Insulators in Plants: Progress and Open Questions
Abstract
:1. Introduction
2. The Discovery of Insulators and Their Key Characteristics
3. The Existence of Plant Insulators
4. Experimentally Verified Plant Insulators
5. Plant Boundary Proteins
6. Genome Organization in Animals and Plants and the Function of Insulators
7. Insulators in Biotechnology
8. Strategies Used to Identify Plant Insulators
9. Open Questions
10. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tartof, K.D.; Hobbs, C.; Jones, M. A structural basis for variegating position effects. Cell 1984, 37, 869–878. [Google Scholar] [CrossRef]
- Udvardy, A.; Maine, E.; Schedl, P. The 87A7 chromomere: Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J. Mol. Biol. 1985, 185, 341–358. [Google Scholar] [CrossRef]
- Scott, K.C.; Taubman, A.D.; Geyer, P.K. Enhancer Blocking by the Drosophila gypsy Insulator Depends Upon Insulator Anatomy and Enhancer Strength. Genetics 1999, 153, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Kyrchanova, O.; Sabirov, M.; Mogila, V.; Kurbidaeva, A.; Postika, N.; Maksimenko, O.; Schedl, P.; Georgiev, P. Complete reconstitution of bypass and blocking functions in a minimal artificial Fab-7 insulator from Drosophila bithorax complex. Proc. Natl. Acad. Sci. USA 2019, 116, 13462–13467. [Google Scholar] [CrossRef] [Green Version]
- Kyrchanova, O.; Wolle, D.; Sabirov, M.; Kurbidaeva, A.; Aoki, T.; Maksimenko, O.; Kyrchanova, M.; Georgiev, P.; Schedl, P. Distinct Elements Confer the Blocking and Bypass Functions of the Bithorax Fab-8 Boundary. Genetics 2019, 213, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Postika, N.; Schedl, P.; Georgiev, P.; Kyrchanova, O. Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophila melanogaster. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Fujioka, M.; Mistry, H.; Schedl, P.; Jaynes, J.B. Determinants of Chromosome Architecture: Insulator Pairing in cis and in trans. PLoS Genet. 2016, 12, e1005889. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lawry, S.T.; Cohen, A.L.; Jia, S. Chromosome boundary elements and regulation of heterochromatin spreading. Cell. Mol. Life Sci. 2014, 71, 4841–4852. [Google Scholar] [CrossRef] [Green Version]
- Kyrchanova, O.; Georgiev, P. Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett. 2014, 588, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, A.; Mishra, R.K. Chromatin domain boundary element search tool for Drosophila. Nucleic Acids Res. 2012, 40, 4385–4395. [Google Scholar] [CrossRef] [Green Version]
- Heger, P.; Wiehe, T. New tools in the box: An evolutionary synopsis of chromatin insulators. Trends Genet. 2014, 30, 161–171. [Google Scholar] [CrossRef]
- Beagan, J.A.; Duong, M.T.; Titus, K.R.; Zhou, L.; Cao, Z.; Ma, J.; Lachanski, C.V.; Gillis, D.R.; Phillips-Cremins, J.E. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Res. 2017, 27, 1139–1152. [Google Scholar] [CrossRef] [Green Version]
- Kaye, E.G.; Kurbidaeva, A.; Wolle, D.; Aoki, T.; Schedl, P.; Larschan, E. Drosophila Dosage Compensation Loci Associate with a Boundary-Forming Insulator Complex. Mol. Cell. Biol. 2017, 37, e00253-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, P.P.; Debo, B.; Aleman, J.R.; Talamas, J.A.; Lan, Y.; Nguyen, N.H.; Won, K.J.; Capelson, M. Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts. Mol. Cell 2017, 66, 63–76.e6. [Google Scholar] [CrossRef] [Green Version]
- Fedotova, A.; Aoki, T.; Rossier, M.; Mishra, R.K.; Clendinen, C.; Kyrchanova, O.; Wolle, D.; Bonchuk, A.; Maeda, R.K.; Mutero, A.; et al. The BEN Domain Protein Insensitive Binds to the Fab-7 Chromatin Boundary to Establish Proper Segmental Identity in Drosophila. Genetics 2018, 210, 573–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, C.; Stévant, I.; Ghavi-Helm, Y. 3D genome organisation in Drosophila. Briefings Funct. Genom. 2019, 19, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Van Bortle, K.; Nichols, M.H.; Li, L.; Ong, C.-T.; Takenaka, N.; Qin, Z.S.; Corces, V.G. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 2014, 15, R82. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cheng, Y.-J.; Wang, J.-W.; Weigel, D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants 2017, 3, 742–748. [Google Scholar] [CrossRef]
