Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort and Phenotyping
2.2. Genetic Data
2.3. Statistical and Genetic Analyses
2.4. Conditional Analyses and Assessment of Linkage Disequilibrium
2.5. In Silico Follow-Up Analyses
3. Results
3.1. ASTN2 Genetic Variations in Cardiometabolic Traits
3.2. ASTN2 Genetic Variations in Psychological and Psychiatric Traits
3.3. Cross-Trait Observations
3.4. Genetic Architecture of the ASTN2 Locus
3.5. Comparison with Previously Published Associations
3.6. Functional Assessment of ASTN2 Genetic Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Hert, M.; Correll, C.U.; Bobes, J.; Cetkovich-Bakmas, M.; Cohen, D.A.N.; Asai, I.; Detraux, J.; Gautam, S.; Möller, H.J.; Ndetei, D.M.; et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 2011, 10, 52–77. [Google Scholar] [CrossRef] [Green Version]
- Mangurian, C.; Newcomer, J.W.; Modlin, C.; Schillinger, D. Diabetes and Cardiovascular Care Among People with Severe Mental Illness: A Literature Review. J. Gen. Intern. Med. 2016, 31, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Anda, R.F.; Williamson, D.F.; Escobedo, L.G.; Mast, E.E.; Giovino, G.A.; Remington, P.L. Depression and the dynamics of smoking. A national perspective. JAMA 1990, 264, 1541–1545. [Google Scholar] [CrossRef]
- De Hert, M.; Detraux, J.; Vancampfort, D. The intriguing relationship between coronary heart disease and mental disorders. Dialogues Clin. Neurosci. 2018, 20, 31–40. [Google Scholar]
- Coleman, J.R.I.; Gaspar, H.A.; Bryois, J.; Breen, G.; Bipolar Disorder Working Group of the Psychiatric Genomics Consortium; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biol. Psychiatry 2020, 88, 169–184. [Google Scholar] [CrossRef]
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.I.; Gaspar, H.A.; et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 2019, 51, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.S.; Liu, X.F.; Aragam, N. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr. Res. 2010, 124, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adkins, D.E.; Aberg, K.; McClay, J.L.; Bukszar, J.; Zhao, Z.; Jia, P.; Stroup, T.S.; Perkins, D.; McEvoy, J.P.; Lieberman, J.A.; et al. Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol. Psychiatry 2011, 16, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelou, E.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; Karaman, I.; et al. Publisher Correction: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018, 50, 1755. [Google Scholar] [CrossRef]
- Evangelou, E.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; Karaman, I.; et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018, 50, 1412–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kichaev, G.; Bhatia, G.; Loh, P.R.; Gazal, S.; Burch, K.; Freund, M.K.; Schoech, A.; Pasaniuc, B.; Price, A.L. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am. J. Hum. Genet. 2019, 104, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Comuzzie, A.G.; Cole, S.A.; Laston, S.L.; Voruganti, V.S.; Haack, K.; Gibbs, R.A.; Butte, N.F. