosian, L.D.; Dolinoy, D.C. Perinatal exposures to phthalates and phthalate mixtures result in sex-specific effects on body weight, organ weights and intracisternal A-particle (IAP) DNA methylation in weanling mice. J. Dev. Orig. Health Dis. 2019, 10, 176–187. [Google Scholar] [CrossRef]
- Pocar, P.; Fiandanese, N.; Secchi, C.; Berrini, A.; Fischer, B.; Schmidt, J.S.; Schaedlich, K.; Borromeo, V. Exposure to di(2-ethyl-hexyl) phthalate (DEHP) in utero and during lactation causes long-term pituitary-gonadal axis disruption in male and female mouse offspring. Endocrinology 2012, 153, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.-S.; Schaedlich, K.; Fiandanese, N.; Pocar, P.; Fischer, B. Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ. Health Perspect. 2012, 120, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Hao, C. Perinatal exposure to diethyl-hexyl-phthalate induces obesity in mice. Front. Biosci. Elite Ed. 2013, 5, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, M.I.; Mocchiutti, N.O.; Bernal, C.A. Dietary di(2-ethylhexyl)phthalate-impaired glucose metabolism in experimental animals. Hum. Exp. Toxicol. 2006, 25, 531–538. [Google Scholar] [CrossRef]
- Feige, J.N.; Gerber, A.; Casals-Casas, C.; Yang, Q.; Winkler, C.; Bedu, E.; Bueno, M.; Gelman, L.; Auwerx, J.; Gonzalez, F.J.; et al. The Pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARα-dependent mechanisms. Environ. Health Perspect. 2010, 118, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Kwack, S.J.; Kim, K.B.; Kim, H.S.; Lee, B.M. Comparative toxicological evaluation of phthalate diesters and metabolites in sprague-dawley male rats for risk assessment. J. Toxicol. Environ. Health Part A 2009, 72, 1446–1454. [Google Scholar] [CrossRef]
- Stojanoska, M.M.; Milosevic, N.; Milic, N.; Abenavoli, L. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine 2017, 55, 666–681. [Google Scholar] [CrossRef]
- Chen, Z.; Yin, Q.; Inoue, A.; Zhang, C.; Zhang, Y. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci. Adv. 2019, 5, eaay7246. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Wilson, J.L.; Khaksari, M.; Cowley, M.; Enriori, P.J. Abdominal fat analyzed by DEXA scan reflects visceral body fat and improves the phenotype description and the assessment of metabolic risk in mice. Am. J. Physiol. Endocrionol. Metab. 2012, 303, E635–E643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles-Matos, N.; Artis, T.; Simmons, R.A.; Bartolomei, M.S. Environmental Exposure to Endocrine Disrupting Chemicals Influences Genomic Imprinting, Growth, and Metabolism. Genes 2021, 12, 1153. https://doi.org/10.3390/genes12081153
Robles-Matos N, Artis T, Simmons RA, Bartolomei MS. Environmental Exposure to Endocrine Disrupting Chemicals Influences Genomic Imprinting, Growth, and Metabolism. Genes. 2021; 12(8):1153. https://doi.org/10.3390/genes12081153
Chicago/Turabian StyleRobles-Matos, Nicole, Tre Artis, Rebecca A. Simmons, and Marisa S. Bartolomei. 2021. "Environmental Exposure to Endocrine Disrupting Chemicals Influences Genomic Imprinting, Growth, and Metabolism" Genes 12, no. 8: 1153. https://doi.org/10.3390/genes12081153
APA StyleRobles-Matos, N., Artis, T., Simmons, R. A., & Bartolomei, M. S. (2021). Environmental Exposure to Endocrine Disrupting Chemicals Influences Genomic Imprinting, Growth, and Metabolism. Genes, 12(8), 1153. https://doi.org/10.3390/genes12081153