- Kellum, R.; Schedl, P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. Mol. Cell. Biol. 1992, 12, 2424–2431. [Google Scholar] [CrossRef] [Green Version]
- Chopra, V.S.; Cande, J.; Hong, J.-W.; Levine, M. Stalled Hox promoters as chromosomal boundaries. Genes Dev. 2009, 23, 1505–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raab, J.R.; Kamakaka, R.T. Insulators and promoters: Closer than we think. Nat. Rev. Genet. 2010, 11, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Stadler, M.R.; E Haines, J.; Eisen, M.B. Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo. eLife 2017, 6, e29550. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Sun, Q.; Czajkowsky, D.M.; Shao, Z. Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nègre, N.; Brown, C.D.; Shah, P.K.; Kheradpour, P.; Morrison, C.A.; Henikoff, J.G.; Feng, X.; Ahmad, K.; Russell, S.; White, R.A.H.; et al. A Comprehensive Map of Insulator Elements for the Drosophila Genome. PLoS Genet. 2010, 6, e1000814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Zhang, X.; Chakraborty, M.; Emerson, J. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res. 2021, 31, 397–410. [Google Scholar] [CrossRef]
- Ozdemir, I.; Gambetta, M.C. The Role of Insulation in Patterning Gene Expression. Genes 2019, 10, 767. [Google Scholar] [CrossRef] [Green Version]
- Akasaka, K.; Nishimura, A.; Takata, K.; Mitsunaga, K.; Mibuka, F.; Ueda, H.; Hirose, S.; Tsutsui, K.; Shimada, H. Upstream element of the sea urchin arylsulfatase gene serves as an insulator. Cell. Mol. Biol. 1999, 45, 555–565. [Google Scholar]
- Scott, K.C.; Merrett, S.L.; Willard, H.F. A Heterochromatin Barrier Partitions the Fission Yeast Centromere into Discrete Chromatin Domains. Curr. Biol. 2006, 16, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowley, J.; Nichols, M.H.; Lyu, X.; Ando-Kuri, M.; Rivera, S.; Hermetz, K.; Wang, P.; Ruan, Y.; Corces, V.G. Evolutionarily Conserved Principles Predict 3D Chromatin Organization. Mol. Cell 2017, 67, 837–852.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Liu, C.; Roqueiro, D.; Grimm, D.; Schwab, R.; Becker, C.; Lanz, C.; Weigel, D. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 2014, 25, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Zhang, F.-G.; Zhang, H.-Y.; Wang, X.-T.; Hu, J.-H.; Wu, X.-M. Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nat. Plants 2019, 5, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Doğan, E.S.; Liu, C. Three-dimensional chromatin packing and positioning of plant genomes. Nat. Plants 2018, 4, 521–529. [Google Scholar] [CrossRef]
- Karaaslan, E.S.; Wang, N.; Faiß, N.; Liang, Y.; Montgomery, S.A.; Laubinger, S.; Berendzen, K.W.; Berger, F.; Breuninger, H.; Liu, C. Marchantia TCP transcription factor activity correlates with three-dimensional chromatin structure. Nat. Plants 2020, 6, 1250–1261. [Google Scholar] [CrossRef]
- Tran, A.; Johnson, D.A. Mutational analysis identifies functional Rap1, Su(Hw), and CTCF insulator sites in Arabidopsis thaliana. Plant Cell Rep. 2020, 39, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Gudynaite-Savitch, L.; Johnson, D.A.; Miki, B.L.A. Strategies to mitigate transgene-promoter interactions. Plant Biotechnol. J. 2009, 7, 472–485. [Google Scholar] [CrossRef]
- She, W.; Lin, W.; Zhu, Y.; Chen, Y.; Jin, W.; Yang, Y.; Han, N.; Bian, H.; Zhu, M.; Wang, J. The gypsy Insulator of Drosophila melanogaster, Together with Its Binding Protein Suppressor of Hairy-Wing, Facilitate High and Precise Expression of Transgenes in Arabidopsis thaliana. Genetics 2010, 185, 1141–1150. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, S.; Yoshida, K.; Kato, K.; Akasaka, K.; Shinmyo, A. An insulator element from the sea urchin Hemicentrotus pulcherrimus suppresses variation in transgene expression in cultured tobacco cells. Mol. Genet. Genom. 2001, 265, 405–413. [Google Scholar] [CrossRef]
