Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples for Genomic DNA
2.2. Genome Sequences
2.3. Data Filtering
2.4. Mapping Reads to the Thoroughbred Horse Reference Sequence
2.5. SNP Calling
2.6. Genotype Inheritance State and Mutation Analysis
2.7. Gene Annotation of MIE SNPs and De Novo SNPs
3. Results
3.1. The Equus Parent-Offspring Trio Genomes
3.2. Characterization of SNP Transmission from Parents to Offspring
3.3. Functional Annotation of SNPs
3.4. KEGG Pathway Enrichment Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orlando, L.; Ginolhac, A.; Zhang, G.; Froese, D.; Albrechtsen, A.; Stiller, M.; Schubert, M.; Cappellini, E.; Petersen, B.; Moltke, I.; et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 2013, 499, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, H.; Schubert, M.; Seguin-Orlando, A.; Ginolhac, A.; Petersen, L.; Fumagalli, M.; Albrechtsen, A.; Petersen, B.; Korneliussen, T.S.; Vilstrup, J.T.; et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl. Acad. Sci. USA 2014, 111, 18655–18660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, G.L.; Case, S.M.; Wilson, A.C.; Patton, J.L. Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sci. USA 1977, 74, 3942–3946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trifonov, V.A.; Stanyon, R.; Nesterenko, A.I.; Fu, B.; Perelman, P.L.; O’Brien, P.C.; Stone, G.; Rubtsova, N.V.; Houck, M.L.; Robinson, T.J.; et al. Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2008, 16, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, Y.; Bai, D.; Shiraigol, W.; Li, B.; Yang, L.; Wu, J.; Bao, W.; Ren, X.; Jin, B.; et al. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci. Rep. 2015, 5, 14106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaud, G.; Petersen, B.; Seguin-Orlando, A.; Bertelsen, M.F.; Waller, A.; Newton, R.; Paillot, R.; Bryant, N.; Vaudin, M.; Librado, P.; et al. Improved de novo genomic assembly for the domestic donkey. Sci. Adv. 2018, 4, eaaq0392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, C.M.; Giulotto, E.; Sigurdsson, S.; Zoli, M.; Gnerre, S.; Imsland, F.; Lear, T.L.; Adelson, D.L.; Bailey, E.; Bellone, R.R.; et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326, 865–867. [Google Scholar] [CrossRef] [Green Version]
- Muller, H.J. Isolating mechanisms, evolution and temperature. Biol. Symp. 1942, 6, 71–125. [Google Scholar]
- Dobzhansky, T. Genetics and the Origin of Species. Nature 1959, 184, 587–588. [Google Scholar] [CrossRef]
- Fishman, L.; Sweigart, A.L. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities. Annu. Rev. Plant Biol. 2018, 69, 707–731. [Google Scholar] [CrossRef]
- Presgraves, D.C.; Balagopalan, L.; Abmayr, S.M.; Orr, H.A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 2003, 423, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Zuellig, M.P.; Sweigart, A.L. gene duplicates cause hybrid lethality between sympatric species of mimulus. PLoS Genet 2018, 14, e1007130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, A.A.; Rieseberg, L.H. Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation? Annu. Rev. Ecol. Evol. Syst. 2008, 39, 21–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stathos, A.; Fishman, L. Chromosomal rearrangements directly cause underdominant F1 pollen sterility in Mimulus lewisii-Mimulus cardinalis hybrids. Evol. Int. J. Org. Evol. 2014, 68, 3109–3119. [Google Scholar] [CrossRef]
- Klein, J.; Sato, A.; Nikolaidis, N. MHC, TSP, and the origin of species: From immunogenetics to evolutionary genetics. Annu. Rev. Genet. 2007, 41, 281–304. [Google Scholar] [CrossRef]
