Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis?
Abstract
:1. Introduction
2. Inherited Endocrine Tumors
3. Genetic Determinants of Inherited Endocrine Tumors and Bone
3.1. CDC73 Gene
3.2. GCM2 Gene
3.3. APC Gene
3.4. MEN1 Gene
3.5. RET Gene
3.6. CDKN1B Gene
3.7. PRKAR1A Gene
3.8. PTEN Gene
3.9. NF1 Gene
3.10. TSC1 and TSC2 Genes
4. Conclusions
- Medical interventions aimed to prevent the development of some of these bone affections, such as osteopenia and osteoporosis, or to early diagnose, control and treat those that cannot be prevented, should become part of the clinical and therapeutic management of hereditary endocrine tumors.
- A more and more detailed knowledge of these bone manifestations, deriving from the routine description of their clinical aspects and biological features by clinicians and from their inclusion in the clinical guidelines of inherited endocrine tumors, as well as from basic research and clinical studies investigating the molecular roles of “cancer genes” in the regulation of bone development and metabolism in physiological and pathological conditions, is a key point for designing better clinical managements of these skeletal affections, and for possible future targeted therapies.
- Since some of the mutated genes responsible for the inherited endocrine tumor phenotypes and the subsequent haploinsufficiency of their encoded proteins, such as parafibromin, APC, PRKAR1A, PTEN, NF1, tuberin and hamartin, were shown to be directly involved in the development of the syndrome-specific skeletal abnormalities, targeting their downstream dysregulated signaling pathways represent potential targets for treatments not only of the tumor manifestations but also of the bone affections.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, A.T.; Izatt, L. Inherited Endocrine Neoplasia-A Comprehensive Review from Gland to Gene. Curr. Genet. Med. Rep. 2019, 7, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Caimari, F.; Hernández-Ramírez, L.C.; Dang, M.N.; Gabrovska, P.; Iacovazzo, D.; Stals, K.; Ellard, S.; Korbonits, M.; International FIPA Consortium. Risk category system to identify pituitary adenoma patients with AIP mutations. J. Med. Genet. 2018, 55, 254–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijn, M.A.; Keller, J.J.; Giardiello, F.M.; Brand, H.S. Oral and maxillofacial manifestations of familial adenomatous polyposis. Oral Dis. 2007, 13, 360–365. [Google Scholar] [CrossRef]
- Lemos, M.C.; Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 2008, 29, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.R.; David, R.; Greenaway, T.M.; Parameswaran, V.; Shepherd, J.J. Osteoporosis in multiple endocrine neoplasia type 1: Severity, clinical significance, relationship to primary hyperparathyroidism, and response to parathyroidectomy. Arch. Surg. 1999, 134, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Yehia, L.; Keel, E.; Eng, C. The Clinical Spectrum of PTEN Mutations. Annu. Rev. Med. 2020, 71, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Farooq, A.; Walker, L.J.; Bowling, J.; Audisio, R.A. Cowden syndrome. Cancer Treat. Rev. 2010, 36, 577–583. [Google Scholar] [CrossRef]
- Lopez, C.; Abuel-Haija, M.; Pena, L.; Coppola, D. Novel Germline PTEN Mutation Associated with Cowden Syndrome and Osteosarcoma. Cancer Genom. Proteomics 2018, 15, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Petramala, L.; Giustini, S.; Zinnamosca, L.; Marinelli, C.; Colangelo, L.; Cilenti, G.; Formicuccia, M.C.; D’Erasmo, E.; Calvieri, S.; Letizia, C. Bone mineral metabolism in patients with neurofibromatosis 1 (von Recklingausen disease). Arch. Dermatol. Res. 2012, 304, 325–331. [Google Scholar] [CrossRef]
- Umeoka, S.; Koyama, T.; Miki, Y.; Akai, M.; Tsutsui, K.; Togashi, K. Pictorial review of tuberous sclerosis in various organs. Radiographics 2008, 28, e32. [Google Scholar] [CrossRef]
