A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers
Abstract
:1. Introduction
2. Roles of MiRNAs in Cystic Diseases
2.1. Polycystic Ovarian Syndrome
2.2. Polycystic Kidney Disease
2.3. Pancreatic Cyst Tumors
Disease | miRNA | Target | Biological Mechanism | Source | Reference |
---|---|---|---|---|---|
PCOS | miR-145 ↓ | IRS1 | Cell survival, DNA synthesis, proliferation | Human GCs from aspirated follicular fluid | [35] |
miR-126-5p ↓ | Klotho gene | Apoptosis, proliferation, autophagy | Human GCs and rat ovarian tissue | [38,39] | |
miR-29a-5p ↓ | |||||
miR-93 ↑ | CDKN1A | Proliferation, G1 to S transition, folliculogenesis | Human GCs | [36] | |
miR-221/miR-222 ↓ | p27/kip1 | Proliferation, follicle development, maturation abnormalities | Cumulus GCs | [33] | |
miR-438-5p ↑ | Notch 3, MAPK3 | Follicle formation and development, proliferation, apoptosis | |||
miR-483 ↓ | IGF1 | Cell viability, proliferation, cell cycle arrest | Ovarian cortex tissue and KGN | [40] | |
miR-222 ↑ | P13k-Akt, MAPK, Toll-like receptors | Cell cycle, metastasis, apoptosis, endocrine pathways | Serum | [41] | |
miR-30c ↑ | |||||
miR-146a ↑ | |||||
miR-592 ↓ | LHCGR, IGF-1 | Follicle development, cell viability, cell cycle progress, insulin resistance | Serum | [42] | |
miR-200b ↑ | ZEB1, ZEB2 | Reproduction, anovulation, obesity, insulin resistance | Serum of anovulatory women | [43,44] | |
miR-429 ↑ | |||||
miRNA-6767-5p ↓ | No reports | Immune system, cell cycle, hyperandrogenemia | Serum | [45] | |
let-7 ↓ | Activin receptor I, Smad2/3 | Follicle development, hyperandrogenism | Follicular fluid | [46,47,48,49] | |
miR-140 ↓ | No reports | ||||
miR-30a ↑ | FOXL-2 | Ovarian development, androgen production | |||
miR-381-3p, miR-199b-5p, miR-93-3p, miR-361-3p, miR-127-3p, miR-382-5p, miR-425-3p * | No reports | Follicular fluid from anovulatory women undergoing in vitro fertilization | [51] | ||
PKD | miR-17~92 cluster ↑ | PKD1, PKD2, HNF-1β | Proliferation, disease progression | Mice kidney tissue | [60,61] |
miR-17 ↑ | PPARA PPARGC1A | Cyst proliferation, PKD progression | Mice PKD1-KO kidneys, PKD2-KO | [61,62] | |
miR-20b-5p ↓ | KLF12 | Cystogenesis | Mice kidney tissue, embryonic fibroblasts, and cell lines; human ADPKD cell lines | [63] | |
miR-106-5p ↓ | |||||
miR-214 ↑ | TLR4 | Cyst microenvironment | Mice PKD1-KO and PKD2-KO kidneys | [64] | |
miR-21 ↑ | PDCD4 | Apoptosis | Mice PKD1-KO and PKD2-KO kidneys | [66] | |
miR-25-3p ↑ | ATG14 | Renal and smooth muscle, proliferation | PKD mice kidney tissue | [67] | |
miR-193-3p ↓ | ERBB4 | Ligand induced-activated signaling | Epithelial cells from ADPKD human kidneys | [68] | |
miR-192 ↓ miR-194 ↓ | ZEB2 CDH2 | Cell adhesion, EMT processes | Renal cyst tissue from ADPKD patients | [2] | |
miR-182-5p ↑ | WASF2 | Actin cytoskeletal organization | Kidney samples from PKD1- and PKD2-deficient mice | [71] | |
DOCK1 | Lamellipodial protrusions | ||||
ITGA4 | Migratory events | ||||
PCTs | miR-100 ↓ | PLK1 | Cancer progression, proliferation | IPMNs tissue | [74] |
miR-342-3p ↓ | DNMT1 | PDAC progression | |||
miR-126 ↓ | KRAS IRS-1 | PI3K activation | |||
miR-145-5p * | OCT4 | Cancer cell stems properties | Blood from IPMNs patients | [75] | |
miR-355 * | |||||
