ABCA1 C69T Gene Polymorphism Association with Dysglycemia in Saudi Prediabetic Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Diagnosing Diabetes, Prediabetes and Dyslipidemia
2.3. General Biochemical Testing
2.4. Genetic Analysis
2.4.1. Isolation of DNA
2.4.2. TaqMan Genotyping Assays
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diabetes Country Profiles, Saudi Arabia. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 1 February 2022).
- Norris, S.L.; Kansagara, D.; Bougatsos, C.; Nygren, P.; Fu, R. Screening for Type 2 Diabetes Mellitus: Update of 2003 Systematic Evidence Review for the U.S. Preventive Services Task Force; Agency for Health care Research and Quality: Rockville, MD, USA, 2008. [Google Scholar]
- Shaw, J.; Sicree, R.; Zimmet, P. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; International Diabetes Federation. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stino, A.M.; Smith, A.G. Peripheral neuropathy in prediabetes and the metabolic syndrome. J. Diabetes Investig. 2017, 8, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, M.I.; Klein, R.; Welborn, T.A.; Knuiman, M.W. Onset of NIDDM occurs at Least 4–7 yr Before Clinical Diagnosis. Diabetes Care 1992, 15, 815–819. [Google Scholar] [CrossRef]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Luan, J.; Hennings, S.; Wareham, N.J. Incidence of Type 2 diabetes in England and its association with baseline impaired fasting glucose: The Ely study 1990–2000. Diabet. Med. 2007, 24, 200–207. [Google Scholar] [CrossRef]
- Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B. Impaired Fasting Glucose and Impaired Glucose Tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Bahijri, S.M.; Jambi, H.A.; Al Raddadi, R.M.; Ferns, G.; Tuomilehto, J. The Prevalence of Diabetes and Prediabetes in the Adult Population of Jeddah, Saudi Arabia—A Community-Based Survey. PLoS ONE 2016, 11, e0152559. [Google Scholar] [CrossRef]
- Farbstein, D.; Levy, A.P. HDL dysfunction in diabetes: Causes and possible treatments. Expert Rev. Cardiovasc. Ther. 2012, 10, 353–361. [Google Scholar] [CrossRef]
- Barter, P.J. The Causes and Consequences of Low Levels of High Density Lipoproteins in Patients with Diabetes. Diabetes Metab. J. 2011, 35, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Beckman, J.A.; Creager, M.A.; Libby, P. Diabetes and Atherosclerosis: Epidemiology, pathophysiology, and management. JAMA 2002, 287, 2570–2581. [Google Scholar] [CrossRef]
- Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 150–159. [Google Scholar] [CrossRef]
- Lyssenko, V.; Almgren, P.; Anevski, D.; Orho-Melander, M.; Sjogren, M.; Saloranta, C.; Tuomi, T.; Groop, L.; Botnia Study, G. Genetic Prediction of Future Type 2 Diabetes. PLoS Med. 2005, 2, e345. [Google Scholar] [CrossRef]
- Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.W.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science 2007, 316, 1331–1336. [Google Scholar] [CrossRef]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef]
