CELO Fiber1 Knob Is a Promising Candidate to Modify the Tropism of Adenoviral Vectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Viruses, Plasmids and Oligonucleotides
2.2. Construction of Adenoviral Plasmids
2.3. Virus Rescue, Purification, Titration and Identification
2.4. Gene Transduction Assay
2.5. Infection Blocking Experiment
2.6. Plaque Forming Assay
2.7. One-Step Growth Curve
2.8. Detection of Virus Genome in 293 Cells
3. Results
3.1. Construction of CELO Fiber1 Knob-Pseudotyped Adenoviruses
3.2. CELO Fiber1 Knob-Pseudotyped FAdV-4 Transduced Human Adherent Cell Lines Efficiently
3.3. F2CF1K-CG Bound to 293 Cells in a Manner Different from HAdV5-CG
3.4. The Viral Genome Did Not Replicate in FAdV-4 Virus Infected 293 Cells
3.5. The Amplification of F2CF1K-CG in Chicken LMH Cells
3.6. Modification of HAdV-41 Short Fiber with CELO Fiber1 Knob
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Benko, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarria, M.; Hess, M.; Jones, M.S.; Kajan, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J. Gen. Virol. 2022, 103, 001721. [Google Scholar] [CrossRef] [PubMed]
- Crystal, R.G. Adenovirus: The first effective in vivo gene delivery vector. Hum. Gene Ther. 2014, 25, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.; Nagasato, M.; Yoshida, T.; Aoki, K. Recent advances in genetic modification of adenovirus vectors for cancer treatment. Cancer Sci. 2017, 108, 831–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fougeroux, C.; Holst, P.J. Future Prospects for the Development of Cost-Effective Adenovirus Vaccines. Int. J. Mol. Sci. 2017, 18, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepanenko, A.A.; Chekhonin, V.P. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res. 2018, 257, 40–51. [Google Scholar] [CrossRef]
- Yoon, A.R.; Hong, J.; Kim, S.W.; Yun, C.O. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert. Opin. Drug Deliv. 2016, 13, 843–858. [Google Scholar] [CrossRef]
- Fausther-Bovendo, H.; Kobinger, G.P. Pre-existing immunity against Ad vectors: Humoral, cellular, and innate response, what’s important? Hum. Vaccine Immunother. 2014, 10, 2875–2884. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; Del Rio, C.; et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372, 1881–1893. [Google Scholar] [CrossRef] [Green Version]
- Mennechet, F.J.D.; Paris, O.; Ouoba, A.R.; Salazar Arenas, S.; Sirima, S.B.; Takoudjou Dzomo, G.R.; Diarra, A.; Traore, I.T.; Kania, D.; Eichholz, K.; et al. A review of 65 years of human adenovirus seroprevalence. Expert. Rev. Vaccines 2019, 18, 597–613. [Google Scholar] [CrossRef]
- Yang, W.X.; Zou, X.H.; Jiang, S.Y.; Lu, N.N.; Han, M.; Zhao, J.H.; Guo, X.J.; Zhao, S.C.; Lu, Z.Z. Prevalence of serum neutralizing antibodies to adenovirus type 5 (Ad5) and 41 (Ad41) in children is associated with age and sanitary conditions. Vaccine 2016, 34, 5579–5586. [Google Scholar] [CrossRef]
- Abbink, P.; Kirilova, M.; Boyd, M.; Mercado, N.; Li, Z.; Nityanandam, R.; Nanayakkara, O.; Peterson, R.; Larocca, R.A.; Aid, M.; et al. Rapid Cloning of Novel Rhesus Adenoviral Vaccine Vectors. J. Virol. 2018, 92, e01924-01917. [Google Scholar] [CrossRef] [Green Version]
- Dakin, R.S.; Parker, A.L.; Delles, C.; Nicklin, S.A.; Baker, A.H. Efficient transduction of primary vascular cells by the rare adenovirus serotype 49 vector. Hum. Gene Ther. 2015, 26, 312–319. [Google Scholar] [CrossRef]
- Lopez-Gordo, E.; Podgorski, I.I.; Downes, N.; Alemany, R. Circumventing antivector immunity: Potential use of nonhuman adenoviral vectors. Hum. Gene Ther. 2014, 25, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Michou, A.I.; Lehrmann, H.; Saltik, M.; Cotten, M. Mutational analysis of the avian adenovirus CELO, which provides a basis for gene delivery vectors. J. Virol. 1999, 73, 1399–1410. [Google Scholar] [CrossRef] [Green Version]