- Datta, H.K.; Ng, W.F.; Walker, J.A.; Tuck, S.P.; Varanasi, S.S. The cell biology of bone metabolism. J. Clin. Pathol. 2008, 61, 577–587. [Google Scholar] [CrossRef]
- Droscha, C.S.; Diegel, C.R.; Ethen, N.J.; Burgers, T.A.; McDonald, M.J.; Maupin, K.A.; Naidu, A.S.; Wang, P.; Teh, B.T.; Williams, B.O. Osteoblast-specific deletion of Hrpt2/Cdc73 results in high bone mass and increased bone turnover. Bone 2017, 98, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Costa-Guda, J.; Pandya, C.; Strahl, M.; Taik, P.; Sebra, R.; Chen, R.; Uzilov, A.V.; Arnold, A. Parafibromin abnormalities in ossifying fibroma. J. Endocr. Soc. 2021, 5, bvab087. [Google Scholar] [CrossRef]
- Yamada, T.; Tatsumi, N.; Anraku, A.; Suzuki, H.; Kamejima, S.; Uchiyama, T.K.; Ohkido, I.; Yokoo, T.; Okabe, M. Gcm2 regulates the maintenance of parathyroid cells in adult mice. PLoS ONE 2019, 14, e0210662. [Google Scholar] [CrossRef]
- Polakis, P. Wnt signaling and cancer. Genes Dev. 2000, 14, 1837–1851. [Google Scholar] [CrossRef] [Green Version]
- Macsai, C.E.; Foster, B.K.; Xian, C.J. Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J. Cell Physiol. 2008, 215, 578–587. [Google Scholar] [CrossRef]
- Kubota, T.; Michigami, T.; Ozono, K. Wnt signaling in bone metabolism. J. Bone Miner. Metab. 2009, 27, 265–271. [Google Scholar] [CrossRef]
- Akiyama, H.; Lyons, J.P.; Mori-Akiyama, Y.; Yang, X.; Zhang, R.; Zhang, Z.; Deng, J.M.; Taketo, M.M.; Nakamura, T.; Behringer, R.R.; et al. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev. 2004, 18, 1072–1087. [Google Scholar] [CrossRef] [Green Version]
- Gaur, T.; Lengner, C.J.; Hovhannisyan, H.; Bhat, R.A.; Bodine, P.V.; Komm, B.S.; Javed, A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 2005, 280, 33132–33140. [Google Scholar] [CrossRef] [Green Version]
- Miclea, R.L.; Karperien, M.; Bosch, C.A.; van der Horst, G.; van der Valk, M.A.; Kobayashi, T.; Kronenberg, H.M.; Rawadi, G.; Akçakaya, P.; Löwik, C.W.; et al. Adenomatous polyposis coli-mediated control of beta-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors. BMC Dev. Biol. 2009, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Holmen, S.L.; Zylstra, C.R.; Mukherjee, A.; Sigler, R.E.; Faugere, M.C.; Bouxsein, M.L.; Deng, L.; Clemens, T.L.; Williams, B.O. Essential role of beta-catenin in postnatal bone acquisition. J. Biol. Chem. 2005, 280, 21162–21168. [Google Scholar] [CrossRef] [Green Version]
- Miclea, R.L.; Karperien, M.; Langers, A.M.; Robanus-Maandag, E.C.; van Lierop, A.; van der Hiel, B.; Stokkel, M.P.; Ballieux, B.E.; Oostdijk, W.; Wit, J.M.; et al. APC mutations are associated with increased bone mineral density in patients with familial adenomatous polyposis. J. Bone Miner. Res. 2010, 25, 2624–2632. [Google Scholar] [CrossRef]
- Chew, S.; Dastani, Z.; Brown, S.J.; Lewis, J.R.; Dudbridge, F.; Soranzo, N.; Surdulescu, G.L.; Richards, J.B.; Spector, T.D.; Wilson, S.G. Copy number variation of the APC gene is associated with regulation of bone mineral density. Bone 2012, 51, 939–943. [Google Scholar] [CrossRef] [Green Version]
- Sowa, H.; Kaji, H.; Canaff, L.; Hendy, G.N.; Tsukamoto, T.; Yamaguchi, T.; Miyazono, K.; Sugimoto, T.; Chihara, K. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage. J. Biol. Chem. 2003, 278, 21058–21069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowa, H.; Kaji, H.; Hendy, G.N.; Canaff, L.; Komori, T.; Sugimoto, T.; Chihara, K. Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2. J. Biol. Chem. 2004, 279, 40267–40275. [Google Scholar] [CrossRef] [Green Version]