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS ONE 2012, 7, e51954. [Google Scholar] [CrossRef] [Green Version]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Guo, Y.; Shi, H.; Liu, C.L.; Panganiban, R.A.; Chung, W.; O’Connor, L.J.; Himes, B.E.; Gazal, S.; Hasegawa, K.; et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 2020, 145, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Palmer, N.D.; Goodarzi, M.O.; Langefeld, C.D.; Wang, N.; Guo, X.; Taylor, K.D.; Fingerlin, T.E.; Norris, J.M.; Buchanan, T.A.; Xiang, A.H.; et al. Genetic Variants Associated With Quantitative Glucose Homeostasis Traits Translate to Type 2 Diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium. Diabetes 2015, 64, 1853–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, T.; Harlos, K.; Gilbert, R. Structure of astrotactin-2: A conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development. Open Biol. 2016, 6, 160053. [Google Scholar] [CrossRef] [Green Version]
- Behesti, H.; Fore, T.R.; Wu, P.; Horn, Z.; Leppert, M.; Hull, C.; Hatten, M.E. ASTN2 modulates synaptic strength by trafficking and degradation of surface proteins. Proc. Natl Acad. Sci. USA 2018, 115, E9717–E9726. [Google Scholar] [CrossRef] [Green Version]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Matthews, P.M.; Sudlow, C. The UK Biobank. Brain 2015, 138, 3463–3465. [Google Scholar] [CrossRef] [Green Version]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Magi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Ehret, G.B.; Ferreira, T.; Chasman, D.I.; Jackson, A.U.; Schmidt, E.M.; Johnson, T.; Thorleifsson, G.; Luan, J.; Donnelly, L.A.; Kanoni, S.; et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 2016, 48, 1171–1184. [Google Scholar] [CrossRef]
- Eastwood, S.V.; Mathur, R.; Atkinson, M.; Brophy, S.; Sudlow, C.; Flaig, R.; de Lusignan, S.; Allen, N.; Chaturvedi, N. Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank. PLoS ONE 2016, 11, e0162388. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.A.S.; Coleman, J.R.I.; Adams, M.; Allen, N.; Breen, G.; Cullen, B.; Dickens, C.; Fox, E.; Graham, N.; Holliday, J.; et al. Mental health in UK Biobank—Development, implementation and results from an online questionnaire completed by 157366 participants: A reanalysis. Bjpsych Open. 2020, 6, e18. [Google Scholar] [CrossRef]
- Strawbridge, R.J.; Ward, J.; Bailey, M.E.S.; Cullen, B.; Ferguson, A.; Graham, N.; Johnston, K.J.A.; Lyall, L.M.; Pearsall, R.; Pell, J.; et al. Carotid Intima-Media Thickness: Novel Loci, Sex-Specific Effects, and Genetic Correlations with Obesity and Glucometabolic Traits in UK Biobank. Arter. Thromb. Vasc. Biol. 2020, 40, 446–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasis, G.R.; Willer, C.J. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26, 2336–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styrkarsdottir, U.; Lund, S.H.; Thorleifsson, G.; Zink, F.; Stefansson, O.A.; Sigurdsson, J.K.; Juliusson, K.; Bjarnadottir, K.; Sigurbjornsdottir, S.; Jonsson, S.; et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat. Genet. 2018, 50, 1681–1687. [Google Scholar] [CrossRef]
- Graham, S.E.; Nielsen, J.B.; Zawistowski, M.; Zhou, W.; Fritsche, L.G.; Gabrielsen, M.E.; Skogholt, A.H.; Surakka, I.; Hornsby, W.E.; Fermin, D.; et al. Sex-specific and pleiotropic effects underlying kidney function identified from GWAS meta-analysis. Nat. Commun. 2019, 10, 1847. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.P.; Le, T.H.; Wu, H.; Akbarov, A.; van der Most, P.J.; Hemani, G.; Smith, G.D.; Mahajan, A.; Gaulton, K.J.; Nadkarni, G.N.; et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat. Commun. 2019, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Nagel, M.; Jansen, P.R.; Stringer, S.; Watanabe, K.; de Leeuw, C.A.; Bryois, J.; Savage, J.E.; Hammerschlag, A.R.; Skene, N.G.; Munoz-Manchado, A.B.; et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 2018, 50, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, M.; Watanabe, K.; Stringer, S.; Posthuma, D.; van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 2018, 9, 905. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Chavez-Castillo, M.; Pirela, D.; Parra, H.; Nava, M.; Chacin, M.; Angarita, L.; Anez, R.; Salazar, J.; Ortiz, R.; et al. Metabolic Syndrome: Is It Time to Add the Central Nervous System? Nutrients 2021, 13, 2254. [Google Scholar] [CrossRef]