- Gillingham, M.A.; Courtiol, A.; Teixeira, M.; Galan, M.; Bechet, A.; Cezilly, F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J. Evol. Biol. 2016, 29, 438–454. [Google Scholar] [CrossRef]
- Ilmonen, P.; Penn, D.J.; Damjanovich, K.; Morrison, L.; Ghotbi, L.; Potts, W.K. Major histocompatibility complex heterozygosity reduces fitness in experimentally infected mice. Genetics 2007, 176, 2501–2508. [Google Scholar] [CrossRef] [Green Version]
- Malmstrom, M.; Matschiner, M.; Torresen, O.K.; Star, B.; Snipen, L.G.; Hansen, T.F.; Baalsrud, H.T.; Nederbragt, A.J.; Hanel, R.; Salzburger, W.; et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat. Genet. 2016, 48, 1204–1210. [Google Scholar] [CrossRef] [Green Version]
- Sicard, A.; Kappel, C.; Josephs, E.B.; Lee, Y.W.; Marona, C.; Stinchcombe, J.R.; Wright, S.I.; Lenhard, M. Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. Nat. Commun. 2015, 6, 7960. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.M.; Watson, C.T.; Breden, F. Immunoglobulin genes, reproductive isolation and vertebrate speciation. Immunol. Cell Biol. 2022, 100, 497–506. [Google Scholar] [CrossRef]
- Watson, C.T.; Kos, J.T.; Gibson, W.S.; Newman, L.; Deikus, G.; Busse, C.E.; Smith, M.L.; Jackson, K.J.; Collins, A.M. A comparison of immunoglobulin IGHV, IGHD and IGHJ genes in wild-derived and classical inbred mouse strains. Immunol. Cell Biol. 2019, 97, 888–901. [Google Scholar] [CrossRef] [PubMed]
- Mack, K.L.; Nachman, M.W. Gene Regulation and Speciation. Trends Genet. TIG 2017, 33, 68–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Sandoval, A.; Voss, S.; Lai, Z.; Kneitz, S.; Boswell, W.; Boswell, M.; Savage, M.; Walter, C.; Warren, W.; et al. Oncogenic allelic interaction in Xiphophorus highlights hybrid incompatibility. Proc. Natl. Acad. Sci. USA 2020, 117, 29786–29794. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.L.; Garcia, M.; Keegan, M.; Reilly, P.; Schumer, M. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Cold Spring Harb. Lab. 2019, 368, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Levin-Sparenberg, E.; Bylsma, L.C.; Lowe, K.; Sangare, L.; Fryzek, J.P.; Alexander, D.D. A Systematic Literature Review and Meta-Analysis Describing the Prevalence of KRAS, NRAS, and BRAF Gene Mutations in Metastatic Colorectal Cancer. Gastroenterol. Res. 2020, 13, 184–198. [Google Scholar] [CrossRef] [PubMed]
- O’Roak, B.J.; Deriziotis, P.; Lee, C.; Vives, L.; Schwartz, J.J.; Girirajan, S.; Karakoc, E.; Mackenzie, A.P.; Ng, S.B.; Baker, C.; et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 2011, 43, 585–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoischen, A.; van Bon, B.W.; Gilissen, C.; Arts, P.; van Lier, B.; Steehouwer, M.; de Vries, P.; de Reuver, R.; Wieskamp, N.; Mortier, G.; et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet. 2010, 42, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Luo, J.; Chai, J.; Ren, L.; Zhou, Y.; Huang, F.; Liu, X.; Chen, Y.; Zhang, C.; Tao, M.; et al. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish x common carp cross. Proc. Natl. Acad. Sci. USA 2016, 113, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Wang, L.; Zhang, X.; Yuan, Y.; Chen, J.