- Kaji, H.; Canaff, L.; Lebrun, J.J.; Goltzman, D.; Hendy, G.N. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc. Natl. Acad. Sci. USA 2001, 98, 3837–3842. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, I.; Canaff, L.; Abi Rafeh, J.; Angrula, A.; Li, J.; Riddle, R.C.; Boraschi-Diaz, I.; Komarova, S.V.; Clemens, T.L.; Murshed, M.; et al. Osteoblast menin regulates bone mass in vivo. J. Biol. Chem. 2015, 290, 3910–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Lee, S.; Knoll, J.; Rauch, A.; Ostermay, S.; Luther, J.; Malkusch, N.; Lerner, U.H.; Zaiss, M.M.; Neven, M.; et al. Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ. 2017, 24, 672–682. [Google Scholar] [CrossRef]
- Luzi, E.; Marini, F.; Tognarini, I.; Galli, G.; Falchetti, A.; Brandi, M.L. The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucleic Acid. Ther. 2012, 22, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Marini, F.; Sala, S.C.; Tognarini, I.; Galli, G.; Brandi, M.L. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J. Bone Miner. Res. 2008, 23, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ichihara, M.; Hashimoto, M.; Shimono, K.; Shimoyama, Y.; Nagasaka, T.; Murakumo, Y.; Murakami, H.; Sugiura, H.; Iwata, H.; et al. Characterization of gene expression induced by RET with MEN2A or MEN2B mutation. Am. J. Pathol. 2002, 161, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Stasko, S.E.; Wagner, G.F. Possible roles for stanniocalcin during early skeletal patterning and joint formation in the mouse. J. Endocrinol. 2001, 171, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Watson, M.A.; DeBenedetti, M.K.; Hiraki, Y.; Moley, J.F.; Milbrandt, J. Expression profiles provide insights into early malignant potential and skeletal abnormalities in multiple endocrine neoplasia type 2B syndrome tumors. Cancer Res. 2004, 64, 3907–3913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, S.; Kim, J.; Lee, S.Y. GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis. BMB Rep. 2020, 53, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Drissi, H.; Hushka, D.; Aslam, F.; Nguyen, Q.; Buffone, E.; Koff, A.; van Wijnen, A.; Lian, J.B.; Stein, J.L.; Stein, G.S. The cell cycle regulator p27kip1 contributes to growth and differentiation of osteoblasts. Cancer Res. 1999, 59, 3705–3711. [Google Scholar] [PubMed]
- Zhu, M.; Zhang, J.; Dong, Z.; Zhang, Y.; Wang, R.; Karaplis, A.; Goltzman, D.; Miao, D. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide. J. Bone Miner. Res. 2015, 30, 1969–1979. [Google Scholar] [CrossRef]
- Linglart, A.; Menguy, C.; Couvineau, A.; Auzan, C.; Gunes, Y.; Cancel, M.; Motte, E.; Pinto, G.; Chanson, P.; Bougnères, P.; et al. Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. N. Engl. J. Med. 2011, 364, 2218–2226. [Google Scholar] [CrossRef]
- Le Stunff, C.; Tilotta, F.; Sadoine, J.; Le Denmat, D.; Briet, C.; Motte, E.; Clauser, E.; Bougnères, P.; Chaussain, C.; Silve, C. Knock-In of the Recurrent R368X Mutation of PRKAR1A that Represses cAMP-Dependent Protein Kinase A Activation: A Model of Type 1 Acrodysostosis. J. Bone Miner. Res. 2017, 32, 333–346. [Google Scholar] [CrossRef]
- Pavel, E.; Nadella, K.; Towns 2nd, W.H.; Kirschner, L.S. Mutation of Prkar1a causes osteoblast neoplasia driven by dysregulation of protein kinase A. Mol. Endocrinol. 2008, 22, 430–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, L.S.; Carney, J.A.; Pack, S.D.; Taymans, S.E.; Giatzakis, C.; Cho, Y.S.; Cho-Chung, Y.S.; Stratakis, C.A. Mutations of the gene encoding the protein kinase A type I-alpha α regulatory subunit in patients with the Carney complex. Nat. Genet. 2000, 26, 89–92. [Google Scholar] [CrossRef]