- Watson, H.J.; Yilmaz, Z.; Thornton, L.M.; Hubel, C.; Coleman, J.R.I.; Gaspar, H.A.; Bryois, J.; Hinney, A.; Leppa, V.M.; Mattheisen, M.; et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 2019, 51, 1207–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovira, P.; Demontis, D.; Sanchez-Mora, C.; Zayats, T.; Klein, M.; Mota, N.R.; Weber, H.; Garcia-Martinez, I.; Pagerols, M.; Vilar-Ribo, L.; et al. Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology 2020, 45, 1617–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anttila, V.; Winsvold, B.S.; Gormley, P.; Kurth, T.; Bettella, F.; McMahon, G.; Kallela, M.; Malik, R.; de Vries, B.; Terwindt, G.; et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 2013, 45, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.J.A.; Adams, M.J.; Nicholl, B.I.; Ward, J.; Strawbridge, R.J.; Ferguson, A.; McIntosh, A.M.; Bailey, M.E.S.; Smith, D.J. Genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet. 2019, 15, e1008164. [Google Scholar] [CrossRef] [Green Version]
- Vujkovic, M.; Keaton, J.M.; Lynch, J.A.; Miller, D.R.; Zhou, J.; Tcheandjieu, C.; Huffman, J.E.; Assimes, T.L.; Lorenz, K.; Zhu, X.; et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 2020, 52, 680–691. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, K.; Yang, F.; Grant, S.F.; Hakonarson, H.; Price, R.A.; Li, W.D. Pathway-Based Genome-Wide Association Studies for Plasma Triglycerides in Obese Females and Normal-Weight Controls. PLoS ONE 2015, 10, e0134923. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.M.; Fryer, R.H.; Fang, Y.; Hatten, M.E. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J. Neurosci. 2010, 30, 8529–8540. [Google Scholar] [CrossRef]
- Lionel, A.C.; Tammimies, K.; Vaags, A.K.; Rosenfeld, J.A.; Ahn, J.W.; Merico, D.; Noor, A.; Runke, C.K.; Pillalamarri, V.K.; Carter, M.T.; et al. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum. Mol. Genet. 2014, 23, 2752–2768. [Google Scholar] [CrossRef] [Green Version]
- Deneault, E.; White, S.H.; Rodrigues, D.C.; Ross, P.J.; Faheem, M.; Zaslavsky, K.; Wang, Z.; Alexandrova, R.; Pellecchia, G.; Wei, W.; et al. Complete Disruption of Autism-Susceptibility Genes by Gene Editing Predominantly Reduces Functional Connectivity of Isogenic Human Neurons. Stem. Cell Rep. 2018, 11, 1211–1225. [Google Scholar] [CrossRef] [Green Version]
- Bowen, R.; Balbuena, L.; Leuschen, C.; Baetz, M. Mood instability is the distinctive feature of neuroticism. Results from the British Health and Lifestyle Study (HALS). Personal. Individ. Differ. 2012, 53, 896–900. [Google Scholar] [CrossRef]
- Berkowicz, S.R.; Featherby, T.J.; Whisstock, J.C.; Bird, P.I. Mice Lacking Brinp2 or Brinp3, or Both, Exhibit Behaviors Consistent with Neurodevelopmental Disorders. Front. Behav Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkowicz, S.R.; Featherby, T.J.; Qu, Z.; Giousoh, A.; Borg, N.A.; Heng, J.I.; Whisstock, J.C.; Bird, P.I. Brinp1(-/-) mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density. Mol. Autism 2016, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, M.W. Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity. J. Clin. Investig. 2001, 108, 963–964. [Google Scholar] [CrossRef] [PubMed]