-Q.; Hurst, L.D.; Tian, D. Parent-progeny sequencing indicates higher mutation rates in heterozygotes. Nature 2015, 523, 463–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.; Wang, L.; Wang, L.; Wang, Z.; Lu, Z.; Tian, D.; Yang, S.; Hurst, L.D. Mutation rate analysis via parent-progeny sequencing of the perennial peach. I. A low rate in woody perennials and a higher mutagenicity in hybrids. Proc. R. Soc. Biol. Sci. 2016, 283, 1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.S.; Hu, L.; Hou, H.; Lee, H.; Xu, J.; Kwon, S.; Oh, S.; Kim, H.M.; Jho, S.; Kim, S.; et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 2013, 4, 2433. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 2016, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Poplin, R.; Chang, P.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Pt, A. Creating a universal SNP and small indel variant caller with deep neural networks. Cold Spring Harb. Lab. 2016, 36, 983–987. [Google Scholar] [CrossRef]
- Auwera, G.A.V.D.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Depristo, M.A. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.11–11.10.33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manheimer, K.B.; Patel, N.; Richter, F.; Gorham, J.; Sharp, A.J. Robust identification of deletions in exome and genome sequence data based on clustering of Mendelian errors. Hum. Mutat. 2018, 39, 870–881. [Google Scholar] [CrossRef]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Tempel, S. Using and understanding RepeatMasker. Methods Mol. Biol. 2012, 859, 29–51. [Google Scholar] [CrossRef]
- Roach, J.C.; Glusman, G.; Smit, A.F.; Huff, C.D.; Hubley, R.; Shannon, P.T.; Rowen, L.; Pant, K.P.; Goodman, N.; Bamshad, M.; et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 2010, 328, 636–639. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Larson, D.E.; Wilson, R.K. Using VarScan 2 for Germline Variant Calling and Somatic Mutation Detection. Curr. Protoc. Bioinform. 2013, 44, 15.4.1–15.4.17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, L.; Xing, F.; Xu, C.; Zhang, Q.; Che, J.; Wang, X.; Song, J.; Li, X.; Xiao, J.; Chen, L.L.; et al. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc. Natl. Acad. Sci. USA 2019, 116, 5653–5658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, K.T.; Kong, H.S.; Lee, J.H.; Lee, H.K.; Cho, B.W.; Kim, H.S.; Ahn, K.; Park, K.D. Genomic characterization of the Przewalski’s horse inhabiting Mongolian steppe by whole genome re-sequencing. Livest. Sci. 2014, 167, 86–91. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, Y.; Shiraigol, W.; Li, B.; Bai, D.; Ye, W.; Daidiikhuu, D.; Yang, L.; Jin, B.; Zhao, Q.; et al. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci. Rep. 2014, 4, 4958. [Google Scholar] [CrossRef] [Green Version]
- Tatsumoto, S.; Go, Y.; Fukuta, K.; Noguchi, H.; Hayakawa, T.; Tomonaga, M.; Hirai, H.; Matsuzawa, T.; Agata, K.; Fujiyama, A. Direct estimation of de novo mutation rates in a chimpanzee parent-offspring trio by ultra-deep whole genome sequencing. Sci. Rep. 2017, 7, 13561. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.D.; Chong, J.X.; Malig, M.; Ko, A.; Dumont, B.L.; Han, L.; Vives, L.; O’Roak, B.J.; Sudmant, P.H.; Shendure, J.; et al. Estimating the human mutation rate using autozygosity in a founder population. Nat. Genet. 2012, 44, 1277–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, A.; Frigge, M.L.; Masson, G.; Besenbacher, S.; Sulem, P.; Magnusson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Jonasdottir, A.; Jonasdottir, A.; et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Gibson, S.A.; Wei, Y.; Yan, Z.; Qin, H.; Benveniste, E.N. Ck2 controls th17 and regulatory T cell differentiation through inhibition of foxo1. J. Immunol. 