- Shim, S.-Y.; Yoon, H.-Y.; Yee, J.; Han, J.-M.; Gwak, H.-S. Association between ABCA1 Gene Polymorphisms and Plasma Lipid Concentration: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 883. [Google Scholar] [CrossRef]
- Lawn, R.M.; Wade, D.P.; Garvin, M.R.; Wang, X.; Schwartz, K.; Porter, J.G.; Seilhamer, J.J.; Vaughan, A.M.; Oram, J.F. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Investig. 1999, 104, R25–R31. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 2004, 88, 787–835. [Google Scholar] [CrossRef]
- Fitzgerald, M.L.; Morris, A.L.; Chroni, A.; Mendez, A.J.; Zannis, V.; Freeman, M.W. ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux. J. Lipid Res. 2004, 45, 287–294. [Google Scholar] [CrossRef]
- Sturek, J.M.; Castle, J.D.; Trace, A.P.; Page, L.C.; Castle, A.M.; Evans-Molina, C.; Parks, J.S.; Mirmira, R.G.; Hedrick, C.C. An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic β cells. J. Clin. Investig. 2010, 120, 2575–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Luo, Z.; Jia, A.; Yu, L.; Muhammad, I.; Zeng, W.; Song, Y. Associations of the ABCA1 gene polymorphisms with plasma lipid levels: A meta-analysis. Medicine 2018, 97, e13521. [Google Scholar] [CrossRef] [PubMed]
- Ergen, H.A.; Zeybek, Ü.; Gök, Ö.; Karaali, Z. Investigation of ABCA1 C69T polymorphism in patients with type 2 diabetes mellitus. Biochem. Med. 2012, 22, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.F.; Meigs, J.B.; Sullivan, L.; Fox, C.S.; Nathan, D.M.; D’Agostino, R.B., Sr. Prediction of Incident Diabetes Mellitus in Middle-aged Adults: The Framingham Offspring Study. Arch. Intern. Med. 2007, 167, 1068–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Matsuo, H.; Segawa, T.; Watanabe, S.; Kato, K.; Kameyama, T.; Yokoi, K.; Ichihara, S.; Metoki, N.; Yoshida, H.; et al. Assessment of genetic factors for type 2 diabetes mellitus. Int. J. Mol. Med. 2006, 18, 299–308. [Google Scholar] [CrossRef]
- Hasan, M.; Hosen, B.; Rahman, M.; Howlader, M.Z.H.; Kabir, Y. Association of ATP binding cassette transporter 1 (ABCA 1) gene polymorphism with type 2 diabetes mellitus (T2DM) in Bangladeshi population. Gene 2019, 688, 151–154. [Google Scholar] [CrossRef]
- Haghvirdizadeh, P.; Ramachandran, V.; Etemad, A.; Heidari, F.; Ghodsian, N.; Bin Ismail, N.; Ismail, P. Association of ATP-Binding Cassette Transporter A1 Gene Polymorphisms in Type 2 Diabetes Mellitus among Malaysians. J. Diabetes Res. 2015, 2015, 289846. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Cheng, L.; Jia, R.; Yao, H.; Wu, H.; Shen, Y.; Zhang, Y.; Hao, P.; Zhang, Z. ATP-binding cassette sub-family a member1 gene mutation improves lipid metabolic abnormalities in diabetes mellitus. Lipids Health Dis. 2019, 18, 103. [Google Scholar] [CrossRef] [Green Version]