- Lara, P.; Tellgren-Roth, A.; Behesti, H.; Horn, Z.; Schiller, N.; Enquist, K.; Cammenberg, M.; Liljenstrom, A.; Hatten, M.E.; von Heijne, G.; et al. Murine astrotactins 1 and 2 have a similar membrane topology and mature via endoproteolytic cleavage catalyzed by a signal peptidase. J. Biol. Chem. 2019, 294, 4538–4545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H. Cleave but not leave: Astrotactin proteins in development and disease. Iubmb Life 2017, 69, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.M.; Mancano, G.; Kashofer, K.; Liebisch, G.; Farzi, A.; Zenz, G.; Claus, S.P.; Holzer, P. Anhedonia induced by high-fat diet in mice depends on gut microbiota and leptin. Nutr. Neurosci. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants with Those of the General Population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Men | Women | All | |
---|---|---|---|
N (% Male participants) | 184,861 | 217,250 | 402,111 (46.0) |
Age (years) | 57.1 (8.1) | 56.7 (7.9) | 56.9 (8.0) |
BMI (kg/m2) | 27.8 (4.2) | 27.0 (5.1) | 27.4 (4.8) |
WHRadjBMI | 0.936 (0.065) | 0.817 (0.070) | 0.872 (0.09) |
SBP (mmHg) | 141 (17) | 136 (19) | 138 (17) |
DBP (mmHg) | 84 (10) | 81 (10) | 82 (10) |
SBPadj (mmHg) | 145 (19) | 138 (21) | 141 (21) |
DBPadj (mmHg) | 87 (11) | 83 (11) | 84 (11) |
Hypertension | 107,646 (60.9) | 97,820 (47.3) | 205,466 (53.6) |
Anti-hypertensive medication | 4328 (2.3) | 2770 (1.3) | 7098 (1.8) |
Lipid-lowering medication | 42,600 (25.9) | 27,461 (15.6) | 70,061 (20.6) |
IMTmean * | 0.706 (0.135) | 0.658 (0.109) | 0.681 (0.125) |
IMTmax * | 0.951 (0.216) | 0.874 (0.185) | 0.911 (0.204) |
IMTmeanmax * | 0.823 (0.159) | 0.764 (0.131) | 0.792 (0.148) |
ISH | 13,155 (9.8) | 5199 (3.1) | 18,354 (6.1) |
Stroke | 3665 (3.0) | 2471 (1.5) | 6138 (2.1) |
Venous thromboembolism | 4317 (3.2) | 6112 (4.1) | 10,429 (3.7) |
Type 2 diabetes | 11,149 (6.0) | 6207 (2.9) | 17,356 (4.3) |
Current Smoking | 21,780 (11.8) | 18,769 (8.7) | 40,549 (10.1) |
Anhedonia | 36,860 (19.9) | 41,873 (19.3) | 78,733 (19.6) |
Mood instability | 77,034 (41.7) | 100,647 (46.3) | 177,681 (44.2) |
Neuroticism scores | 3.58 (3.19) | 4.57 (3.24) | 4.11 (3.26) |
Risk-taking | 60,289 (33.6) | 37,966 (18.1) | 98,255 (25.3) |
GAD ** | 3063 (7.2) | 6018 (12.8) | 9081 (10.1) |
BD ** | 873 (0.5) | 997 (0.5) | 1870 (0.5) |
MDD ** | 9661 (5.5) | 21,163 (10.3) | 30,824 (8.1) |
SBP (N = 367643) | DBP (N = 367646) | BMI (N = 392421) | WHRadjBMI (N = 392319) | Neuroticism (N = 318949) | Anhedonia (N = 379986) | Mood Instability (N = 383367) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | A1 | MAF | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | OR (95%CI) | p | OR (95%CI) | p |
rs4837585 a | T | 0.46 | −0.189 (0.044) | 2.02 × 10−5 | −0.119 (0.026) | 3.56 × 10−6 | −0.003 (0.011) | 0.7881 | 0.0005 (0.0001) | 0.0001 | 0.011 (0.008) | 0.1741 | 1.01 (1.00–1.02) | 0.0396 | 1.01 (1.00–1.02) | 0.1137 |
rs34432054 b | T | 0.13 | 0.177 (0.066) | 0.0071 | 0.174 (0.038) | 4.97 × 10−6 | 0.041 (0.016) | 0.0099 | −0.0001 (0.0002) | 0.4802 | −0.004 (0.012) | 0.7081 | 1.01 (0.99–1.03) | 0.3627 | 1.01 (1.00–1.03) | 0.0428 |
rs55654527 a | A | 0.34 | −0.027 (0.046) | 0.5532 | −0.060 (0.027) | 0.0243 | −0.063 (0.011) | 1.92 × 10−8 | 0.0003 (0.0001) | 0.0280 | −0.007 (0.008) | 0.4235 | 1.00 (0.99–1.01) | 0.8956 | 1.00 (0.99–1.01) | 0.6176 |