- Jeong, D.-H.; An, S.; Kang, H.-G.; Moon, S.; Han, J.-J.; Park, S.; Lee, H.S.; An, K.; An, G. T-DNA Insertional Mutagenesis for Activation Tagging in Rice. Plant Physiol. 2002, 130, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.; Filippova, G.; Loukinov, D.; Pugacheva, E.; Chen, Q.; Smith, S.T.; Munhall, A.; Grewe, B.; Bartkuhn, M.; Arnold, R.; et al. CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8insulator. EMBO Rep. 2005, 6, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Puri, D.; Garapati, H.S.; Dhawan, J.; Mishra, R.K. Vertebrate GAGA factor associated insulator elements demarcate homeotic genes in the HOX clusters. Epigenetics Chromatin 2013, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, S.D.; Hily, J.-M.; Liu, Z. A 1-kb Bacteriophage Lambda Fragment Functions as an Insulator to Effectively Block Enhancer–Promoter Interactions in Arabidopsis thaliana. Plant Mol. Biol. Rep. 2009, 28, 69–76. [Google Scholar] [CrossRef]
- Yang, Y.; Singer, S.D.; Liu, Z. Evaluation and comparison of the insulation efficiency of three enhancer-blocking insulators in plants. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 105, 405–414. [Google Scholar] [CrossRef]
- Singer, S.D.; Hily, J.-M.; Cox, K.D. Analysis of the enhancer-blocking function of the TBS element from Petunia hybrida in transgenic Arabidopsis thaliana and Nicotiana tabacum. Plant Cell Rep. 2011, 30, 2013–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, S.D.; Cox, K.D. A gypsy-like sequence from Arabidopsis thaliana exhibits enhancer-blocking activity in transgenic plants. J. Plant Biochem. Biotechnol. 2012, 22, 35–42. [Google Scholar] [CrossRef]
- Gan, S.; Xie, M. Genetic Insulator for Preventing Influence by Another Gene Promoter. US Patent No 7,605,300 B2, 20 October 2009. [Google Scholar]
- Zhang, Y.-M.; Zheng, Y.-M.; Xiao, N.; Wang, L.-N.; Zhang, Y.; Fang, R.-X.; Chen, X.-Y. Functional analysis of the HS185 regulatory element in the rice HSP70 promoter. Mol. Biol. Rep. 2011, 39, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, P.; Garrard, W.T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 1986, 44, 273–282. [Google Scholar] [CrossRef]
- Singer, S.D.; Liu, Z.; Cox, K.D. Minimizing the unpredictability of transgene expression in plants: The role of genetic insulators. Plant Cell Rep. 2012, 31, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Hily, J.-M.; Singer, S.D.; Yang, Y.; Liu, Z. A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana. Plant Cell Rep. 2009, 28, 1095–1104. [Google Scholar] [CrossRef]
- Ruiz, Y.; Ramos-González, P.; Soto, J.; Rodríguez, M.; Carlos, N.; Reyes, A.; Callard, D.; Sánchez, Y.; Pujol, M.; Fuentes, A. The M4 insulator, the TM2 matrix attachment region, and the double copy of the heavy chain gene contribute to the enhanced accumulation of the PHB-01 antibody in tobacco plants. Transgenic Res. 2020, 29, 171–186. [Google Scholar] [CrossRef]
- Singh, R.; Yadav, R.; Amla, D.V.; Sanyal, I. Characterization and functional validation of two scaffold attachment regions (SARs) from Cicer arietinum (L.). Plant Cell Tissue Organ Cult. (PCTOC) 2016, 125, 135–148. [Google Scholar] [CrossRef]
- Heger, P.; Marin, B.; Schierenberg, E. Loss of the insulator protein CTCF during nematode evolution. BMC Mol. Biol. 2009, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Li, M.; Roy, S.; Liu, K.J.; Romine, M.L.; Lane, D.C.; Patel, S.K.; Cai, H.N. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters. World J. Biol. Chem. 2016, 7, 223–230. [Google Scholar] [CrossRef]
- Kaushal, A.; Mohana, G.; Dorier, J.; Özdemir, I.; Omer, A.; Cousin, P.; Semenova, A.; Taschner, M.; Dergai, O.; Marzetta, F.; et al. CTCF loss has limited effects on global genome architecture in Drosophila despite critical regulatory functions. Nat. Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Santi, L.; Wang, Y.; Stile, M.R.; Berendzen, K.; Wanke, D.; Roig, C.; Pozzi, C.M.; Müller, K.; Müller, J.; Rohde, W.; et al. The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox geneBkn3. Plant J. 2003, 34, 813–826. [Google Scholar] [CrossRef]