- Burgers, T.A.; Hoffmann, M.F.; Collins, C.J.; Zahatnansky, J.; Alvarado, M.A.; Morris, M.R.; Sietsema, D.L.; Mason, J.J.; Jones, C.B.; Ploeg, H.L.; et al. Mice lacking pten in osteoblasts have improved intramembranous and late endochondral fracture healing. PLoS ONE 2013, 8, e63857. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bruxvoort, K.J.; Zylstra, C.R.; Liu, J.; Cichowski, R.; Faugere, M.-C.; Bouxsein, M.L.; Wan, C.; Williams, B.O.; Clemens, T.L. Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc. Natl. Acad. Sci. USA 2007, 104, 2259–2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford-Hutchinson, A.F.; Ali, Z.; Lines, S.E.; Hallgrímsson, B.; Boyd, S.K.; Jirik, F.R. Inactivation of Pten in osteo-chondroprogenitor cells leads to epiphyseal growth plate abnormalities and skeletal overgrowth. J. Bone Miner. Res. 2007, 22, 1245–1259. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, S.-X.; Wang, D.-X.; Wu, Q.-X.; Wang, X.; Pi, C.-J.; Zou, X.; Chen, L.; Ying, L.-J.; Wu, K.; et al. The role of COX-2 in mediating the effect of PTEN on BMP9 induced osteogenic differentiation in mouse embryonic fibroblasts. Biomaterials 2014, 35, 9649–9659. [Google Scholar] [CrossRef]
- Li, F.-S.; Li, P.-P.; Li, L.; Deng, Y.; Hu, Y.; He, B.-C. PTEN Reduces BMP9-Induced Osteogenic Differentiation Through Inhibiting Wnt10b in Mesenchymal Stem Cells. Front. Cell Dev. Biol. 2021, 8, 608544. [Google Scholar] [CrossRef]
- Dong, J.; Xu, X.; Zhang, Q.; Yuan, Z.; Tan, B. Critical implication of the PTEN/PI3K/AKT pathway during BMP2-induced heterotopic ossification. Mol. Med. Rep. 2021, 23, 254. [Google Scholar] [CrossRef]
- Illes, T.; Halmai, V.; de Jonge, T.; Dubousset, J. Decreased bone mineral density in neurofibromatosis-1 patients with spinal deformities. Osteoporos Int. 2001, 12, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, K.; Ozmen, M.; Bora Goksan, S.; Eskiyurt, N. Bone mineral density in children with neurofibromatosis 1. Acta Paediatr. 2007, 96, 1220–1222. [Google Scholar] [CrossRef]
- Kuorilehto, T.; Pöyhönen, M.; Bloigu, R.; Heikkinen, J.; Väänänen, K.; Peltonen, J. Decreased bone mineral density and content in neurofibromatosis type 1: Lowest local values are located in the load-carrying parts of the body. Osteoporos Int. 2005, 16, 928–936. [Google Scholar] [CrossRef]
- Lammert, M.; Kappler, M.; Mautner, V.F.; Lammert, K.; Störkel, S.; Friedman, J.M.; Atkins, D. Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int. 2005, 16, 1161–1166. [Google Scholar] [CrossRef]
- Stevenson, D.A.; Moyer-Mileur, L.J.; Murray, M.; Slater, H.; Sheng, X.; Carey, J.C.; Dube, B.; Viskochil, D.H. Bone mineral density in children and adolescents with neurofibromatosis type 1. J. Pediatr. 2007, 150, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Dulai, S.; Briody, J.; Schindeler, A.; North, K.N.; Cowell, C.T.; Little, D.G. Decreased bone mineral density in neurofibromatosis type 1: Results from a pediatric cohort. J. Pediatr Orthop. 2007, 27, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Estwick, S.A.; Chen, S.; Yu, M.; Ming, W.; Nebesio, T.D.; Li, Y.; Yuan, J.; Kapur, R.; Ingram, D.; et al. Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. Hum. Mol. Genet. 2006, 15, 2837–2845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, D.A.; Zhou, H.; Ashrafi, S.; Messiaen, L.M.; Carey, J.C.; D’Astous, J.L.; Santora, S.D.; Viskochil, D.H. Double inactivation of NF1 in tibial pseudarthrosis. Am. J. Hum. Genet. 2006, 79, 143–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paria, N.; Cho, T.-J.; Choi, I.H.; Kamiya, N.; Kayembe, K.; Mao, R.; Margraf, R.L.; Obermosser, G. Oxendine, I.; Sant, D.W.; et al. Neurofibromin deficiency-associated transcriptional dysregulation suggests a novel therapy for tibial pseudoarthrosis in NF1. J. Bone Miner. Res. 2014, 29, 2636–2642. [Google Scholar] [CrossRef] [Green Version]
- Tahaei, S.E.; Couasnay, G.; Ma, Y.; Paria, N.; Gu, J.; Lemoine, B.F.; Wang, X.; Rios, J.J.; Elefteriou, F. The reduced osteogenic potential of Nf1-deficient osteoprogenitors is EGFR-independent. Bone 2018, 106, 103–111. [Google Scholar] [CrossRef]
