Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and the Induction of Differentiation
2.2. Animals
2.3. Blood Biochemical Analysis
2.4. Chemicals
2.5. Cell Proliferation and Viability
2.6. ERK1/2 Phosphorylation and PCNA Analysis
2.7. Quantitative RT-PCR
2.8. Western Blotting
2.9. Jenner-Giemsa Stain
2.10. Statistical Analysis
3. Results
3.1. SPX, GalR2 and GalR3 Expression in C2C12 Cells
3.2. SPX Stimulates the Proliferation of C2C12 Cells
3.3. Effect of SPX on the Differentiation Process of C2C12 Cells
3.4. Fusion Index and the Identification of Receptors Involved in the Effect of SPX on the Differentiation Process
3.5. Effect of Exercise on SPX Concentration and mRNA Expression of SPX, GalR2 and GalR3 in Skeletal Muscle in Mice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirabeau, O.; Perlas, E.; Severini, C.; Audero, E.; Gascuel, O.; Possenti, R.; Birney, E.; Rosenthal, N.; Gross, C. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007, 17, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Porzionato, A.; Rucinski, M.; Macchi, V.; Stecco, C.; Malendowicz, L.K.; De Caro, R. Spexin expression in normal rat tissues. J. Histochem. Cytochem. 2010, 58, 825–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Ma, Y.; Gu, M.; Zhang, Y.; Yan, S.; Li, N.; Wang, Y.; Ding, X.; Yin, J.; Fan, N.; et al. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes. Peptides 2015, 71, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walewski, J.L.; Ge, F.; Lobdell, H.; Levin, N.; Schwartz, G.J.; Vasselli, J.R.; Pomp, A.; Dakin, G.; Berk, P.D. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity 2014, 22, 1643–1652. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.Y.; Zhou, Y.C.; Zhang, X.M.; Chen, W.D.; Wang, Y.D. Emerging roles of NPQ/Spexin in physiology and pathology. Front. Pharmacol. 2019, 10, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassek, M.; Kolodziejski, P.A.; Szczepankiewicz, D.; Pruszynska-Oszmalek, E. Spexin in the physiology of pancreatic islets—Mutual interactions with insulin. Endocrine 2019, 63, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Jasmine, G.; Walewski, J.; Anglade, D.; Berk, P. Regulation of Hepatocellular Fatty Acid Uptake in Mouse Models of Fatty Liver Disease with and without Functional Leptin Signaling: Roles of NfKB and SREBP-1C and the Effects of Spexin. Semin. Liver Dis. 2016, 36, 360–372. [Google Scholar] [CrossRef]
- Kolodziejski, P.A.; Pruszynska-Oszmalek, E.; Micker, M.; Skrzypski, M.; Wojciechowicz, T.; Szwarckopf, P.; Skieresz-Szewczyk, K.; Nowak, K.W.; Strowski, M.Z. Spexin: A novel regulator of adipogenesis and fat tissue metabolism. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2018, 1863, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Pruszynska-Oszmalek, E.; Sassek, M.; Szczepankiewicz, D.; Nowak, K.W.; Kolodziejski, P.A. Short-term administration of spexin in rats reduces obesity by affecting lipolysis and lipogenesis: An in vivo and in vitro study. Gen. Comp. Endocrinol. 2020, 299, 113615. [Google Scholar] [CrossRef]
- Gambaro, S.E.; Zubiría, M.G.; Giordano, A.P.; Portales, A.E.; Alzamendi, A.; Rumbo, M.; Giovambattista, A. Spexin improves adipose tissue inflammation and macrophage recruitment in obese mice. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158700. [Google Scholar] [CrossRef] [PubMed]
- Sassek, M.; Kolodziejski, P.A.; Strowski, M.Z.; Nogowski, L.; Nowak, K.W.; Mackowiak, P. Spexin Modulates Functions of Rat Endocrine Pancreatic Cells. Pancreas 2018, 47, 904–909. [Google Scholar] [CrossRef]
- El-Saka, M.H.; Abo El Gheit, R.E.; El Saadany, A.; Alghazaly, G.M.; Marea, K.E.; Madi, N.M. Effect of Spexin on Renal Dysfunction in Experimentally Obese Rats: Potential Mitigating Mechanisms via Galanin Receptor-2. Available online: https://doi.org/10.1080/13813455.2021.1887265 (accessed on 25 February 2021).