miR-1260b * | SMAD4 | Key drivers in pancreatic carcinogenesis | |||
miR-4454 * | NF-kb | ||||
miR-200a ↓ | No reports | Epithelial-to-mesenchymal transformation, early metastasis | |||
miR-574-3p ↓ | No reports | Malignant IPMN status |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
miRNA | microRNA |
pri-mRNA | Primary miRNA |
DGCR8 | DiGeorge syndrome critical region 8 |
pre-miRNA | Precursor miRNA |
RISC | RNA-Induced Silencing complex |
AGO | Argonaute |
PCOS | Polycystic ovarian syndrome |
PKD | Polycystic kidney disease |
PCTs | Pancreatic cyst tumors |
GCs | Granulosa cells |
IRS1 | Insulin receptor substrate 1 |
MAPK | Mitogen-activated protein kinase |
IGF-1R | Insulin growth factor 1 |
Wnt1 | Wnt family member 1 |
DHEA | Dehydroepiandrosterone |
CDKN1A | Cyclin-dependent kinase inhibitor 1A |
cAMP | Cyclic adenosine 3′, 5′-monophosphate |
PKA | Protein kinase A |
CCNB1 | Cyclin B1 |
CCND1 | Cyclin D1 |
CDK2 | Cyclin-dependent kinase 2 |
LHCGR | Luteinizing hormone/chorionic gonadotropin receptor |
IGF1R | IGF-1 receptor |
ZEB1 | Zinc Finger E-Box Binding Homeobox 1 |
ZEB2 | Zinc Finger E-Box Binding Homeobox 2 |
BMI | Body mass index |
SHBG | Sex hormone-binding globulin |
FAI | Free androgen index |
IRS-2 | Insulin receptor substrate proteins 2 GATA6 GATA-binding factor 6 |
CCs | Cumulus cells |
RUNX2 | Runt-related transcription factor 2 |
TGF-β | Transforming growth factor-β |
ERα | Estrogen receptor α |
IER3 | Immediate Early Response 3 |
AMH | Anti-mullerian hormone |
CRP | C-reactive protein |
ADPKD | Autosomal dominant PKD |
ARPKD | Autosomal recessive PKD |
GANAB | Glucosidase II α subunit |
PC1 | Polycystin 1 |
PC2 | Polycystin 2 |
RIF | Renal interstitial fibrosis |
HNF-1β | Hepatocyte nuclear factor 1β |
PPARA | Peroxisome proliferator-activated receptor α |
KGN | human granulosa-like tumor cell line |
KLF12 | Kruppel like factor 12 |
lncRNA | Long non-coding RNA |
TLR4 | Toll-like receptor 4 |
PDCD4 | Programmed cell death 4 |
CREB | cAMP response element-binding protein |
ATG14 | Autophagy related 14 |
PCNA | Proliferating Cell Nuclear Antigen |
MYH7B | Myosin Heavy Chain 7B |
CDH2 | Cadherin 2 |
EMT | Endothelial–mesenchymal transition |
DOCK1 | Dedicator of cytokinesis 1 |
ITGA4 | Integrin subunit α 4 |
ERBB4 | Erb-B2 receptor tyrosine kinase 4 |
IPMNs | Intraductal papillary mucinous neoplasms |
MCNs | Mucinous cystic neoplasms |
SCNs | Serious cystic neoplasms |
PDAC | Pancreatic ductal carcinoma |
PCF | Pancreatic cystic fluid |
PLK1 | Polo-like kinase 1 |
DNMT1 | DNA methyltransferase 1 |
PI3K | Phosphoinositide 3-kinase |
OCT4 | Octamer-binding transcription factor 4 |
SIP1 | Smad interacting protein |
References
- Tsvetanov, T. Residual Cysts: A Brief Literature Review. Int. J. Med. Dent. Sci. 2016, 5, 1341–1346. [Google Scholar] [CrossRef]
- Kim, D.Y.; Woo, Y.M.; Lee, S.; Oh, S.; Shin, Y.; Shin, J.-O.; Park, E.Y.; Ko, J.Y.; Lee, E.J.; Bok, J.; et al. Impact of miR-192 and miR-194 on cyst enlargement through EMT in autosomal dominant polycystic kidney disease. FASEB J. 2019, 33, 2870–2884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, T. Cysts: Causes, Types, and Treatments. Available online: https://www.medicalnewstoday.com/articles/ (accessed on 2 August 2021).