- Majhen, D. Human adenovirus type 26 basic biology and its usage as vaccine vector. Rev. Med. Virol. 2022, 32, e2338. [Google Scholar] [CrossRef]
- McFerran, J.B.; Adair, B.M. Avian adenoviruses—A review. Avian Pathol. 1977, 6, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.H.; Bi, Z.X.; Guo, X.J.; Zhang, Z.; Zhao, Y.; Wang, M.; Zhu, Y.L.; Jie, H.Y.; Yu, Y.; Hung, T.; et al. ☆DNA assembly technique simplifies the construction of infectious clone of fowl adenovirus. J. Virol. Methods 2018, 257, 85–92. [Google Scholar] [CrossRef]
- Yan, B.; Zou, X.; Liu, X.; Zhao, J.; Zhang, W.; Guo, X.; Wang, M.; Lv, Y.; Lu, Z. User-Friendly Reverse Genetics System for Modification of the Right End of Fowl Adenovirus 4 Genome. Viruses 2020, 12, 301. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Rong, Y.; Guo, X.; Hou, W.; Yan, B.; Hung, T.; Lu, Z. Fiber1, but not fiber2, is the essential fiber gene for fowl adenovirus 4 (FAdV-4). J. Gen. Virol. 2021, 102, 001559. [Google Scholar] [CrossRef]
- Liu, X.; Zou, X.; Zhang, W.; Guo, X.; Wang, M.; Lv, Y.; Hung, T.; Lu, Z. No Genus-Specific Gene Is Essential for the Replication of Fowl Adenovirus 4 in Chicken LMH Cells. Microbiol. Spectr. 2022, 10, e0047022. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, X.; Yin, F.; Zou, X.; Hou, W.; Lu, Z. Fiber modifications enable fowl adenovirus 4 vectors to transduce human cells. J. Gene Med. 2021, 23, e3368. [Google Scholar] [CrossRef]
- Koivunen, E.; Wang, B.; Ruoslahti, E. Phage libraries displaying cyclic peptides with different ring sizes: Ligand specificities of the RGD-directed integrins. Biotechnology 1995, 13, 265–270. [Google Scholar] [CrossRef]
- Yin, R.; Zheng, H.; Xi, T.; Xu, H.M. Effect of RGD-4C position is more important than disulfide bonds on antiangiogenic activity of RGD-4C modified endostatin derived synthetic polypeptide. Bioconjugate Chem. 2010, 21, 1142–1147. [Google Scholar] [CrossRef]
- Guardado-Calvo, P.; Llamas-Saiz, A.L.; Fox, G.C.; Langlois, P.; van Raaij, M.J. Structure of the C-terminal head domain of the fowl adenovirus type 1 long fiber. J. Gen. Virol. 2007, 88, 2407–2416. [Google Scholar] [CrossRef] [PubMed]
- El Bakkouri, M.; Seiradake, E.; Cusack, S.; Ruigrok, R.W.; Schoehn, G. Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre. Virology 2008, 378, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.Z.; Zou, X.H.; Lastinger, K.; Williams, A.; Qu, J.G.; Estes, D.M. Enhanced growth of recombinant human adenovirus type 41 (HAdV-41) carrying ADP gene. Virus Res. 2013, 176, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.H.; Xiao, X.; Chen, D.L.; Li, Z.L.; Song, J.D.; Wang, M.; Qu, J.G.; Lu, Z.Z.; Hung, T. An improved HAdV-41 E1B55K-expressing 293 cell line for packaging fastidious adenovirus. J. Virol. Methods 2011, 175, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sun, Y.; Chen, J.; Zou, X.; Hou, W.; Tan, W.; Hung, T.; Lu, Z. Restriction-Assembly: A Solution to Construct Novel Adenovirus Vector. Viruses 2022, 14, 546. [Google Scholar] [CrossRef]
- Guo, X.; Mei, L.; Yan, B.; Zou, X.; Hung, T.; Lu, Z. Site-directed modification of adenoviral vector with combined DNA assembly and restriction-ligation cloning. J. Biotechnol. 2020, 307, 193–201. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Z.; Zhang, X.; Guo, X.; Mei, L.; Zou, X.; Zhong, Y.; Wang, M.; Hung, T. Single Plasmid-Based, Upgradable, and Backward-Compatible Adenoviral Vector Systems. Hum. Gene Ther. 2019, 30, 777–791. [Google Scholar] [CrossRef]