2018, 201, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Rostamzadeh, D.; Yousefi, M.; Haghshenas, M.R.; Ahmadi, M.; Babaloo, Z. mTOR Signaling pathway as a master regulator of memory CD8 + T-cells, Th17, and NK cells development and their functional properties: ROSTAMZADEH et al. J. Cell. Physiol. 2019, 234, 12353–12368. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Cho, Y.W.; Woo, Y.J.; Baek, Y.A.; Kim, E.J.; Cho, Y.; Kim, J.Y.; Kim, B.S.; Song, J.J.; Ha, S.J. Metabolic Reprogramming by the Excessive AMPK Activation Exacerbates Antigen-Specific Memory CD8(+) T Cell Differentiation after Acute Lymphocytic Choriomeningitis Virus Infection. Immune Netw. 2019, 19, e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, L.; Hills, L.B.; Winter, E.B.; Huang, Y.H. Diverse Roles of Akt in T cells. Immunometabolism 2021, 3, e210007. [Google Scholar] [CrossRef] [PubMed]
- Koyama, H.; Bornfeldt, K.E.; Fukumoto, S.; Nishizawa, Y. Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation. J. Cell. Physiol. 2001, 186, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pearlman, A.H.; Hsieh, P. DNA mismatch repair and the DNA damage response. DNA Repair 2016, 38, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Lavrik, O.I. PARPs’ impact on base excision DNA repair. DNA Repair 2020, 93, 102911. [Google Scholar] [CrossRef]
- Meek, D.W. Regulation of the p53 response and its relationship to cancer. Biochem. J. 2015, 469, 325–346. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.V.; Albers, C.G.; Holcombe, R.F. Differentiation of tubular and villous adenomas based on Wnt pathway-related gene expression profiles. Int. J. Mol. Med. 2010, 26, 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, F.N. An attempt to produce mutations through hybridization. Am. Nat. 1915, 49, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Kovalchuk, I.; Kovalchuk, O.; Hohn, B. Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J. 2000, 19, 4431–4438. [Google Scholar] [CrossRef] [Green Version]
- Dal, G.M.; Erguner, B.; Sagiroglu, M.S.; Yuksel, B.; Onat, O.E.; Alkan, C.; Ozcelik, T. Early postzygotic mutations contribute to de novo variation in a healthy monozygotic twin pair. J. Med. Genet. 2014, 51, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Acuna-Hidalgo, R.; Bo, T.; Kwint, M.P.; van de Vorst, M.; Pinelli, M.; Veltman, J.A.; Hoischen, A.; Vissers, L.E.; Gilissen, C. Post-zygotic Point Mutations Are an Underrecognized Source of De Novo Genomic Variation. Am. J. Hum. Genet. 2015, 97, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lujan, S.A.; Kunkel, T.A. Stability across the Whole Nuclear Genome in the Presence and Absence of DNA Mismatch Repair. Cells 2021, 10, 1224. [Google Scholar] [CrossRef] [PubMed]
- Kamath, P.L.; Getz, W.M. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus. BMC Evol. Biol. 2011, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lei, H.; Ran, X.; Wang, J. Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony. PeerJ 2020, 8, e9889. [Google Scholar] [CrossRef]