- Acuña-Alonzo, V.; Flores-Dorantes, T.; Kruit, J.K.; Villarreal-Molina, T.; Arellano-Campos, O.; Hünemeier, T.; Moreno-Estrada, A.; Ortiz-López, M.G.; Villamil-Ramírez, H.; León-Mimila, P.; et al. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum. Mol. Genet. 2010, 19, 2877–2885. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Salinas, C.A.; Canizales-Quinteros, S.; Rojas, R.; Mehta, R.; Molina, T.V.; Arellano-Campos, O.; Riba, L.; Gómez-Pérez, F.J.; Tusié-Luna, M.T. Hypoalphalipoproteinemia in populations of Native American ancestry: An opportunity to assess the interaction of genes and the environment. Curr. Opin. Lipidol. 2009, 20, 92–97. [Google Scholar] [CrossRef]
- Kruit, J.K.; Wijesekara, N.; Fox, J.E.M.; Dai, X.-Q.; Brunham, L.R.; Searle, G.J.; Morgan, G.P.; Costin, A.J.; Tang, R.; Bhattacharjee, A.; et al. Islet Cholesterol Accumulation Due to Loss of ABCA1 Leads to Impaired Exocytosis of Insulin Granules. Diabetes 2011, 60, 3186–3196. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Qu, M.S.; Zhang, P.; Chattopadhyay, S.; Gregg, E.W.; Albright, A.; Hopkins, D.; Pronk, N.P. Economic Evaluation of Combined Diet and Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at Increased Risk: A Systematic Review for the Community Preventive Services Task Force. Ann. Intern. Med. 2015, 163, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, K.K.; Khan, I.A.; Al-Daghri, N.M.; Munshi, A.; Sharma, V.; Mohammed, A.K.; Wani, K.A.; Al-Sheikh, Y.A.; Al-Nbaheen, M.S.; Ansari, M.G.A.; et al. ABCA1 C69T gene polymorphism and risk of type 2 diabetes mellitus in a Saudi population. J. Biosci. 2013, 38, 893–897. [Google Scholar] [CrossRef]
- Tipton, E. Stratified Sampling Using Cluster Analysis: A sample selection strategy for improved generalizations from experiments. Evaluation Rev. 2013, 37, 109–139. [Google Scholar] [CrossRef]
- Bahijri, S.; Al-Raddadi, R.; Ajabnoor, G.; Jambi, H.; Al Ahmadi, J.; Borai, A.; Barengo, N.C.; Tuomilehto, J. Dysglycemia risk score in Saudi Arabia: A tool to identify people at high future risk of developing type 2 diabetes. J. Diabetes Investig. 2020, 11, 844–855. [Google Scholar] [CrossRef] [Green Version]
- Phillips, L.S.; Ziemer, D.C.; Kolm, P.; Weintraub, W.S.; Vaccarino, V.; Rhee, M.K.; Chatterjee, R.; Narayan, K.M.V.; Koch, D.D. Glucose challenge test screening for prediabetes and undiagnosed diabetes. Diabetologia 2009, 52, 1798–1807. [Google Scholar] [CrossRef] [Green Version]
- Pareek, M.; Bhatt, D.L.; Nielsen, M.L.; Jagannathan, R.; Eriksson, K.-F.; Nilsson, P.M.; Bergman, M.; Olsen, M.H. Enhanced Predictive Capability of a 1-Hour Oral Glucose Tolerance Test: A Prospective Population-Based Cohort Study. Diabetes Care 2018, 41, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Lee, M.H.; Song, Y.; Yee, J.; Song, G.; Gwak, H.S. ABCA1 69C>T Polymorphism and the Risk of Type 2 Diabetes Mellitus: A Systematic Review and Updated Meta-Analysis. Front. Endocrinol. 2021, 12, 639524. [Google Scholar] [CrossRef]