- Kuorilehto, T.; Nissinen, M.; Koivunen, J.; Benson, M.D.; Peltonen, J. NF1 tumor suppressor protein and mRNA in skeletal tissues of developing and adult normal mouse and NF1-deficient embryos. J. Bone Miner. Res. 2004, 19, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Kolanczyk, M.; Kossler, N.; Kühnisch, J.; Lavitas, L.; Stricker, S.; Wilkening, U.; Manjubala, I.; Fratzl, P.; Spörle, R.; Herrmann, B.G.; et al. Multiple roles for neurofibromin in skeletal development and growth. Hum. Mol. Genet. 2007, 16, 874–886. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Sun, S.; Wang, L.; Guan, J.L.; Giovannini, M.; Zhu, Y.; Liu, F. Neural Crest-Specific TSC1 Deletion in Mice Leads to Sclerotic Craniofacial Bone Lesion. J. Bone Miner. Res. 2015, 30, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Yuan, H.; Fang, F.; Wei, X.; Liu, L.; Li, Q.; Guan, J.L.; Liu, F. Tsc1 Regulates the Balance Between Osteoblast and Adipocyte Differentiation Through Autophagy/Notch1/β-Catenin Cascade. J. Bone Miner. Res. 2018, 33, 2021–2034. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, Z.; Yang, J.; Wang, Y.; Li, K.; Huang, B.; Yan, B.; Wang, T.; Li, M.; Zou, Z.; et al. Osteocyte TSC1 promotes sclerostin secretion to restrain osteogenesis in mice. Open Biol. 2019, 9, 180262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddle, R.C.; Frey, J.L.; Tomlinson, R.E.; Ferron, M.; Li, Y.; DiGirolamo, D.J.; Faugere, M.C.; Hussain, M.A.; Karsenty, G.; Clemens, T.L. Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. Mol. Cell Biol. 2014, 34, 1850–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boronat, S.; Barber, I.; Thiele, E.A. Sclerotic bone lesions in tuberous sclerosis complex: A genotype-phenotype study. Am. J. Med. Genet. 2017, 173, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
Disease Name [OMIM Number] | Causative Gene (Chromosomal Location) | Gene Function | Type of Germline Mutations | Main Endocrine and Non-Endocrine Clinical Manifestations | Pathognomonic Skeletal Features | Non-Pathognomonic Bone and Mineral Metabolism Alterations, Reported in Affected Patients |
---|---|---|---|---|---|---|
Non-syndromic inherited endocrine tumors | ||||||
Familial isolated primary hyperparathyroidism (FIHP) [145000] | CDC73 (1q31.2) | TSG | Heterozygote inactivating mutations of the CDC73 gene. | Parathyroid hyperplasia, adenomas and carcinoma. Primary hyperparathyroidism only. | Not reported | Hyperparathyroidism-derived bone mass loss |
Autosomal dominant familial isolated hyperparathyroidism type 4 (HRPT4) [617343] | GCM2 (6p24.2) | Oncogene | Heterozygote activating mutations of the GCM2 gene. | Parathyroid hyperplasia, adenomas and rare cases of carcinoma. Primary hyperparathyroidism only. | Not reported | Hyperparathyroidism-derived bone mass loss (osteopenia) and/or kidney stones. |
Familial isolated pituitary adenoma 1, multiple types (FIPA) [102200] | AIP (11q13.2) | TSG | Up to 20% of FIPA patients have germline heterozygote inactivating mutations of the AIP gene, with a tumor penetrance of 20–23% [2]. | Mostly pituitary GH-secreting adenomas, but also pituitary ACTH-secreting, PRL-secreting and TSH-secreting adenomas. Pituitary tumor type heterogeneity among family members. | GH-secreting tumors cause acromegaly (coarse facial features, protruding jaw and enlarged extremities) and gigantism. | Not reported |
X-linked acrogigantism (XLAG) [300942] | GPR101 (Xq26.3) | Oncogene | De novo germline microduplication of the GPR101 gene. | GH-secreting pituitary hyperplasia/adenoma. | Skeletal overgrowth caused by excessive GH | Not reported |
Familial adenomatous polyposis type 1 (FAP1) [175100] | APC (5q22.2) | TSG | Heterozygote inactivating mutations of the APC gene. The great majority of the known germline mutations result in a truncation of the APC protein. Exon 15 represents a “mutation cluster region”. | Hundreds to thousands adenomatous polyps (adenomas) of the colon and rectum. Predisposing factor to carcinoma of the colon and the rectum. | Osteomas (benign, slow growing bony tumors involving the base of the skull and paranasal sinuses and originating in bones characterized by intramembranous ossification) in the Gardner syndrome variant. Dental anomalies, such as supernumerary and impacted teeth [3] | Not reported |