- Schagen, F.H.; Rademaker, H.J.; Rabelink, M.J.; van Ormondt, H.; Fallaux, F.J.; van der Eb, A.J.; Hoeben, R.C. Ammonium sulphate precipitation of recombinant adenovirus from culture medium: An easy method to increase the total virus yield. Gene Ther. 2000, 7, 1570–1574. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.K.; Nawrocki, D.K.; Isopi, L.A.; Williams, D.M.; Casimiro, D.R.; Chin, S.; Chen, M.; Zhu, D.M.; Shiver, J.W.; Volkin, D.B. Development of stable liquid formulations for adenovirus-based vaccines. J. Pharm. Sci. 2004, 93, 2458–2475. [Google Scholar] [CrossRef]
- Renteria, S.S.; Clemens, C.C.; Croyle, M.A. Development of a nasal adenovirus-based vaccine: Effect of concentration and formulation on adenovirus stability and infectious titer during actuation from two delivery devices. Vaccine 2010, 28, 2137–2148. [Google Scholar] [CrossRef]
- Davis, A.R.; Wivel, N.A.; Palladino, J.L.; Tao, L.; Wilson, J.M. Construction of adenoviral vectors. Methods Mol. Biol. 2000, 135, 515–523. [Google Scholar] [CrossRef]
- Murakami, P.; McCaman, M.T. Quantitation of adenovirus DNA and virus particles with the PicoGreen fluorescent Dye. Anal. Biochem. 1999, 274, 283–288. [Google Scholar] [CrossRef]
- Chen, D.L.; Dong, L.X.; Li, M.; Guo, X.J.; Wang, M.; Liu, X.F.; Lu, Z.Z.; Hung, T. Construction of an infectious clone of human adenovirus type 41. Arch. Virol. 2012, 157, 1313–1321. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Baer, A.; Kehn-Hall, K. Viral concentration determination through plaque assays: Using traditional and novel overlay systems. J. Vis. Exp. 2014, 93, e52065. [Google Scholar] [CrossRef]
- Luo, W.; Yang, H.; Rathbun, K.; Pau, C.P.; Ou, C.Y. Detection of human immunodeficiency virus type 1 DNA in dried blood spots by a duplex real-time PCR assay. J. Clin. Microbiol. 2005, 43, 1851–1857. [Google Scholar] [CrossRef] [Green Version]
- Graham, F.L.; Smiley, J.; Russell, W.C.; Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 1977, 36, 59–74. [Google Scholar] [CrossRef]
- Roelvink, P.W.; Lizonova, A.; Lee, J.G.; Li, Y.; Bergelson, J.M.; Finberg, R.W.; Brough, D.E.; Kovesdi, I.; Wickham, T.J. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J. Virol. 1998, 72, 7909–7915. [Google Scholar] [CrossRef] [Green Version]
- Arnberg, N. Adenovirus receptors: Implications for targeting of viral vectors. Trends Pharmacol. Sci. 2012, 33, 442–448. [Google Scholar] [CrossRef]
- Tan, P.K.; Michou, A.I.; Bergelson, J.M.; Cotten, M. Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins. J. Gen. Virol. 2001, 82, 1465–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.D.; Liu, X.L.; Chen, D.L.; Zou, X.H.; Wang, M.; Qu, J.G.; Lu, Z.Z.; Hung, T. Human adenovirus type 41 possesses different amount of short and long fibers in the virion. Virology 2012, 432, 336–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.Z.; Zou, X.H.; Dong, L.X.; Qu, J.G.; Song, J.D.; Wang, M.; Guo, L.; Hung, T. Novel recombinant adenovirus type 41 vector and its biological properties. J. Gene Med. 2009, 11, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Sun, X.; Ye, X.; Feng, Y.; Wang, J.; Zheng, X.; Liu, X.; Yi, C.; Hao, M.; Wang, Q.; et al. Hexon and fiber of adenovirus type 14 and 55 are major targets of neutralizing antibody but only fiber-specific antibody contributes to cross-neutralizing activity. Virology 2018, 518, 272–283. [Google Scholar] [CrossRef]
- Bradley, R.R.; Lynch, D.M.; Iampietro, M.J.; Borducchi, E.N.; Barouch, D.H. Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. J. Virol. 2012, 86, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Medkour, H.; Amona, I.; Akiana, J.; Davoust, B.; Bitam, I.; Levasseur, A.; Tall, M.L.; Diatta, G.; Sokhna, C.; Hernandez-Aguilar, R.A.; et al. Adenovirus Infections in African Humans and Wild Non-Human Primates: Great Diversity and Cross-Species Transmission. Viruses 2020, 12, 657. [Google Scholar] [CrossRef]