rs415978 b | A | 0.39 | 0.076 (0.045) | 0.0916 | 0.022 (0.026) | 0.4006 | 0.052 (0.011) | 1.75 × 10−6 | 0.0000 (0.0001) | 0.9140 | −0.024 (0.008) | 0.0029 | 0.99 (0.98–1.00) | 0.0480 | 1.00 (0.99–1.01) | 0.5227 |
rs10491574 c | T | 0.12 | 0.089 (0.068) | 0.1916 | 0.053 (0.040) | 0.1792 | 0.078 (0.017) | 2.05 × 10−6 | 0.0003 (0.0002) | 0.2048 | 0.037 (0.012) | 0.0027 | 1.02 (1.01–1.04) | 0.0112 | 1.02 (1.01–1.04) | 0.0018 |
rs13283416 a | G | 0.43 | 0.112 (0.045) | 0.0118 | 0.068 (0.026) | 0.0084 | 0.001 (0.011) | 0.9015 | −0.0008 (0.0001) | 4.52 × 10−9 | −0.003 (0.008) | 0.7248 | 0.99 (0.98–1.00) | 0.0504 | 0.99 (0.99–1.00) | 0.2772 |
rs579017 a | T | 0.06 | 0.003 (0.091) | 0.9700 | 0.023 (0.053) | 0.6607 | 0.049 (0.022) | 0.0255 | −0.0002 (0.0003) | 0.4134 | 0.084 (0.017) | 3.58 × 10−7 | 1.01 (0.98–1.03) | 0.6639 | 1.03 (1.01–1.05) | 0.0013 |
rs2296672 b | T | 0.37 | 0.003 (0.046) | 0.3958 | 0.011 (0.026) | 0.6695 | 0.037 (0.011) | 0.0009 | −0.0001 (0.0001) | 0.6593 | 0.036 (0.008) | 1.28 × 10−5 | 1.02 (1.00–1.03) | 0.0103 | 1.02 (1.01–1.03) | 4.15 × 10−5 |
rs144850429 a | T | 0.01 | 0.003 (0.211) | 0.5737 | 0.054 (0.122) | 0.6588 | 0.166 (0.051) | 0.0228 | −0.0001 (0.0006) | 0.8498 | 0.054 (0.038) | 0.1593 | 1.12 (1.06–1.18) | 3.52 × 10−5 | 1.03 (0.98–1.07) | 0.2359 |
rs35979833 b | AG | 0.15 | 0.003 (0.063) | 0.7300 | 0.016 (0.036) | 0.6519 | 0.049 (0.015) | 0.0014 | 0.0001 (0.0002) | 0.5667 | 0.035 (0.011) | 0.0022 | 1.03 (1.02–1.05) | 4.03 × 10−5 | 1.02 (1.01–1.04) | 0.0005 |
rs13284474 a | T | 0.45 | 0.003 (0.044) | 0.4141 | 0.019 (0.026) | 0.4581 | −0.045 (0.011) | 2.52 × 10−5 | −0.0003 (0.0001) | 0.0421 | −0.022 (0.008) | 0.0064 | 0.99 (0.98–1.00) | 0.0189 | 0.98 (0.97–0.99) | 7.42 × 10−7 |
rs79825568 b | A | 0.48 | 0.003 (0.044) | 0.8172 | −0.033 (0.025) | 0.1987 | −0.016 (0.011) | 0.1281 | 0.0001 (0.0001) | 0.6696 | −0.023 (0.008) | 0.0046 | 0.99 (0.98–1.00) | 0.2343 | 0.98 (0.97–0.99) | 1.46 × 10−5 |
rs4836751 c | A | 0.12 | 0.003 (0.069) | 0.0710 | −0.069 (0.040) | 0.0823 | 0.001 (0.000) | 0.0078 | 0.0202 (0.0166) | 0.2221 | 0.032 (0.012) | 0.0110 | 1.02 (1.00–1.04) | 0.0206 | 1.03 (1.02–1.05) | 2.52 × 10−5 |
Published | UK Biobank | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PMID | Trait | Size | Lead SNP | RA | RAF | OR or β | A1 | A2 | MAF | β SBP | β DBP | β BMI | β WHRadjBMI | β Neuroticism | OR Mood Instability | OR Anhedonia |
23793025 | Migraine | b | rs17303101 | A | 0.28 | 1.07 | A | G | 0.291 | −0.01 | 0.03 | 0.00 | −0.0003 | 0.01 | 1.00 | 1.00 |
31676860 | Brain region volumes | b | rs10983184 | C | T | 0.359 | −0.07 | −0.04 | 0.01 | 0.0004 | 0.00 | 1.00 | 1.00 | |||
31676860 | Brain region volumes | b | rs1040851 | C | A | 0.424 | −0.06 | −0.01 | 0.00 | 0.0001 | 0.02 | 1.01 | 1.01 | |||
31676860 | Brain region volumes | b | C | A | 0.424 | −0.06 | −0.01 | 0.00 | 0.0001 | 0.02 | 1.01 | 1.01 | ||||
30279459 | Total hippocampal volume | b | rs7873551 | C | 42.42 | C | T | 0.231 | 0.00 | 0.05 | −0.01 | 0.0000 | 0.00 | 1.00 | 1.00 | |
31676860 | Brain region volumes | b | rs7030607 | A | G | 0.359 | 0.02 | 0.01 | −0.01 | 0.0004 | −0.02 | 0.99 | 1.00 | |||
31676860 | Brain region volumes | b | A | G | 0.359 | 0.02 | 0.01 | −0.01 | 0.0004 | −0.02 | 0.99 | 1.00 | ||||
27182965 | Migraine | b | 1.05 | A | G | 0.359 | 0.02 | 0.01 | −0.01 | 0.0004 | −0.02 | 0.99 | 1.00 | |||
32541925 | Type 2 diabetes | b | rs1885234 | G | 0.39 | 0.02 | G | T | 0.419 | 0.01 | −0.01 | 0.00 | 0.0004 | −0.01 | 1.00 | 1.01 |