- Radwan, J.; Babik, W.; Kaufman, J.; Lenz, T.L.; Winternitz, J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet. TIG 2020, 36, 298–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasov, K.E.; Liu, C.; Erban, A.; Kopka, J.; Parker, J.E.; Alcázar, R. NLR Mutations Suppressing Immune Hybrid Incompatibility and Their Effects on Disease Resistance. Plant Physiol. 2018, 177, 1152–1169. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Mariuzza, R.A. Pre-T-cell receptor binds MHC: Implications for thymocyte signaling and selection. Proc. Natl. Acad. Sci. USA 2015, 112, 8166–8167. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Wu, D.; Trynka, G.; Raj, T.; Terao, C.; Ikari, K.; Kochi, Y.; Ohmura, K.; Suzuki, A.; Yoshida, S.; et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014, 506, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Deutsch, A.J.; Lenz, T.L.; Onengut-Gumuscu, S.; Han, B.; Chen, W.M.; Howson, J.; Todd, J.A.; Bakker, P.D.; Rich, S.S. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 2015, 47, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Selvaraja, M.; Too, C.L.; Tan, L.K.; Koay, B.T.; Abdullah, M.; Shah, A.M.; Arip, M.; Amin-Nordin, S. Human leucocyte antigens profiling in Malay female patients with systemic lupus erythematosus: Are we the same or different? Lupus Sci. Med. 2022, 9, e000554. [Google Scholar] [CrossRef] [PubMed]
- Gaud, G.; Lesourne, R.; Love, P.E. Regulatory mechanisms in T cell receptor signalling. Nat. Rev. Immunol. 2018, 18, 485–497. [Google Scholar] [CrossRef]
- Lebedeva, T.; Dustin, M.L.; Sykulev, Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr. Opin. Immunol. 2005, 17, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B.; Kim, J.Y.; Kim, E.H.; Nam, J.H.; Park, K.S.; Song, Y.W. Intercellular adhesion molecule-1 polymorphisms in Korean patients with rheumatoid arthritis. Tissue Antigens 2004, 64, 473–477. [Google Scholar] [CrossRef]
- Huang, G.; Wang, Y.; Chi, H. Regulation of TH17 cell differentiation by innate immune signals. Cell. Mol. Immunol. 2012, 9, 287–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, I.; Lima, C.; Monteiro, M.; Barboza, D.; Maia, M. IL1β, IL18, NFKB1 and IFNG gene interactions are associated with severity of rheumatoid arthritis: A pilot study. Autoimmunity 2020, 53, 95–101. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Wang, Y.; Wu, J.; Wang, C.; Liu, K.; Qin, Q. The Polymorphisms of Interleukin-12B Gene and Susceptibility to Inflammatory Bowel Diseases: A Meta-analysis and Trial Sequential Analysis. Immunol. Investig. 2021, 50, 987–1006. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.E.; Brema, I.; AlQurashi, A.; Al-Jurayyan, A.; Bradley, B.; Hamza, M.A. Single nucleotide polymorphism rs 2070874 at Interleukin-4 is associated with increased risk of type 1 diabetes mellitus independently of human leukocyte antigens. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221090330. [Google Scholar] [CrossRef]
- Rosenberg, E.; Demopoulos, R.I.; Zeleniuch-Jacquotte, A.; Yee, H.; Sorich, J.; Speyer, J.L.; Newcomb, E.W. Expression of cell cycle regulators p57KIP2, cyclin D1, and cyclin E in epithelial ovarian tumors and survival. Hum. Pathol. 2001, 32, 808–813. [Google Scholar] [CrossRef]
- Dang, T.T.; Morales, J.C. Involvement of POLA2 in Double Strand Break Repair and Genotoxic Stress. Int. J. Mol. Sci. 2020, 21, 4245. [Google Scholar] [CrossRef]
- Shiratori, A.; Okumura, K.; Nogami, M.; Taguchi, H.; Onozaki, T.; Inoue, T.; Ando, T.; Shibata, T.; Izumi, M.; Miyazawa, H. Assignment of the 49-kDa (PRIM1) and 58-kDa (PRIM2A and PRIM2B) Subunit Genes of the Human DNA Primase to Chromosome Bands 1q44 and 6p11.1-p12. Genomics 1995, 28, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, R.N.; Treuting, P.M.; Fuller, E.D.; Goldsby, R.E.; Norwood, T.H.; Gooley, T.A.; Ladiges, W.C.; Preston, B.D.; Loeb, L.A. Mutation at the Polymerase Active Site of Mouse DNA Polymerase Increases Genomic Instability and Accelerates