- Liu, Y.; Sun, L.; Zheng, L.; Su, M.; Liu, H.; Wei, Y.; Li, D.; Wang, Y.; Dai, C.; Gong, Y.; et al. Spexin protects cardiomyocytes from hypoxia-induced metabolic and mitochondrial dysfunction. Naunyn-Schmiedebergs Arch. Pharmacol. 2020, 393, 25–33. [Google Scholar] [CrossRef]
- Kim, D.K.; Yun, S.; Son, G.H.; Hwang, J.I.; Park, C.R.; Kim, J.I.; Kim, K.; Vaudry, H.; Seong, J.Y. Coevolution of the spexin/galanin/kisspeptin family: Spexin activates galanin receptor type II and III. Endocrinology 2014, 155, 1864–1873. [Google Scholar] [CrossRef] [Green Version]
- Fang, P.; Zhang, L.; Yu, M.; Sheng, Z.; Shi, M.; Zhu, Y.; Zhang, Z.; Bo, P. Activiated galanin receptor 2 attenuates insulin resistance in skeletal muscle of obese mice. Peptides 2018, 99, 92–98. [Google Scholar] [CrossRef]
- Kumar, S.; Mankowski, R.T.; Anton, S.D.; Babu Balagopal, P. Novel insights on the role of spexin as a biomarker of obesity and related cardiometabolic disease. Int. J. Obes. 2021, 45, 2169–2178. [Google Scholar] [CrossRef]
- Hernández-Hernández, J.M.; García-González, E.G.; Brun, C.E.; Rudnicki, M.A. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin. Cell Dev. Biol. 2017, 72, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Rossi, A.C.; Smerdu, V.; Leinwand, L.A.; Reggiani, C. Developmental myosins: Expression patterns and functional significance. Skelet. Muscle 2015, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.M.; Parr, T.; Brameld, J.M. Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis. J. Muscle Res. Cell Motil. 2012, 32, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, T.P.; Wojtków, M.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Pezowicz, C.; Trzaskowska, A.; Mielcarek, S.; Szybowicz, M.; Nowicka, A.B.; Nowicki, M.; et al. Trabecular bone remodelling in the femur of C57BL/6J mice treated with diclofenac in combination with treadmill exercise. Acta Bioeng. Biomech. 2021, 23, 3–11. [Google Scholar] [CrossRef]
- Levitt, D.E.; Adler, K.A.; Simon, L. HEMA 3 Staining: A Simple Alternative for the Assessment of Myoblast Differentiation. Curr. Protoc. Stem Cell Biol. 2019, 51, e101. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.L.; Li, Y.; Hill, A.A.; Mounts, W.M.; Miller, C.P. Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol. Genomics 2002, 2002, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Alcaraz, A.; Lee, Y.N.; Yun, S.; Hwang, J.I.; Seong, J.Y. Conformational signatures in β-arrestin2 reveal natural biased agonism at a G-protein-coupled receptor. Commun. Biol. 2018, 1, 128. [Google Scholar] [CrossRef]
- Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle 2009, 8, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejski, P.A.; Pruszyńska-Oszmałek, E.; Hejdysz, M.; Sassek, M.; Leciejewska, N.; Ziarniak, K.; Bień, J.; Ślósarz, P.; Kubis, M.; Kaczmarek, S. Effect of fasting on the spexin system in broiler chickens. Animals 2021, 11, 518. [Google Scholar] [CrossRef]
- Wu, H.; Lin, F.; Chen, H.; Liu, J.; Gao, Y.; Zhang, X.; Hao, J.; Chen, D.; Yuan, D.; Wang, T.; et al. Ya-fish (Schizothorax prenanti) spexin: Identification, tissue distribution and mRNA expression responses to periprandial and fasting. Fish Physiol. Biochem. 2015, 42, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Ruijtenberg, S.; van den Heuvel, S. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 2016, 15, 196–212. [Google Scholar] [CrossRef] [Green Version]
- Diel, P.; Baadners, D.; Schlüpmann, K.; Velders, M.; Schwarz, J.P. C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression. J. Mol. Endocrinol. 2008, 40, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogilvie, M.; Yu, X.; Nicolas-Metral, V.; Pulido, S.M.; Liu, C.; Ruegg, U.T.; Noguchi, C.T. Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J. Biol. Chem. 2000, 275, 39754–39761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; He, C.; Hashemi, T.; Bayne, M. Cloning and expressional characterization of a novel galanin receptor. Identification of different pharmacophores within galanin for the three galanin receptor subtypes. J. Biol. Chem. 1997, 272, 31949–31952. [Google Scholar] [CrossRef] [Green Version]
