MiRNA Let-7a and Let-7d Are Induced by Globotriaosylceramide via NF-kB Activation in Fabry Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. miRNA Screening Assay
2.2. Endothelial Cell Culture
2.3. qPCR
2.4. Nuclear p50 ELISA
2.5. Patients
2.6. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schiffmann, R.; Fuller, M.; Clarke, L.A.; Aerts, J.M. Is it Fabry disease? Genet. Med. 2016, 18, 1181–1185. [Google Scholar] [CrossRef] [Green Version]
- Mauhin, W.; Lidove, O.; Masat, E.; Mingozzi, F.; Mariampillai, K.; Ziza, J.M.O. Benveniste, Innate and Adaptive Immune Response in Fabry Disease. JIM Rep. 2015, 22, 1–10. [Google Scholar]
- Duro, G.; Zizzo, C.; Cammarata, G.; Burlina, A.; Burlina, A.; Polo, G.; Scalia, S.; Oliveri, R.; Sciarrino, S.; Francofonte, D.; et al. Mutations in the GLA Gene and LysoGb3: Is It Really Anderson-Fabry Disease? Int. J. Mol. Sci. 2018, 19, 3726. [Google Scholar] [CrossRef] [Green Version]
- Meikle, P.J.; Hopwood, J.J.; Clague, A.E.; Carey, W.F. Prevalence of lysosomal storage disorders. JAMA 1999, 281, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.; Pagliardini, S.; Yasuda, M.; Tukel, T.; Thiagarajan, G.; Sakuraba, H.; Ponzone, A.; Desnick, R.J. High incidence of later-onset Fabry disease revealed by newborn screening. Am. J. Hum. Genet. 2006, 79, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Waldek, S.; Patel, M.R.; Banikazemi, M.; Lemay, M.R.; Lee, P. Life expectancy and cause of death in males and females with Fabry disease: Findings from the Fabry Registry. Genet. Med. 2009, 11, 790–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, M. Demographics of FOS—The Fabry Outcome Survey. In Fabry Disease: Perspectives from 5 Years of FOSA; Mehta, A., Beck, M., Sunder-Plassmann, G., Eds.; Oxford PharmaGenesis: Oxford, UK, 2006. [Google Scholar]
- Rozenfeld, P.; Feriozzi, S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol. Genet. Metab. 2017, 122, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.S.; Meng, X.L.; Moore, D.F.; Quirk, J.M.; Shayman, J.A.; Schiffmann, R.; Kaneski, C.R. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol. Genet. Metab. 2008, 95, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohensinner, P.J.; Kaun, C.; Ebenbauer, B.; Hackl, M.; Demyanets, S.; Richter, D.; Prager, M.; Wojta, J.; Rega-Kaun, G. Reduction of Premature Aging Markers After Gastric Bypass Surgery in Morbidly Obese Patients. Obes. Surg. 2018, 28, 2804–2810. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Lu, D.; Hoepfner, J.; Santer, L.; Gupta, S.; Pfanne, A.; Thum, S.; Lenders, M.; Brand, E.; Nordbeck, P.; et al. Circulating microRNAs in Fabry Disease. Sci. Rep. 2019, 9, 15277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kaab, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef] [PubMed]
- Hohensinner, P.J.; Kaun, C.; Buchberger, E.; Ebenbauer, B.; Demyanets, S.; Huk, I.; Eppel, W.; Maurer, G.; Huber, K.; Wojta, J. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim. Biophys. Acta 2016, 1863, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J. Reduced Ang2 expression in aging endothelial cells. Biochem. Biophys. Res. Commun. 2016, 474, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Hohensinner, P.J.; Mayer, J.; Kichbacher, J.; Kral-Pointner, J.; Thaler, B.; Kaun, C.; Hell, L.; Haider, P.; Mussbacher, M.; Schmid, J.A.; et al. Alternative activation of human macrophages enhances tissue factor expression and production of extracellular vesicles. Haematologica 2021, 106, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Arends, M.; Wanner, C.; Hughes, D.; Mehta, A.; Oder, D.; Watkinson, O.T.; Elliott, P.M.; Linthorst, G.E.; Wijburg, F.A.; Biegstraaten, M.; et al. Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. J. Am. Soc. Nephrol. 2017, 28, 1631–1641. [Google Scholar] [CrossRef] [Green Version]
- Hohensinner, P.J.; Kaun, C.; Rychli, K.; Niessner, A.; Pfaffenberger, S.; Rega, G.; de Martin, R.; Maurer, G.; Ullrich, R.; Huber, K.; et al. Macrophage colony stimulating factor expression in human cardiac cells is upregulated by tumor necrosis factor-alpha via an NF-kappaB dependent mechanism. J. Thromb. Haemost. 2007, 5, 2520–2528. [Google Scholar] [CrossRef] [PubMed]