30279459 | Dentate gyrus granule cell layer volume | b | rs6478241 | A | 3.80 | A | G | 0.365 | −0.04 | 0.01 | −0.01 | 0.0000 | 0.02 | 1.01 | 1.00 | |
22683712 | Migraine | c | A | 0.38 | 1.16 | A | G | 0.365 | −0.04 | 0.01 | −0.01 | 0.0000 | 0.02 | 1.01 | 1.00 | |
27322543 | Migraine | b | A | 0.36 | 1.05 | A | G | 0.365 | −0.04 | 0.01 | −0.01 | 0.0000 | 0.02 | 1.01 | 1.00 | |
23793025 | Migraine–clinic-based | b | A | 0.38 | 1.16 | A | G | 0.365 | −0.04 | 0.01 | −0.01 | 0.0000 | 0.02 | 1.01 | 1.00 | |
23793025 | Migraine without aura | b | A | 0.38 | 1.12 | A | G | 0.365 | −0.04 | 0.01 | −0.01 | 0.0000 | 0.02 | 1.01 | 1.00 | |
27322543 | Migraine without aura | b | A | 0.35 | 1.14 | A | G | 0.365 | −0.04 | 0.01 | −0.01 | 0.0000 | 0.02 | 1.01 | 1.00 | |
31194737 | Multisite chronic pain | b | A | 0.37 | 0.01 | A | G | 0.365 | −0.04 | 0.01 | −0.01 | 0.0000 | 0.02 | 1.01 | 1.00 | |
31676860 | Brain region volumes | b | rs34979631 | T | C | 0.225 | 0.01 | 0.06 | −0.01 | 0.0000 | 0.01 | 1.01 | 1.00 | |||
31676860 | Brain region volumes | b | T | C | 0.225 | 0.01 | 0.06 | −0.01 | 0.0000 | 0.01 | 1.01 | 1.00 | ||||
31676860 | Brain region volumes | b | rs4837565 | A | G | 0.139 | 0.14 | 0.10 | 0.01 | 0.0003 | 0.00 | 1.01 | 1.00 | |||
31676860 | Brain region volumes | b | A | G | 0.139 | 0.14 | 0.10 | 0.01 | 0.0003 | 0.00 | 1.01 | 1.00 | ||||
31676860 | Brain region volumes | b | rs11792948 | A | G | 0.359 | 0.05 | 0.05 | 0.00 | 0.0001 | 0.01 | 1.01 | 1.00 | |||
31676860 | Brain region volumes | b | A | G | 0.359 | 0.05 | 0.05 | 0.00 | 0.0001 | 0.01 | 1.01 | 1.00 | ||||
31676860 | Brain region volumes | b | rs4837580 | T | C | 0.39 | −0.05 | −0.03 | −0.01 | 0.0005 | 0.00 | 1.00 | 1.01 | |||
31676860 | Brain region volumes | b | rs10983204 | T | C | 0.39 | −0.05 | −0.03 | −0.01 | 0.0005 | 0.00 | 1.00 | 1.01 | |||
31015462 | Estimated glomerular filtration rate | b | rs13283416 | G | 0.50 | 6.93 | G | T | 0.426 | 0.11 | 0.07 | 0.00 | −0.0008 | 0.00 | 0.99 | 0.99 |
30604766 | Estimated glomerular filtration rate | b | G | 0.50 | 0.23 | G | T | 0.426 | 0.11 | 0.07 | 0.00 | −0.0008 | 0.00 | 0.99 | 0.99 | |
30374069 | Osteoarthritis (hip) | b | G | 1.10 | G | T | 0.426 | 0.11 | 0.07 | 0.00 | −0.0008 | 0.00 | 0.99 | 0.99 | ||
30224653 | Diastolic blood pressure | b | rs1861881 | G | 0.68 | 0.12 | T | G | 0.316 | 0.18 | 0.13 | −0.01 | 0.0001 | −0.01 | 1.00 | 0.99 |
32632093 | Migraine and/or diastolic blood pressure | b | T | G | 0.316 | 0.18 | 0.13 | −0.01 | 0.0001 | −0.01 | 1.00 | 0.99 | ||||
18839057 | Attention deficit hyperactivity disorder | a | rs10983238 | G | C | 0.233 | 0.02 | 0.00 | 0.01 | −0.0008 | −0.01 | 0.99 | 0.99 | |||
30239722 | Waist-to-hip ratio adjusted for BMI | b | rs17292540 | C | 0.22 | 0.01 | C | G | 0.233 | 0.02 | 0.00 | 0.01 | −0.0008 | −0.01 | 0.99 | 0.99 |
29781551 | Axial length or spherical error (univariate decomposition analysis) | rs12340737 | A | C | 0.332 | −0.12 | −0.08 | −0.01 | 0.0003 | 0.00 | 1.00 | 1.01 | ||||
30595370 | Waist-hip ratio | b | rs35910339 | C | G | 0.317 | 0.01 | 0.02 | 0.01 | −0.0007 | 0.00 | 1.00 | 0.99 | |||
31669095 | Waist-to-hip ratio adjusted for BMI | b | rs811458 | T | C | 0.317 | 0.01 | 0.02 | 0.01 | −0.0007 | 0.00 | 1.00 | 0.99 | |||
30595370 | Systolic blood pressure | b | rs811689 | T | C | 0.447 | −0.16 | −0.11 | 0.00 | 0.0005 | 0.01 | 1.01 | 1.02 | |||