Syndromic inherited endocrine tumors | ||||||
Multiple Endocrine Neoplasia type 1 (MEN1) [131100] | MEN1 (11q13.1) | TSG | Heterozygote inactivating mutations of the MEN1 gene (no mutation cluster region). The great majority of the known mutations result in a truncation of the menin protein [4]. | Parathyroid four-gland hyperplasia/adenoma, neuroendocrine tumors of the gastro-entero-pancreatic tract, pituitary adenoma (mostly PRL-secreting tumors), bronchial and thymic carcinoids, hyperplasia/adenoma of the adrenal glands. | Not reported | Hyperparathyroidism-derived early onset bone mass loss. Significantly higher prevalence of severe osteopenia and osteoporosis, mainly in women by the age of 35, with respect to control population of the same age [5]. Increased risk of fractures. GH-secreting tumors cause gigantism in children and acromegaly in adults. |
Multiple Endocrine Neoplasias type 2A (MEN2A) [171400] and type 2B (MEN2B) [162300] | RET (10q11.21) | Oncogene | Heterozygote gain-of-function missense mutations of the RET gene, affecting one of the 6 extracellular cysteines of the RET protein (MEN2A) or one of the two intracellular tyrosine-kinase domains (MEN2B). | Medullary thyroid carcinoma, pheochromocytoma and, only in the MEN2A form, parathyroid hyperplasia/adenoma. | Marfanoid habitus (slender, tall and thin body with long limbs), high-arched palate, long and thin face with prognathism, pectus excavatum, equino-varus foot, femoral epiphysiolysis, kyphosis, scoliosis in MEN2B. | Hyperparathyroidism-derived bone mass reduction in MEN2A. |
Multiple Endocrine Neoplasia type 4 (MEN4) [610755] | CDKN1B (12p13.1) | TSG | Heterozygote inactivating mutations of the CDKN1B gene (no mutation cluster region). | Parathyroid multiglandular hyperplasia/adenoma, pancreatic neuroendocrine tumors, pituitary adenomas. | Not reported | Possible hyperparathyroidism-derived bone mass reduction after 45 years of age. |
Hyperparathyroidism-jaw tumors syndrome (HPT-JT) [145001] | CDC73 (1.q31.2) | TSG | Heterozygote inactivating mutations of the CDC73 gene (no mutation cluster region). | Parathyroid hyperplasia, adenomas and/or carcinoma, ossifying fibroma of the maxilla and/or mandible, renal tumors (cysts, hamartomas and/or renal cell cancer) and uterine fibromas. | Ossifying fibroma of the maxilla and/or mandible. | Parathyroid carcinoma-derived severe hyperparathyroidism and hypercalcemia lead to a high bone resorption, osteopenia/osteoporosis, bone pain, increased risk of fragility fractures, hypercalciuria and nephrolithiasis, and they may give rise to multiple brown tumors (osteitis fibrosa cystica). |
Von Hippel-Lindau syndrome (VHL) [193300] | VHL (3p25.3) | TSG | Heterozygote inactivating mutations of the VHL gene. | Angiomas of the retina, hemangioblastoma of the cerebellum and hemangioma of the spinal cord. Renal cell carcinoma, pheochromocytoma/paraganglioma and pancreatic tumors (usually non-functioning) are reported in some patients. | Not reported | Not reported |
Carney complex type 1 (CNC1) [160980] | PRKAR1A (17q24.2) | TSG | Heterozygote inactivating mutations of the PRKAR1A gene. | Multiple cardiac, endocrine, cutaneous and neural myxomatous tumors. A variety of pigmented lesions of the skin and mucosae (multiple lentigines, ephelides, nevi) in typical sites (conjunctiva, lips, genital mucosa). Large cell calcifying Sertoli cell tumor, psammomatous melanotic schwannomas. | Myxoid bone tumors (osteochondromyxomas), prevalently located in the nasal region and in the diaphysis of radius and tibia. | Not reported |
Cowden/PTEN hamartoma tumor syndrome (PHTS) [158350] | PTEN (10q23.31) | TSG | Heterozygote inactivating de novo mutations of the PTEN gene in 10–44% of PHTS patients, with a 100% penetrance by adulthood [6] | Multiple hamartomas. Macrocephaly, adult Lhermitte-Duclos disease, facial trichilemmomas, acral keratoses, papillomatous papules. Increased risk of developing carcinomas of the breast, the thyroid (follicular or papillary tumors) and the endometrium. | Increased cranial size (macrocephaly), with an occipital frontal circumference ≥ 97th percentile. Skeletal abnormalities such as kyphosis, kyphoscoliosis, pectus excavatum, large hands and feet, syndactyly, hypoplasia of the mandible, the maxilla and the scapulae [7]. | Osteosarcoma is an extremely rare presentation of PHTS (only one case has been reported in the English-written literature) [8]. |
Neurofibromatosis type 1 (NF1) [162200] | NF1 (17q11.2) | TSG | Heterozygote inactivating mutations of the NF1 gene. | Multiple benign tumors of the nerves (neurofibromas), peripheral nerve sheath tumors, pigmented skin lesions (Cafe-au-lait spots, ephelides), Lisch nodules in the eye, optic pathway gliomas, fibromatous tumors of the skin. | Characteristic bone deformities have been reported in about 35% of patients [9], including congenital anterolateral bowing of the tibia (characterized by recurrent fracture of the lower leg in early childhood and pseudoarthrosis), dysplasia of the sphenoid wing, congenital severe dystrophic scoliosis, macrocephaly, abnormalities of the rib cage (rib fusion), lytic bone lesions, absence of the patella, syndactyly. Recalcitrant bone healing after fracture (pseudoarthrosis). | Higher incidence of osteopenia/osteoporosis (over 50% of patients showed a significant overall reduction in BMD starting from childhood), compared to the general population of the same age [9]. Alterations of bone mineral metabolism, significant reduction in endochondral bone formation, increased collagen synthesis. |
Tuberous sclerosis type 1 (TSC1) [191100] and type 2 (TSC2) [613254] | TSC1 (9q34.13) TSC2 (16p13.3) | TSG TSG | Germline mutations account for 50–86% of all cases of tuberous sclerosis complex. TSC1 is caused by heterozygous inactivating mutations in the TSC1 gene (approximately 10 to 30% of cases). TSC2 is caused by heterozygous inactivating mutations in the TSC2 gene (about 50% of cases). TSC2 mutations are associated with a more severe disease. | Multiple hamartomas in multi organ systems (brain, kidneys, skin, heart and lungs). Central nervous system manifestations (epilepsy, seizures, learning difficulties, autism). Renal cysts, angiomyolipomas and renal cell carcinoma. Skin lesions (hypomelanotic macules, facial angiofibromas, confetti lesions, patches of connective tissue nevi). Pulmonary lymphangioleiomyomatosis. | Sclerotic bone lesions (in about 40–60% of cases), including hyperostosis of the inner table of the calvaria and cyst-like osseous lesions (mainly at metacarpal and metatarsal bones, spine, pelvis and calvaria) [10]. Thickening of cranial neural crest-derived bones (frontal bones, mandibles, maxilla). | Osteoblastic changes, excess of periosteal new bone formation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marini, F.; Giusti, F.; Iantomasi, T.; Brandi, M.L. Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis? Genes 2021, 12, 1286. https://doi.org/10.3390/genes12081286
Marini F, Giusti F, Iantomasi T, Brandi ML. Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis? Genes. 2021; 12(8):1286. https://doi.org/10.3390/genes12081286
Chicago/Turabian StyleMarini, Francesca, Francesca Giusti, Teresa Iantomasi, and Maria Luisa Brandi. 2021. "Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis?" Genes 12, no. 8: 1286. https://doi.org/10.3390/genes12081286
APA StyleMarini, F., Giusti, F., Iantomasi, T., & Brandi, M. L. (2021). Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis? Genes, 12(8), 1286. https://doi.org/10.3390/genes12081286