- Belloni, A.S.; Malendowicz, L.K.; Rucinski, M.; Guidolin, D.; Nussdorfer, G.G. Galanin stimulates cortisol secretion from human adrenocortical cells through the activation of galanin receptor subtype 1 coupled to the adenylate cyclase-dependent signaling cascade. Int. J. Mol. Med. 2007, 20, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejski, P.A.; Leciejewska, N.; Chmurzynska, A.; Sassek, M.; Szczepankiewicz, A.; Szczepankiewicz, D.; Malek, E.; Strowski, M.Z.; Checinska-Maciejewska, Z.; Nowak, K.W.; et al. 30-Day spexin treatment of mice with diet-induced obesity (DIO) and type 2 diabetes (T2DM) increases insulin sensitivity, improves liver functions and metabolic status. Mol. Cell. Endocrinol. 2021, 536, 111420. [Google Scholar] [CrossRef]
- Wang, L.; Tran, A.; Lee, J.; Belsham, D.D. Palmitate differentially regulates Spexin, and its receptors Galr2 and Galr3, in GnRH neurons through mechanisms involving PKC, MAPKs, and TLR4. Mol. Cell. Endocrinol. 2020, 518, 110991. [Google Scholar] [CrossRef]
- Bloomquist, B.T.; Beauchamp, M.R.; Zhelnin, L.; Brown, S.E.; Gore-Willse, A.R.; Gregor, P.; Cornfield, L.J. Cloning and expression of the human galanin receptor GalR2. Biochem. Biophys. Res. Commun. 1998, 243, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Kolakowski, L.F.; O’Neill, G.P.; Howard, A.D.; Broussard, S.R.; Sullivan, K.A.; Feighner, S.D.; Sawzdargo, M.; Nguyen, T.; Kargman, S.; Shiao, L.L.; et al. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J. Neurochem. 1998, 71, 2239–2251. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Hökfelt, T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol. Sci. 2002, 23, 468–474. [Google Scholar] [CrossRef]
- Hökfelt, T.; Barde, S.; Xu, Z.Q.D.; Kuteeva, E.; Rüegg, J.; Le Maitre, E.; Risling, M.; Kehr, J.; Ihnatko, R.; Theodorsson, E.; et al. Neuropeptide and small transmitter coexistence: Fundamental studies and relevance to mental illness. Front. Neural Circuits 2018, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Konig, S.; Hinard, V.; Arnaudeau, S.; Holzer, N.; Potter, G.; Bader, C.R.; Bernheim, L. Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. J. Biol. Chem. 2004, 279, 28187–28196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadir, A.; Kavalakatt, S.; Madhu, D.; Devarajan, S.; Abubaker, J.; Al-Mulla, F.; Tiss, A. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci. Rep. 2020, 10, 10635. [Google Scholar] [CrossRef]
- Mohammadi, A.; Bijeh, N.; Moazzami, M.; Khodaei, K.; Rahimi, N. Effect of Exercise Training on Spexin Level, Appetite, Lipid Accumulation Product, Visceral Adiposity Index, and Body Composition in Adults with Type 2 Diabetes. Available online: https://doi.org/10.1177/10998004211050596 (accessed on 31 October 2021).
Target | Forward Primer (5′ > 3′) | Reverse Primer (5′ > 3′) | Product (bp) |
---|---|---|---|
Myogenin | CGGTGGAGGATATGTCTGTTG | GGTGTTAGCCTTATGTGAATGG | 215 |
MyoD | AGCACTACAGTGGCGACTCA | GGCCGCTGTAATCCATCAT | 75 |
Skeletal α-actin | CAGAGCAAGCGAGGTATCC | GTCCCCAGAATCCAACACG | 297 |
Myh4 | CTTGCGGTCCTCCTCGGTCTGGT | CGCCCACCTGGAGCGGATGA | 250 |
Spexin | TCCTTCTCCTGGTGCTGTCT | TCTGGGTTTCGTCTTTCTGG | 187 |
GalR2 | CTTAAAGGCGCCCCATGT | CACTAGCGAGTCACACTGTTCC | 72 |
GalR3 | CGGCCGTCTCAGTGGATA | CGGCCGTCTCAGTGGATA | 131 |
Gapdh | ATGGTGAAGGTCGGTGTGA | AATCTCCACTTTGCCACTGC | 84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leciejewska, N.; Pruszyńska-Oszmałek, E.; Mielnik, K.; Głowacki, M.; Lehmann, T.P.; Sassek, M.; Gawęda, B.; Szczepankiewicz, D.; Nowak, K.W.; Kołodziejski, P.A. Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes 2022, 13, 81. https://doi.org/10.3390/genes13010081
Leciejewska N, Pruszyńska-Oszmałek E, Mielnik K, Głowacki M, Lehmann TP, Sassek M, Gawęda B, Szczepankiewicz D, Nowak KW, Kołodziejski PA. Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes. 2022; 13(1):81. https://doi.org/10.3390/genes13010081
Chicago/Turabian StyleLeciejewska, Natalia, Ewa Pruszyńska-Oszmałek, Karolina Mielnik, Maciej Głowacki, Tomasz P. Lehmann, Maciej Sassek, Bartosz Gawęda, Dawid Szczepankiewicz, Krzysztof W. Nowak, and Paweł A. Kołodziejski. 2022. "Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo" Genes 13, no. 1: 81. https://doi.org/10.3390/genes13010081
APA StyleLeciejewska, N., Pruszyńska-Oszmałek, E., Mielnik, K., Głowacki, M., Lehmann, T. P., Sassek, M., Gawęda, B., Szczepankiewicz, D., Nowak, K. W., & Kołodziejski, P. A. (2022). Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes, 13(1), 81. https://doi.org/10.3390/genes13010081