- Brennan, E.; Wang, B.; McClelland, A.; Mohan, M.; Marai, M.; Beuscart, O.; Derouiche, S.; Gray, S.; Pickering, R.; Tikellis, C.; et al. Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis. Diabetes 2017, 66, 2266–2277. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Sun, M.; Ma, K.; Liu, J. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-kappaB signaling pathway. Am. J. Physiol. Cell. Physiol. 2020, 319, C967–C979. [Google Scholar] [CrossRef] [PubMed]
- Orr, C.; Myers, R.; Li, B.; Jiang, Z.; Flaherty, J.; Gaggar, A.; Meissner, E.G. Longitudinal analysis of serum microRNAs as predictors of cirrhosis regression during treatment of hepatitis B virus infection. Liver Int. 2020, 40, 1693–1700. [Google Scholar] [CrossRef]
- Zhang, J.; Dongwei, Z.; Zhang, Z.; Xinhui, Q.; Kunwang, B.; Guohui, L.; Jian, D. miR-let-7a suppresses alpha-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease. Biochem. Biophys. Res. Commun. 2019, 519, 740–746. [Google Scholar] [CrossRef] [PubMed]
Parameter | Patients under ERT (n = 3) | Patients without ERT (n = 3) |
---|---|---|
Gender | ♀ (n = 2) ♂ (n = 1) | ♀ (n = 2) ♂ (n = 1) |
Age | 40 ± 12 years | 44 ± 17 years |
Age at diagnosis | 37 ± 11 years | 41 ± 17 years |
Follow-up time | 3.3 years | 4.3 years |
eGFR (CKD-EPI) | 55.42 mL/min/1.73 m2 | 93.68 mL/min/1.73 m2 |
Treatment | Agalsidase Alfa (0.2 mg/kg every other week) n = 2 | - |
Agalsidase Beta (1 mg/kg every other week) n = 1 | - | |
Variants and affected organs | ||
Patient #1 | c.59C>A p.(Ala20Asp) | c.335G>A p.(Arg112His) |
Late-onset FD | Non-classic FD | |
Heart, kidney | None | |
Patient #2 | c.547+1G>C | c.335G>A p.(Arg112His) |
Classic FD | Non-classic FD | |
Heart, kidney and nervous system | None | |
Patient #3 | c.1132T>C p.(Cys378Arg) | c.335G>A p.(Arg112His) |
Late-onset FD | Non-classic FD | |
Heart, kidney and nervous system | none |
Parameter | Patients under ERT (n = 5) | Patients without ERT (n = 5) |
---|---|---|
Gender | ♀ (n = 2) ♂ (n = 3) | ♀ (n = 4) ♂ (n = 1) |
Age | 39 ± 8.7 years | 40 ± 9.2 years |
Treatment | Agalsidase Alfa (0.2 mg/kg every other week) | - |
Variants and affected organs | Reference sequence: NM_000169.2 | |
Patient #1 | c.1288T>C p.(* 430GLnext) | c.195-2A>G |
Non-classical FD | Non-classical FD | |
Kidney | Nervous system | |
Patient #2 | c.319C>T p.(Gln107 *) | c.335G>A p.(Arg112His) |
Classical FD | Non-classical FD | |
Heart kidney and nervous system | None | |
Patient #3 | c.997C>T; p.(Gln333 *) | c.772G>A p.(Gly258Arg) |
Classical FD | Non-classical FD | |
Heart, kidney and nervous system | None | |
Patient #4 | c.758T>G p.(lle253Ser) | c.59>A p.(Ala20Asp) |
Classical FD | Non-classical FD | |
Heart, kidney and nervous system | Heart and kidney | |
Patient #5 | c.167_170delinsCCCT p.(Cys56_Gln57delinsSerLeu) | c.1132T>C p.(Cys378Arg) |
Classical FD | Non-classical FD | |
Heart, kidney and nervous system | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, N.; Gatterer, C.; Haider, P.; Salzmann, M.; Kaun, C.; Speidl, W.S.; Sunder-Plassmann, G.; Podesser, B.K.; Wojta, J.; Graf, S.; et al. MiRNA Let-7a and Let-7d Are Induced by Globotriaosylceramide via NF-kB Activation in Fabry Disease. Genes 2021, 12, 1184. https://doi.org/10.3390/genes12081184
Maier N, Gatterer C, Haider P, Salzmann M, Kaun C, Speidl WS, Sunder-Plassmann G, Podesser BK, Wojta J, Graf S, et al. MiRNA Let-7a and Let-7d Are Induced by Globotriaosylceramide via NF-kB Activation in Fabry Disease. Genes. 2021; 12(8):1184. https://doi.org/10.3390/genes12081184
Chicago/Turabian StyleMaier, Nadine, Constantin Gatterer, Patrick Haider, Manuel Salzmann, Christoph Kaun, Walter S. Speidl, Gere Sunder-Plassmann, Bruno K. Podesser, Johann Wojta, Senta Graf, and et al. 2021. "MiRNA Let-7a and Let-7d Are Induced by Globotriaosylceramide via NF-kB Activation in Fabry Disease" Genes 12, no. 8: 1184. https://doi.org/10.3390/genes12081184
APA StyleMaier, N., Gatterer, C., Haider, P., Salzmann, M., Kaun, C., Speidl, W. S., Sunder-Plassmann, G., Podesser, B. K., Wojta, J., Graf, S., Lenz, M., & Hohensinner, P. J. (2021). MiRNA Let-7a and Let-7d Are Induced by Globotriaosylceramide via NF-kB Activation in Fabry Disease. Genes, 12(8), 1184. https://doi.org/10.3390/genes12081184