- Yu, X.; Martin, P.G.P.; Michaels, S.D. BORDER proteins protect expression of neighboring genes by promoting 3′ Pol II pausing in plants. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, T.-H.S.; Weiner, A.; Lajoie, B.; Dekker, J.; Friedman, N.; Rando, O.J. Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C. Cell 2015, 162, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Kulaeva, O.I.; Nizovtseva, E.V.; Polikanov, Y.S.; Ulianov, S.V.; Studitsky, V.M. Distant Activation of Transcription: Mechanisms of Enhancer Action. Mol. Cell. Biol. 2012, 32, 4892–4897. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Zhang, W.; Zhang, T.; Liu, B.; Jiang, J. Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures. Plant Cell 2015, 27, 2415–2426. [Google Scholar] [CrossRef] [Green Version]
- Torosin, N.S.; Anand, A.; Golla, T.R.; Cao, W.; Ellison, C.E. 3D genome evolution and reorganization in the Drosophila melanogaster species group. PLoS Genet. 2020, 16, e1009229. [Google Scholar] [CrossRef] [PubMed]
- Singer, S.D.; Cox, K.D.; Liu, Z. Enhancer-promoter interference and its prevention in transgenic plants. Plant Cell Rep. 2011, 30, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Sun, L.; Yang, X.; Wang, M.; Esmaeili, N.; Pehlivan, N.; Zhao, R.; Zhang, H.; Zhao, Y. The Effects of Transcription Directions of Transgenes and the gypsy Insulators on the Transcript Levels of Transgenes in Transgenic Arabidopsis. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Butaye, K.M.; Goderis, I.J.; Wouters, P.F.; Pues, J.M.-T.; Delauré, S.L.; Broekaert, W.F.; Depicker, A.; Cammue, B.P.; De Bolle, M.F. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J. 2004, 39, 440–449. [Google Scholar] [CrossRef]
- Butaye, K.M.; Cammue, B.P.; Delauré, S.L.; De Bolle, M.F. Approaches to Minimize Variation of Transgene Expression in Plants. Mol. Breed. 2005, 16, 79–91. [Google Scholar] [CrossRef]
- Pérez-González, A.; Caro, E. Benefits of using genomic insulators flanking transgenes to increase expression and avoid positional effects. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, L. Analysis of Potential DNA Insulators in Arabidopsis thaliana; Ottawa-Carleton Institute of Biology University of Ottawa: Ottawa, ON, Canada, 2014. [Google Scholar]
- Wang, J.; Lunyak, V.V.; Jordan, I.K. Genome-wide prediction and analysis of human chromatin boundary elements. Nucleic Acids Res. 2011, 40, 511–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Marco, E.; Pinello, L.; Yuan, G.-C. Predicting chromatin organization using histone marks. Genome Biol. 2015, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.; Luo, J.; Li, Y.Z.; Guo, J.L.; Zhu, M.; Li, M.L. A computational method to predict topologically associating domain boundaries combining histone Marks and sequence information. BMC Genom. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Xu, Q.; Xu, Y.; Cao, K.; Deng, N.; Wang, R.; Zhang, X.; Zheng, R.; Li, G.; et al. TAD boundary and strength prediction by integrating sequence and epigenetic profile information. Briefings Bioinform. 2021, 22. [Google Scholar] [CrossRef]
- Bednarz, P.; Wilczynski, B. Supervised learning method for predicting chromatin boundary associated insulator elements. J. Bioinform. Comput. Biol. 2014, 12, 1442006. [Google Scholar] [CrossRef] [Green Version]
- Sefer, E.; Kingsford, C. Semi-nonparametric modeling of topological domain formation from epigenetic data. Algorithms Mol. Biol. 2019, 14, 4. [Google Scholar] [CrossRef] [Green Version]
- Rosin, F.M.; Watanabe, N.; Cacas, J.-L.; Kato, N.; Arroyo, J.M.; Fang, Y.; May, B.; Vaughn, M.; Simorowski, J.; Ramu, U.; et al. Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J. 2008, 55, 514–525. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbidaeva, A.; Purugganan, M. Insulators in Plants: Progress and Open Questions. Genes 2021, 12, 1422. https://doi.org/10.3390/genes12091422
Kurbidaeva A, Purugganan M. Insulators in Plants: Progress and Open Questions. Genes. 2021; 12(9):1422. https://doi.org/10.3390/genes12091422
Chicago/Turabian StyleKurbidaeva, Amina, and Michael Purugganan. 2021. "Insulators in Plants: Progress and Open Questions" Genes 12, no. 9: 1422. https://doi.org/10.3390/genes12091422
APA StyleKurbidaeva, A., & Purugganan, M. (2021). Insulators in Plants: Progress and Open Questions. Genes, 12(9), 1422. https://doi.org/10.3390/genes12091422