- Woo, Y.M.; Park, J.H. MicroRNA biomarkers in cystic diseases. BMB Rep. 2013, 46, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.X.; Li, X. Apoptosis in Polycystic Kidney Disease: From Pathogenesis to Treatment. In Polycystic Kidney Disease; Codon Publications: Brisbane, Australia, 2015; pp. 197–230. [Google Scholar]
- Leonhard, W.; Happe, H.; Peters, D.J. Variable Cyst Development in Autosomal Dominant Polycystic Kidney Disease: The Biologic Context. J. Am. Soc. Nephrol. 2016, 27, 3530–3538. [Google Scholar] [CrossRef]
- McCartney, C.R.; Marshall, J.C. Polycystic Ovary Syndrome. N. Engl. J. Med. 2016, 375, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Morreale, H. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Prim. 2018, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Strubl, S.; Torres, J.A.; Spindt, A.K.; Pellegrini, H.; Liebau, M.C.; Weimbs, T. STAT signaling in polycystic kidney disease. Cell. Signal. 2020, 72, 109639. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). What Is Polycystic Kidney Disease? Available online: https://www.niddk.nih.gov/health-information/kidney-disease/polycystic-kidney-disease/what-is-pkd (accessed on 19 August 2021).
- Elta, G.H.; Enestvedt, B.K.; Sauer, B.G.; Lennon, A.M. ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts. Am. J. Gastroenterol. 2018, 113, 464–479. [Google Scholar] [CrossRef]
- Ngamruengphong, S.; Lennon, A.M. Analysis of Pancreatic Cyst Fluid. Surg. Pathol. Clin. 2016, 9, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.; Vázquez, L.A.B.; Uribe, S.P.; Cárdenas, L.A.M.; Aguilar, M.F.R.; Chakraborty, S.; Sharma, A. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021, 187, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Licona-Vázquez, I.; Serrano-Cano, F.I.; Frías-Reid, N.; Pacheco-Dorantes, C.; Pathak, S.; Chakraborty, S.; Srivastava, A. Current insight into the functions of microRNAs in common human hair loss disorders: A mini review. Hum. Cell 2021, 34, 1040–1050. [Google Scholar] [CrossRef]
- Paul, S.; Vázquez, L.A.B.; Reyes-Pérez, P.R.; Estrada-Meza, C.; Alburquerque, R.A.A.; Pathak, S.; Banerjee, A.; Bandyopadhyay, A.; Chakraborty, S.; Srivastava, A. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res. 2021, 308, 198631. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.P.; McKay, W.; Edwards, J.S.; Swaminathan, R.; SantaCruz, K.S.; Mims, R.L.; Yonas, H.; Roitbak, T. MicroRNA Analysis of Human Stroke Brain Tissue Resected during Decompressive Craniectomy/Stroke-Ectomy Surgery. Genes 2021, 12, 1860. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Paul, S.; Ruiz-Manriquez, L.M.; Serrano, F.I.; Estrada-Meza, C.; Solorio-Diaz, K.A.; Srivastava, A. Human microRNAs in host–parasite interaction: A review. 3 Biotech 2020, 10, 510. [Google Scholar] [CrossRef]
- Vishnoi, A.; Rani, S. MiRNA Biogenesis and Regulation of Diseases: An Overview. Methods Mol. Biol. 2017, 1509, 1–10. [Google Scholar] [CrossRef]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.A.; Lenhof, H.-P.; et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Ruiz-Manriquez, L.M.; Ledesma-Pacheco, S.J.; Benavides-Aguilar, J.A.; Torres-Copado, A.; Morales-Rodríguez, J.I.; de Donato, M.; Srivastava, A. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch. Biochem. Biophys. 2021, 699, 108763. [Google Scholar] [CrossRef]
- Paul, S.; Vázquez, L.A.B.; Uribe, S.P.; Reyes-Pérez, P.R.; Sharma, A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020, 9, 1698. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.L.D.L.F.; Sharma, A.; Paul, S. Characterization of miRNAs from sardine (Sardina pilchardus Walbaum, 1792) and their tissue-specific expression analysis in brain and liver. 3 Biotech 2020, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. RNA 2018, 25, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Reyes, P.R.; Garza, B.S.; Sharma, A. MicroRNAs and Child Neuropsychiatric Disorders: A Brief Review. Neurochem. Res. 2020, 45, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.V.S.; Monteiro, V.V.S.; Navegantes-Lima, K.C.; Oliveira, A.L.; Gaspar, S.L.; Quadros, L.B.G.; Monteiro, M.C. MicroRNAs in cell cycle progression and proliferation: Molecular mechanisms and pathways. Non-Coding RNA Investig. 2018, 2, 28. [Google Scholar] [CrossRef]