- Vergeer, M.; Brunham, L.R.; Koetsveld, J.; Kruit, J.K.; Verchere, C.B.; Kastelein, J.J.; Hayden, M.R.; Stroes, E.S. Carriers of Loss-of-Function Mutations in ABCA1 Display Pancreatic β-Cell Dysfunction. Diabetes Care 2010, 33, 869–874. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P. Diabetes: A look to the future. Lancet Diabetes Endocrinol. 2014, 2, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Na, W.; Chung, B.; Sohn, C. A Relationship between Dietary Patterns and Dyslipidemia in Urban-dwelling Middle-Aged Korean Men: Using Korean Genome and Epidemiology Study (KoGES). Clin. Nutr. Res. 2019, 8, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enani, S.; Bahijri, S.; Malibary, M.; Jambi, H.; ElDakhakhny, B.; Al-Ahmadi, J.; Al Raddadi, R.; Ajabnoor, G.; Boraie, A.; Tuomilehto, J. The Association between Dyslipidemia, Dietary Habits and Other Lifestyle Indicators among Nondiabetic Attendees of Primary Health Care Centers in Jeddah, Saudi Arabia. Nutrients 2020, 12, 2441. [Google Scholar] [CrossRef] [PubMed]
CC (n=74) | TT (n=292) | CT (n=284) | |
---|---|---|---|
Gender | |||
Male n (n%) | 38 (51.4) | 157 (53.8) | 142 (50.0) |
Female n (n%) | 36 (48.6) | 135 (46.2) | 142 (50.0) |
Weight, kg mean (SD) | 71.4 (14.3) | 74.9 (18.2) | 75.3 (18.2) |
BMI mean (SD) | 26.6 (5.04) | 27.6 (6.26) | 28 (6.15) |
Fat, % mean (SD) | 32.6 (11.3) | 32.9 (13.2) | 34.6 (11.3) |
NC, cm mean (SD) | 36 (4.05) | 36.8 (5.13) | 36.6 (6.76) |
WC, cm mean (SD) | 91.1 (13.8) | 92.5 (15.9) | 93 (15.8) |
HC, cm mean (SD) | 104 (12) | 106 (14) | 106 (14) |
WC: HC mean (SD) | 0.88 (0.09) | 0.85 (0.16) | 0.85 (0.16) |
SBP mean (SD) | 118 (19) | 116 (16) | 117 (15) |
DBP mean (SD) | 72 (12) | 72(12) | 73 (12) |
Genotypes | n | Dysglycemia n (%) | Dyslipidemia n (%) |
---|---|---|---|
CC | 74 | 12 (16.2) | 39 (52.7) |
TT | 292 | 68 (23.3) | 171 (58.6) |
CT | 284 | 73 (25.7) | 177 (62.1) |
CC + TT | 366 | 80 (19.8) | 210 (55.7) |
CC + CT | 358 | 85 (21) | 216 (57.4) |
TT + CT | 576 | 141 (24.5) | 348 (60.4) |
CC (n = 74) | TT (n = 292) | CT (n = 284) | CC vs. TT p-Value a | CC vs. CT p-Value a | TT vs. CT p-Value a | p-Value b | |
---|---|---|---|---|---|---|---|
HbA1c % | 5.27 (0.55) | 5.24 (0.46) | 5.28 (0.52) | 0.7 a2 | 0.816 a2 | 0.317 a2 | 0.606 b2 |
FPG | 4.28 (0.87) | 4.48 (1.05) | 4.49 (0.93) | 0.009a2 | 0.009a2 | 0.942 a2 | 0.022b2 |
PG (1 h) | 6.26 (1.88) | 6.78 (2.13) | 6.8 (2.19) | 0.042a2 | 0.049a2 | 0.927 a2 | 0.107 b2 |
TC (mmol/L) | 4.94 (0.95) | 4.78 (0.94) | 4.85 (0.95) | 0.194 a2 | 0.730 a2 | 0.224 a2 | 0.314 b2 |
HDL-c (mmol/L) | 1.35 (0.26) | 1.35 (0.28) | 1.33 (0.29) | 0.88 a2 | 0.364 a2 | 0.241 a2 | 0.43 b2 |
TG (mmol/L) | 1.36 (0.92) | 1.21 (0.77) | 1.37 (1.02) | 0.398 a2 | 0.844 a2 | 0.11 a2 | 0.262 b2 |
LDL (mmol/L) | 3.31 (0.86) | 3.2 (0.84) | 3.25 (0.86) | 0.334 a2 | 0.818 a2 | 0.265 a2 | 0.437 b2 |
LDL:HDL | 2.56 (0.9) | 2.46 (0.76) | 2.56 (0.87) | 0.732 a1 | 0.785 a1 | 0.300 a1 | 0.59 b1 |
Normal | Abnormal | Unadjusted OR (95% CI) | Adjusted for Age, BMI and Gender OR (95% CI) | |
---|---|---|---|---|
Dysglycemia | ||||
CC | 62 (83.8) | 12 (16.2) | reference | reference |
TT | 224 (76.7) | 68 (23.3) | 1.788 (0.912, 3.504) | 1.39 (0.683, 2.828) |
CT | 221 (74.3) | 73 (25.7) | 1.568 (0.799, 3.081) | 1.638 (0.807, 3.325) |