33407418 | Glucagon levels in response to oral glucose tolerance test (decremental area under the curve for 0–120 min) | rs719535 | T | 0.24 | 0.18 | T | C | 0.243 | 0.01 | 0.01 | −0.01 | 0.0001 | 0.02 | 1.01 | 1.00 | |
30038396 | Educational attainment (years of education) | b | rs10983324 | A | 0.30 | 0.01 | A | C | 0.299 | 0.12 | 0.04 | 0.00 | −0.0007 | 0.00 | 0.99 | 0.99 |
32279069 | Attention deficit hyperactivity disorder (persistent) | b | rs4836899 | T | 0.52 | 1.12 | C | T | 0.461 | 0.10 | 0.05 | −0.02 | 0.0001 | −0.01 | 0.99 | 1.00 |
31530798 | Caudal middle frontal gyrus volume | a | rs10116120 | T | G | 0.241 | 0.10 | 0.11 | −0.03 | −0.0002 | −0.02 | 0.98 | 0.99 | |||
30718901 | Depression | b,c | rs10817969 | T | 0.72 | 1.02 | G | T | 0.28 | 0.08 | 0.07 | −0.03 | −0.0002 | −0.03 | 0.98 | 0.99 |
31926635 | Bipolar disorder or major depressive disorder | b | rs10759881 | A | 1.03 | C | A | 0.277 | 0.06 | 0.06 | −0.03 | −0.0002 | −0.02 | 0.98 | 0.99 | |
29700475 | Depression | b | rs7856424 | C | 0.71 | 1.03 | T | C | 0.283 | 0.08 | 0.08 | −0.03 | −0.0002 | −0.02 | 0.98 | 0.99 |
25524916 | Glucose homeostasis traits | rs7036846 | 10.86 | |||||||||||||
23251661 | Obesity-related traits | a | rs16934284 | G | 0.09 | 0.03 | C | T | 0.108 | 0.00 | 0.04 | −0.02 | −0.0005 | −0.02 | 0.98 | 0.98 |
20195266 | Response to antipsychotic treatment | a | rs4838255 | 0.14 | T | A | 0.179 | 0.02 | 0.03 | −0.02 | 0.0001 | 0.01 | 0.99 | 1.00 | ||
31043756 | Bipolar I disorder | b | rs7858026 | T | 0.48 | 1.08 | T | A | 0.488 | −0.04 | −0.04 | −0.02 | −0.0001 | 0.00 | 1.00 | 1.00 |
29500382 | Feeling guilty | b | rs35623509 | C | 0.27 | 5.61 | G | C | 0.275 | 0.08 | −0.01 | 0.01 | −0.0001 | −0.02 | 1.00 | 1.00 |
33632238 | Ischemic stroke in diabetes mellitus | a | rs189233549 | G | 0.01 | 3.91 | ||||||||||
29500382 | Neuroticism | b | rs579017 | T | 0.06 | 5.65 | T | C | 0.06 | 0.00 | 0.02 | 0.05 | −0.0002 | 0.08 | 1.03 | 1.01 |
29942085 | Neuroticism | b | T | 5.47 | T | C | 0.06 | 0.00 | 0.02 | 0.05 | −0.0002 | 0.08 | 1.03 | 1.01 |
Signal | Query | Direction | EA | EAF | RSID | R2 | Gene | Tissue | Non-Effect | Allele | NEA | EA | Size | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBP/DBP-1 | rs4837585 | - | T | 0.46 | rs7863794 | 0.92 | PAPPA | Muscle | - | Skeletal | A = 0.535 | G = 0.465 | 0.164925 | 8.09 × 10−6 | |
rs811689 | 0.92 | PAPPA | Muscle | - | Skeletal | C = 0.535 | T = 0.465 | 0.161858 | 9.87 × 10−6 | ||||||
rs7857286 | 0.92 | TRIM32 | Adipose | - | Visceral | (Omentum) | C = 0.535 | T = 0.465 | 0.177953 | 8.28 × 10−7 | |||||
rs1661294 | 0.90 | TRIM32 | Adipose | - | Visceral | (Omentum) | G = 0.54 | A = 0.46 | 0.175288 | 8.46 × 10−7 | |||||
rs10817910 | 0.92 | TRIM32 | Adipose | - | Visceral | (Omentum) | C = 0.535 | A = 0.465 | 0.176971 | 1.04 × 10−6 | |||||
rs1885242 | 0.92 | TRIM32 | Adipose | - | Visceral | (Omentum) | G = 0.535 | A = 0.465 | 0.176971 | 1.04 × 10−6 | |||||
rs9775101 | 0.92 | TRIM32 | Adipose | - | Visceral | (Omentum) | C = 0.535 | T = 0.465 | 0.176971 | 1.04 × 10−6 | |||||
DBP-2 | rs34432054 | T | + | 0.13 | rs34789583 | 1.00 | TLR4 | Whole | Blood | G = 0.874 | A = 0.126 | −0.19938 | 5.49 × 10−16 | ||
rs35940453 | 1.00 | TLR4 | Whole | Blood | C = 0.874 | T = 0.126 | −0.19938 | 5.49 × 10−16 | |||||||
rs7857333 | 1.00 | TLR4 | Whole | Blood | G = 0.874 | A = 0.126 | −0.19938 | 5.49 × 10−16 | |||||||
rs13299033 | 1.00 | TLR4 | Whole | Blood | A = 0.874 | T = 0.126 | −0.19938 | 5.49 × 10−16 | |||||||
rs35199804 | 1.00 | TLR4 | Whole | Blood | G = 0.874 | T = 0.126 | −0.19938 | 5.49 × 10−16 | |||||||