Tumorigenesis. Mol. Cell. Biol. 2007, 27, 7669–7682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanders, S.; Ma, X.; Roychoudhury, A.; Hernandez, R.D.; Demogines, A.; Barker, B.; Gu, Z.; Bustamante, C.D.; Alani, E. Detection of Heterozygous Mutations in the Genome of Mismatch Repair Defective Diploid Yeast Using a Bayesian Approach. Genetics 2010, 186, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Magon, K.L.; Parish, J.L. From infection to cancer: How DNA tumour viruses alter host cell central carbon and lipid metabolism. Open Biol. 2021, 11, 210004. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaw, D.; Marsh, D.J.; Li, J.; Dahia, P.L.; Wang, S.I.; Zheng, Z.; Bose, S.; Call, K.M.; Tsou, H.C.; Peacocke, M.; et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 1997, 16, 64–67. [Google Scholar] [CrossRef]
- Sansom, O.J.; Meniel, V.; Wilkins, J.A.; Cole, A.M.; Oien, K.A.; Marsh, V.; Jamieson, T.J.; Guerra, C.; Ashton, G.H.; Barbacid, M.; et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 14122–14127. [Google Scholar] [CrossRef] [Green Version]
- Murugan, A.K.; Grieco, M.; Tsuchida, N. RAS mutations in human cancers: Roles in precision medicine. Semin. Cancer Biol. 2019, 59, 23–35. [Google Scholar] [CrossRef]
- Lee, T.I.; Young, R.A. Transcriptional regulation and its misregulation in disease. Cell 2013, 152, 1237–1251. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Hu, M.; Huang, K.; Lin, S.; Du, H. Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int. J. Mol. Sci. 2020, 21, 5983. [Google Scholar] [CrossRef]
- Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 2011, 11, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Fang, J. Post-Transcriptional and Post-translational Regulation of Central Carbon Metabolic Enzymes in Cancer. Anti-Cancer Agents Med. Chem. 2017, 17, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.A.; Colaco, A.; Chaves, R.; Guedes-Pinto, H.; De-La-Cruz, P.L.; Lopes, C. Chemical carcinogenesis. An. Da Acad. Bras. De Cienc. 2007, 79, 593–616. [Google Scholar] [CrossRef] [PubMed]
Samples | Donkey | Horse | Mule |
---|---|---|---|
Depth | 4 ≤ depth ≤ 50 | 4 ≤ depth ≤ 50 | 4 ≤ depth ≤ 50 |
Heter. SNPs | 1,996,879 | 3,387,403 | 21,771,865 |
Homo. SNPs | 21,822,176 | 1,625,000 | 1,654,376 |
Total SNPs | 23,819,055 | 5,012,403 | 23,426,241 |
%SNP | 0.950115 | 0.199939 | 0.934446 |
% Heterozygosity | 0.0797 | 0.135 | 0.868 |
Transitions | 16,302,515 | 3,386,154 | 16,029,003 |
Transversions | 7,516,540 | 1,626,249 | 7,397,238 |
Ti/Tv (autosome) | 2.17 | 2.08 | 2.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Liu, Y.; Zhao, Y.; Li, B.; Bai, D.; Bou, G.; Zhang, X.; Du, M.; Wang, X.; Bou, T.; et al. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes 2022, 13, 2188. https://doi.org/10.3390/genes13122188
Ren X, Liu Y, Zhao Y, Li B, Bai D, Bou G, Zhang X, Du M, Wang X, Bou T, et al. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes. 2022; 13(12):2188. https://doi.org/10.3390/genes13122188
Chicago/Turabian StyleRen, Xiujuan, Yuanyi Liu, Yiping Zhao, Bei Li, Dongyi Bai, Gerelchimeg Bou, Xinzhuang Zhang, Ming Du, Xisheng Wang, Tugeqin Bou, and et al. 2022. "Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule" Genes 13, no. 12: 2188. https://doi.org/10.3390/genes13122188
APA StyleRen, X., Liu, Y., Zhao, Y., Li, B., Bai, D., Bou, G., Zhang, X., Du, M., Wang, X., Bou, T., Shen, Y., & Dugarjaviin, M. (2022). Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes, 13(12), 2188. https://doi.org/10.3390/genes13122188