- Krokker, L.; Patócs, A.; Butz, H. Essential Role of the 14q32 Encoded miRNAs in Endocrine Tumors. Genes 2021, 12, 698. [Google Scholar] [CrossRef]
- Chen, B.; Xu, P.; Wang, J.; Zhang, C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene 2019, 706, 91–96. [Google Scholar] [CrossRef]
- Concha, F.; Recabarren, S.E.; Pérez, F. Epigenética del síndrome de ovario poliquístico. Rev. Médica Chile 2017, 145, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Nandi, A.; Chen, Z.; Patel, R.; Poretsky, L. Polycystic Ovary Syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 123–147. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.-W.; Tong, X.-H.; Liu, Y.-S. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol. Cell. Endocrinol. 2015, 404, 26–36. [Google Scholar] [CrossRef]
- Halama, A.; Aye, M.M.; Dargham, S.; Kulinski, M.; Suhre, K.; Atkin, S.L. Metabolomics of Dynamic Changes in Insulin Resistance Before and After Exercise in PCOS. Front. Endocrinol. 2019, 10, 116. [Google Scholar] [CrossRef]
- Cai, G.; Ma, X.; Chen, B.; Huang, Y.; Liu, S.; Yang, H.; Zou, W. MicroRNA-145 Negatively Regulates Cell Proliferation through Targeting IRS1 in Isolated Ovarian Granulosa Cells from Patients With Polycystic Ovary Syndrome. Reprod. Sci. 2016, 24, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Huang, J.; Li, L.; Chen, Y.; Chen, X.; Zhao, X.; Yang, N. MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 2015, 100, E729–E738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Qian, Y.; Gao, L.; Cai, L.-B.; Cui, Y.-G.; Liu, J.-Y. Downregulated Expression of Peroxiredoxin 4 in Granulosa Cells from Polycystic Ovary Syndrome. PLoS ONE 2013, 8, e76460. [Google Scholar] [CrossRef]
- Mao, Z.; Fan, L.; Yu, Q.; Luo, S.; Wu, X.; Tang, J.; Kang, G.; Tang, L. Abnormality of Klotho Signaling Is Involved in Polycystic Ovary Syndrome. Reprod. Sci. 2017, 25, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, Y.; Fan, Z.; Ji, G.; Wang, M.; Lin, J.; Huang, S.; Meltzer, S.J. Klotho: A tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab. Investig. 2015, 96, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Song, Y.; Li, Y.; Zhao, D.; Ma, L.; Tan, L. miR-483 is Down-Regulated in Polycystic Ovarian Syndrome and Inhibits KGN Cell Proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med. Sci. Monit. 2016, 22, 3383–3393. [Google Scholar] [CrossRef] [Green Version]
- Long, W.; Zhao, C.; Ji, C.; Ding, H.; Cui, Y.; Guo, X.; Shen, R.; Liu, J. Characterization of Serum MicroRNAs Profile of PCOS and Identification of Novel Non-Invasive Biomarkers. Cell. Physiol. Biochem. 2014, 33, 1304–1315. [Google Scholar] [CrossRef]
- Song, J.; Luo, S.; Li, S.-W. miRNA-592 is downregulated and may target LHCGR in polycystic ovary syndrome patients. Reprod. Biol. 2015, 15, 229–237. [Google Scholar] [CrossRef]
- Eisenberg, I.; Nahmias, N.; Persky, M.N.; Greenfield, C.; Goldman-Wohl, D.; Hurwitz, A.; Haimov-Kochman, R.; Yagel, S.; Imbar, T. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil. Steril. 2017, 107, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Hasuwa, H.; Ueda, J.; Ikawa, M.; Okabe, M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 2013, 341, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Song, D.K.; Sung, Y.-A.; Lee, H. The Role of Serum MicroRNA-6767-5p as a Biomarker for the Diagnosis of Polycystic Ovary Syndrome. PLoS ONE 2016, 11, e0163756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalici, E.; Traver, S.; Mullet, T.; Molinari, N.; Ferrières, A.; Brunet, C.; Belloc, S.; Hamamah, S. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci. Rep. 2016, 6, 24976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-D.; Zhang, Y.-H.; Ling, Y.-H.; Liu, Y.; Cao, H.-G.; Yin, Z.-J.; Ding, J.-P.; Zhang, X.-R. Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus). BMC Genom. 2013, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Raja-Khan, N.; Urbanek, M.; Rodgers, R.J.; Legro, R.S. The Role of TGF-β in Polycystic Ovary Syndrome. Reprod. Sci. 2013, 21, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Eades, G.; Yao, Y.; Li, Q.; