The Genetic Architecture of a Congenital Heart Defect Is Related to Its Fitness Cost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Strains and Crosses
2.2. Collection and Phenotyping of Hearts
2.3. Single Nucleotide Polymorphism Genotyping
2.4. Genetic Imputation and Association Analyses
2.5. Estimation of Heritability
2.6. Analysis of G×GNkx Effects
2.7. Analysis of G×G×GNkx Effects
2.8. Statistical Analyses
3. Results
3.1. Nkx2-5+/− Mice Mimic the Epidemiological Relationship between the Severity and Incidence of a Heart Defect
3.2. The Effect of G×GNkx Interactions between a QTL That Modifies the Risk of a Defect and Nkx2-5 Correlates with the Severity of the Defect
3.3. The Effect of G×G×GNkx Interactions between Two QTLs and Nkx2-5 Correlates with the Severity of a Defect
3.4. Genetic Coadaptation between Interacting G×G×GNkx Loci Suppresses the Risk of Cardiac Malformation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.I.E. The Natural and Unnatural History of Congenital Heart Disease; Wiley-Blackwell: Chichester, UK, 2009. [Google Scholar]
- Freeman, S.B.; Bean, L.H.; Allen, E.G.; Tinker, S.W.; Locke, A.E.; Druschel, C.; Hobbs, C.A.; Romitti, P.A.; Royle, M.H.; Torfs, C.P.; et al. Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet. Med. 2008, 10, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.K.; Goodship, J.A.; Wilson, D.I.; Philip, N.; Levy, A.; Seidel, H.; Schuffenhauer, S.; Oechsler, H.; Belohradsky, B.; Prieur, M.; et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J. Med. Genet. 1997, 34, 798–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, D.W.; Silberbach, G.M.; Kavanaugh-McHugh, A.; Cottrill, C.; Zhang, Y.; Riggs, S.; Smalls, O.; Johnson, M.C.; Watson, M.S.; Seidman, J.G.; et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Investig. 1999, 104, 1567–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maury, P.; Gandjbakhch, E.; Baruteau, A.E.; Bessiere, F.; Kyndt, F.; Bouvagnet, P.; Rollin, A.; Bonnet, D.; Probst, V.; Maltret, A. Cardiac Phenotype and Long-Term Follow-Up of Patients With Mutations in NKX2-5 Gene. J. Am. Coll. Cardiol. 2016, 68, 2389–2390. [Google Scholar] [CrossRef] [PubMed]
- Akhirome, E.; Walton, N.A.; Nogee, J.M.; Jay, P.Y. The Complex Genetic Basis of Congenital Heart Defects. Circ. J. 2017, 81, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winston, J.B.; Erlich, J.M.; Green, C.A.; Aluko, A.; Kaiser, K.A.; Takematsu, M.; Barlow, R.S.; Sureka, A.O.; LaPage, M.J.; Janss, L.L.; et al. Heterogeneity of genetic modifiers ensures normal cardiac development. Circulation 2010, 121, 1313–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzer, A.A.; Regmi, S.D.; Cormier, D.; Danzo, M.T.; Chen, I.D.; Winston, J.B.; Hutchinson, A.K.; Salm, D.; Schulkey, C.E.; Cochran, R.S.; et al. Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart. Sci. Rep. 2017, 7, 46438. [Google Scholar] [CrossRef] [Green Version]
- Winston, J.B.; Schulkey, C.E.; Chen, I.B.; Regmi, S.D.; Efimova, M.; Erlich, J.M.; Green, C.A.; Aluko, A.; Jay, P.Y. Complex trait analysis of ventricular septal defects caused by Nkx2-5 mutation. Circ. Cardiovasc. Genet. 2012, 5, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsberg, S.K.; Bloom, J.S.; Sadhu, M.J.; Kruglyak, L.; Carlborg, O. Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast. Nat. Genet. 2017, 49, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Corbett-Detig, R.B.; Zhou, J.; Clark, A.G.; Hartl, D.L.; Ayroles, J.F. Genetic incompatibilities are widespread within species. Nature 2013, 504, 135–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, L.M.; Chelo, I.; Guzella, T.; Afonso, B.; Riccardi, D.D.; Ammerman, P.; Dayarian, A.; Carvalho, S.; Crist, A.; Pino-Querido, A.; et al. Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel. Genetics 2017, 207, 1663–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, W.G.; Goddard, M.E.; Visscher, P.M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 2008, 4, e1000008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, J.F.; McHale, P.T.; Gervin, J.; Lander, A.D. Survival of the Curviest: Noise-Driven Selection for Synergistic Epistasis. PLoS Genet. 2016, 12, e1006003. [Google Scholar] [CrossRef] [Green Version]
- Sackton, T.B.; Hartl, D.L. Genotypic Context and Epistasis in Individuals and Populations. Cell 2016, 166, 279–287. [Google Scholar] [CrossRef] [Green Version]
- De Visser, J.A.; Hermisson, J.; Wagner, G.P.; Ancel Meyers, L.; Bagheri-Chaichian, H.; Blanchard, J.L.; Chao, L.; Cheverud, J.M.; Elena, S.F.; Fontana, W.; et al. Perspective: Evolution and detection of genetic robustness. Evolution 2003, 57, 1959–1972. [Google Scholar] [CrossRef]
- Siegal, M.L.; Leu, J.Y. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 496–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Chen, Z.; Bartunkova, S.; Yamasaki, N.; Izumo, S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 1999, 126, 1269–1280. [Google Scholar] [CrossRef]
- Darvasi, A.; Soller, M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 1995, 141, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Broman, K.W.; Wu, H.; Sen, S.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Cheverud, J.M. A simple correction for multiple comparisons in interval mapping genome scans. Heredity (Edinb) 2001, 87, 52–58. [Google Scholar] [CrossRef]
- Gao, X. Multiple testing corrections for imputed SNPs. Genet. Epidemiol. 2011, 35, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.C.; Carbonetto, P.; Sokoloff, G.; Park, Y.J.; Abney, M.; Palmer, A.A. High-resolution genetic mapping of complex traits from a combined analysis of F2 and advanced intercross mice. Genetics 2014, 198, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Abney, M.; Palmer, A.A.; Skol, A.D. QTLRel: an R package for genome-wide association studies in which relatedness is a concern. BMC Genet. 2011, 12, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Carbonetto, P.; Stephens, M. Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet. 2013, 9, e1003264. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Pearson: Essex, UK, 1996. [Google Scholar]
- Chen, H.; Wang, C.; Conomos, M.P.; Stilp, A.M.; Li, Z.; Sofer, T.; Szpiro, A.A.; Chen, W.; Brehm, J.M.; Celedon, J.C.; et al. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models. Am. J. Hum. Genet. 2016, 98, 653–666. [Google Scholar] [CrossRef] [Green Version]
- Cheverud, J.M.; Routman, E.J. Epistasis and its contribution to genetic variance components. Genetics 1995, 139, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practices of Statistics in Biological Research, 3rd ed.; WH Freeman and Co.: New York, NY, USA, 1995. [Google Scholar]
- Kim, S. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Commun. Stat. Appl. Methods 2015, 22, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Kendall, M.G. Partial rank correlation. Biometrika 1942, 32, 277–283. [Google Scholar] [CrossRef]
- Schott, J.J.; Benson, D.W.; Basson, C.T.; Pease, W.; Silberbach, G.M.; Moak, J.P.; Maron, B.J.; Seidman, C.E.; Seidman, J.G. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998, 281, 108–111. [Google Scholar] [CrossRef]
- Dobzhansky, T. Nothing in Biology Makes Sense except in the Light of Evolution. Am. Biol. Teach. 1973, 75, 87–91. [Google Scholar] [CrossRef]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [Green Version]
- Sifrim, A.; Hitz, M.P.; Wilsdon, A.; Breckpot, J.; Turki, S.H.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.; Swaminathan, G.J.; et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet. 2016, 48, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, L.C.; Al Turki, S.; Manickaraj, A.K.; Manase, D.; Mulder, B.J.; Bergin, L.; Rosenberg, H.C.; Mondal, T.; Gordon, E.; Lougheed, J.; et al. Exome sequencing identifies rare variants in multiple genes in atrioventricular septal defect. Genet. Med. 2016, 18, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.; Choi, M.; Wakimoto, H.; Ma, L.; Jiang, J.; Overton, J.D.; Romano-Adesman, A.; Bjornson, R.D.; Breitbart, R.E.; Brown, K.K.; et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013, 498, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Dobzhansky, T. Genetics of natural populations. XVIII. Experiments on chromosomes of Drosophila pseudoobscura from different geographic regions. Genetics 1948, 33, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Dobzhansky, T. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 1950, 35, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Tyler, A.L.; Donahue, L.R.; Churchill, G.A.; Carter, G.W. Weak Epistasis Generally Stabilizes Phenotypes in a Mouse Intercross. PLoS Genet. 2016, 12, e1005805. [Google Scholar] [CrossRef] [PubMed]
- Tiosano, D.; Audi, L.; Climer, S.; Zhang, W.; Templeton, A.R.; Fernandez-Cancio, M.; Gershoni-Baruch, R.; Sanchez-Muro, J.M.; El Kholy, M.; Hochberg, Z. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes. G3 (Bethesda) 2016, 6, 1251–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.; Liu, Y.; Williams, S.M.; Morris, N.; Buchner, D.A. Widespread epistasis regulates glucose homeostasis and gene expression. PLoS Genet. 2017, 13, e1007025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, A. Robustness and Evolvability in Living Systems; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhirome, E.; Regmi, S.D.; Magnan, R.A.; Ugwu, N.; Qin, Y.; Schulkey, C.E.; Cheverud, J.M.; Jay, P.Y. The Genetic Architecture of a Congenital Heart Defect Is Related to Its Fitness Cost. Genes 2021, 12, 1368. https://doi.org/10.3390/genes12091368
Akhirome E, Regmi SD, Magnan RA, Ugwu N, Qin Y, Schulkey CE, Cheverud JM, Jay PY. The Genetic Architecture of a Congenital Heart Defect Is Related to Its Fitness Cost. Genes. 2021; 12(9):1368. https://doi.org/10.3390/genes12091368
Chicago/Turabian StyleAkhirome, Ehiole, Suk D. Regmi, Rachel A. Magnan, Nelson Ugwu, Yidan Qin, Claire E. Schulkey, James M. Cheverud, and Patrick Y. Jay. 2021. "The Genetic Architecture of a Congenital Heart Defect Is Related to Its Fitness Cost" Genes 12, no. 9: 1368. https://doi.org/10.3390/genes12091368
APA StyleAkhirome, E., Regmi, S. D., Magnan, R. A., Ugwu, N., Qin, Y., Schulkey, C. E., Cheverud, J. M., & Jay, P. Y. (2021). The Genetic Architecture of a Congenital Heart Defect Is Related to Its Fitness Cost. Genes, 12(9), 1368. https://doi.org/10.3390/genes12091368