Fragment | Primername | Sequence | Template | Product (bp) |
---|---|---|---|---|
F2-AvrII | 2206FAV4F2-CF1K1 | cttacggtct ccgccaatgg ccttgggctg aagtacgaca ct | pMD-FAV4FS | 103 |
2206FAV4F2-CF1K2 | gtgtggaact tcccccccct ccgaccacgg tta | |||
CF1K | 2206FAV4F2-CF1K3 | gagggggggg aagttccaca cccgaggtg | CELO genomic DNA | 587 |
2206FAV4F2-CF1K4 | gggatcgaag aagttagtac ccgaggagtt c | |||
T-KpnI | 2206FAV4F2-CF1K5 | gaactcctcg ggtactaact tcttcgatcc c | CELO genomic DNA | 114 |
2206FAV4F2-CF1K6 | ggacagctgt agagtcattg atagtacccc agataagtaa acg | |||
F2-HindIII | 2206FAV4F2-CF1K7 | ggtactatca atgactctac agctgtccag cggcct | pMD-FAV4FS | 153 |
2206FAV4F2-CF1K8 | gattggacgc gggaacaaag gagag | |||
EG-SwaI | 2207F2CF1KEGf | cgtcctttcg ttacagatct tcct | pKFAV4F1IJR-EG | 2126 |
2207F2CF1KEGr | cggtggatcg gatatcttat ctaga | |||
GFP-MluI | 2208MluI-GFP1 | gtcagatccg ctagagatct gctacgcgtg ccaccatggt gagcaagg | pKFAV4S-F2CF1K-CG | 790 |
2208MluI-GFP2 | tctagatccg gtggatcgga tacgcgttag agtccggact tgtacagctc | |||
Ad41f-Kan | 2208Ad41f-kan1 | ctaccacaga aatgtccata ttatttaaat aaaacatcag gggctgagg | pKAd41CMV-MluI | |
2208Ad41f-kan2 | aaataaaaca tcaggggctg aggtttaaac gtatactggc ttaactatg | |||
2208Ad41f-kan3 | actttaatta aaggggagaa gttccctgag gtttaaacgc gcgcaaactg | 2695 | ||
2208Ad41f-kan4 | ttaaggtaag ctttattaat cagataactt taattaaagg ggagaagttc | 2747 | ||
SF-PacI | 2208Ad41SF-CF1K1 | ctcagggaac ttctcccctt taat | pKAd41CMV-MluI | 919 |
2208Ad41SF-CF1K2 | aggtggccac agtgagggat ggtacacttc gag | |||
S-CF1K | 2208Ad41SF-CF1K3 | atccctcact gtggccacct atcactgcg | CELO genomic DNA | 655 |
2208Ad41SF-CF1K4 | gtagcaaaat acagctcatt gatagtaccc cagataagta aac | |||
SF-BglII | 2208Ad41SF-CF1K5 | gtactatcaa tgagctgtat tttgctacat aactgaacaa t | pKAd41CMV-MluI | 333 |
2208Ad41SF-CF1K6 | cttccacgct agcatctgaa gaaag | |||
GFP-frag | 2008GFPf | gacaaccact acctgagcac cc | Virus genomic DNA | 126 |
2008GFPr | cttgtacagc tcgtccatgc c | |||
2008GFPprobe | HEX-tccgccctga gcaaagaccc caac-BHQ1 |
Virus Name | Fiber Modification | Promoter of Transgene | Physical Titer (×1011 vp/mL) | Infectivity Titer (×109 IU/mL) | Particle-to-IU Ratio |
---|---|---|---|---|---|
FAdV4-CG | None | CMV promoter | 35 | 8.4 | 420 |
F1IJR-CG | Insert RGD4C peptide in FAdV-4 fiber1 IJ loop | CMV promoter | 6.6 | 1.3 | 520 |
F2CF1K-CG | Replace FAdV-4 fiber2 knob with CELO fiber1 knob | CMV promoter | 10 | 25 | 40 |
F2CF1K-EG | Replace FAdV-4 fiber2 knob with CELO fiber1 knob | Human EF1a promoter | 19 | 39 | 48 |
HAdV41-CG | None | CMV promoter | 0.52 | 0.30 | 180 |
HAdV41-CF1K-CG | Replace HAdV41 short fiber knob with CELO fiber1 knob | CMV promoter | 1.8 | 1.2 | 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zou, X.; Guo, X.; Yang, C.; Hung, T.; Lu, Z. CELO Fiber1 Knob Is a Promising Candidate to Modify the Tropism of Adenoviral Vectors. Genes 2022, 13, 2316. https://doi.org/10.3390/genes13122316
Sun Y, Zou X, Guo X, Yang C, Hung T, Lu Z. CELO Fiber1 Knob Is a Promising Candidate to Modify the Tropism of Adenoviral Vectors. Genes. 2022; 13(12):2316. https://doi.org/10.3390/genes13122316
Chicago/Turabian StyleSun, Yangyang, Xiaohui Zou, Xiaojuan Guo, Chunlei Yang, Tao Hung, and Zhuozhuang Lu. 2022. "CELO Fiber1 Knob Is a Promising Candidate to Modify the Tropism of Adenoviral Vectors" Genes 13, no. 12: 2316. https://doi.org/10.3390/genes13122316
APA StyleSun, Y., Zou, X., Guo, X., Yang, C., Hung, T., & Lu, Z. (2022). CELO Fiber1 Knob Is a Promising Candidate to Modify the Tropism of Adenoviral Vectors. Genes, 13(12), 2316. https://doi.org/10.3390/genes13122316