FPG | ||||
CC | 70 (94.6) | 4 (5.4) | reference | reference |
TT | 266 (93) | 20 (7) | 1.316 (0.436, 3.974) | 1.047 (0.338, 3.24) |
CT | 259 (92.2) | 22 (7.8) | 1.486 (0.496, 4.455) | 1.202 (0.392, 3.692) |
PG (1 h) | ||||
CC | 57 (81.4) | 13 (18.6) | reference | reference |
TT | 193 (69.4) | 85 (30.6) | 1.931 (1.004, 3.715) | 1.815 (0.923, 3.57) |
CT | 198 (73.9) | 70 (26.1) | 1.55 (0.8, 3.003) | 1.463 (0.738, 2.899) |
HbA1C (%) | ||||
CC | 65 (90.3) | 7 (9.7) | reference | reference |
TT | 243 (88) | 33 (12) | 1.261 (0.533, 2.981) | 1.047 (0.429, 2.558) |
CT | 232 (84.4) | 43 (15.6) | 1.721 (0.739, 4.006) | 1.458 (0.429, 2.558) |
Normal | Abnormal | UnadjustedOR (95% CI) | Adjusted for Age, BMI and Gender OR (95% CI) | |
---|---|---|---|---|
Dyslipidemia | ||||
CC | 35 (47.3) | 39 (52.7) | reference | reference |
TT | 121 (41.4) | 171 (58.6) | 1.268 (0.76, 2.117) | 1.176 (0.691, 2.001) |
CT | 108 (37.9) | 177 (62.1) | 1.471 (0.879, 2.462) | 1.349 (0.79, 2.303) |
TC | ||||
CC | 50 (67.6) | 24 (32.4) | reference | reference |
TT | 191 (67) | 94 (33) | 1.025 (0.594, 1.77) | 0.943 (0.537, 1.657) |
CT | 187 (66.3) | 95 (33.7) | 1.058 (0.613, 1.77) | 0.98 (0.558, 1.721) |
LDL-c | ||||
CC | 44 (62.2) | 30 (37.8) | reference | reference |
TT | 180 (61.1) | 105 (38.9) | 1.048 (0.619, 1.775) | 0.792 (0.465, 1.351) |
CT | 163 (58.9) | 118 (41.4) | 1.145 (0.676, 1.939) | 0.997 (0.586, 1.697) |
TG | ||||
CC | 60 (81.1) | 14 (18.9) | reference | reference |
TT | 235 (82.5) | 50 (17.5) | 0.912 (0.473, 1.759) | 0.749 (0.377, 1.491) |
CT | 213 (75.9) | 68 (24.1) | 1.362 (0.716, 2.589) | 1.194 (0.609, 2.339) |
HDL-c | ||||
CC | 63 (81.1) | 11 (18.9) | reference | reference |
TT | 226 (76.8) | 59 (23.2) | 1.292 (0.679, 2.458) | 1.233 (0.643, 2.365) |
CT | 211 (73) | 70 (27) | 1.581 (0.835, 2.994) | 1.495 (0.783, 2.854) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajabnoor, G.M.A.; Bahijri, S.M.; Alrashidi, W.; Enani, S.M.; Alamoudi, A.A.; Al Sheikh, L.; Eldakhakhny, B. ABCA1 C69T Gene Polymorphism Association with Dysglycemia in Saudi Prediabetic Adults. Genes 2022, 13, 2277. https://doi.org/10.3390/genes13122277
Ajabnoor GMA, Bahijri SM, Alrashidi W, Enani SM, Alamoudi AA, Al Sheikh L, Eldakhakhny B. ABCA1 C69T Gene Polymorphism Association with Dysglycemia in Saudi Prediabetic Adults. Genes. 2022; 13(12):2277. https://doi.org/10.3390/genes13122277
Chicago/Turabian StyleAjabnoor, Ghada M. A., Suhad M. Bahijri, Wafa Alrashidi, Sumia Mohammad Enani, Aliaa A. Alamoudi, Lubna Al Sheikh, and Basmah Eldakhakhny. 2022. "ABCA1 C69T Gene Polymorphism Association with Dysglycemia in Saudi Prediabetic Adults" Genes 13, no. 12: 2277. https://doi.org/10.3390/genes13122277
APA StyleAjabnoor, G. M. A., Bahijri, S. M., Alrashidi, W., Enani, S. M., Alamoudi, A. A., Al Sheikh, L., & Eldakhakhny, B. (2022). ABCA1 C69T Gene Polymorphism Association with Dysglycemia in Saudi Prediabetic Adults. Genes, 13(12), 2277. https://doi.org/10.3390/genes13122277