BMI-1 | rs55654527 | A | - | 0.34 | rs957512 | 0.98 | TLR4 | Whole | Blood | T = 0.621 | C = 0.379 | 0.105626 | 4.81 × 10−11 | ||
rs12001083 | 0.98 | TLR4 | Whole | Blood | C = 0.621 | T = 0.379 | 0.105061 | 6.01 × 10−11 | |||||||
rs10759926 | 1.00 | TLR4 | Whole | Blood | T = 0.616 | C = 0.384 | 0.097862 | 1.05 × 10−09 | |||||||
rs10116193 | 1.00 | TLR4 | Whole | Blood | A = 0.616 | G = 0.384 | 0.097751 | 1.09 × 10−09 | |||||||
rs10983720 | 1.00 | TLR4 | Whole | Blood | A = 0.616 | T = 0.384 | 0.097751 | 1.09 × 10−09 | |||||||
WHRadjBMI-1 | rs13283416 | - | G | 0.43 | rs6478243 | 0.81 | ASTN2 | Adipose | - | Subcutaneous | T = 0.621 | C = 0.379 | −0.17614 | 1.72 × 10−06 | |
Neuroticim-1 | rs579017 | + | T | 0.06 | rs579017 | 1.00 | TLR4 | Whole | Blood | T = 0.045 | C = 0.955 | 0.205844 | 2.88 × 10−11 | ||
Mood-2 | rs79825568 | - | A | 0.48 | rs928052 | 1.00 | TLR4 | Artery | - | Tibial | G = 0.49 | A = 0.51 | −0.15591 | 4.98 × 10−8 | |
rs13294726 | 1.00 | TLR4 | Artery | - | Tibial | T = 0.49 | C = 0.51 | −0.15483 | 5.00 × 10−8 | ||||||
rs12236328 | 1.00 | TLR4 | Artery | - | Tibial | A = 0.49 | G = 0.51 | −0.15608 | 5.68 × 10−8 | ||||||
rs1887905 | 1.00 | TLR4 | Artery | - | Tibial | C = 0.49 | G = 0.51 | −0.15446 | 8.30 × 10−8 | ||||||
rs13293271 | 1.00 | TLR4 | Artery | - | Tibial | A = 0.49 | G = 0.51 | −0.15418 | 8.40 × 10−8 | ||||||
rs928052 | 1.00 | TLR4 | Whole | Blood | G = 0.49 | A = 0.51 | −0.16194 | 8.12 × 10−25 | |||||||
rs13293271 | 1.00 | TLR4 | Whole | Blood | A = 0.49 | G = 0.51 | −0.16151 | 4.00 × 10−24 | |||||||
rs1887905 | 1.00 | TLR4 | Whole | Blood | C = 0.49 | G = 0.51 | −0.16208 | 4.50 × 10−24 | |||||||
rs913615 | 1.00 | TLR4 | Whole | Blood | C = 0.49 | A = 0.51 | −0.16069 | 8.92 × 10−24 | |||||||
rs4481681 | 1.00 | TLR4 | Whole | Blood | A = 0.49 | G = 0.51 | −0.16069 | 8.92 × 10−24 | |||||||
rs12236328 | 1.00 | TLR4 | Nerve | - | Tibial | A = 0.49 | G = 0.51 | −0.17896 | 9.92 × 10−6 | ||||||
rs13293271 | 1.00 | TLR4 | Nerve | - | Tibial | A = 0.49 | G = 0.51 | −0.1801 | 8.64 × 10−6 | ||||||
rs13294726 | 1.00 | TLR4 | Nerve | - | Tibial | T = 0.49 | C = 0.51 | −0.18186 | 6.19 × 10−6 | ||||||
rs928052 | 1.00 | TLR4 | Nerve | - | Tibial | G = 0.49 | A = 0.51 | −0.18426 | 4.40 × 10−6 | ||||||
Anhedonia-1 | rs144850429 | + | T | 0.01 | rs144850429 | 1.00 | ASTN2 | Nerve | - | Tibial | C = 0.99 | T = 0.01 | −0.62966 | 1.81 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burt, O.; Johnston, K.J.A.; Graham, N.; Cullen, B.; Lyall, D.M.; Lyall, L.M.; Pell, J.P.; Ward, J.; Smith, D.J.; Strawbridge, R.J. Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology. Genes 2021, 12, 1194. https://doi.org/10.3390/genes12081194
Burt O, Johnston KJA, Graham N, Cullen B, Lyall DM, Lyall LM, Pell JP, Ward J, Smith DJ, Strawbridge RJ. Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology. Genes. 2021; 12(8):1194. https://doi.org/10.3390/genes12081194
Chicago/Turabian StyleBurt, Olivia, Keira J. A. Johnston, Nicholas Graham, Breda Cullen, Donald M. Lyall, Laura M. Lyall, Jill P. Pell, Joey Ward, Daniel J. Smith, and Rona J. Strawbridge. 2021. "Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology" Genes 12, no. 8: 1194. https://doi.org/10.3390/genes12081194
APA StyleBurt, O., Johnston, K. J. A., Graham, N., Cullen, B., Lyall, D. M., Lyall, L. M., Pell, J. P., Ward, J., Smith, D. J., & Strawbridge, R. J. (2021). Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology. Genes, 12(8), 1194. https://doi.org/10.3390/genes12081194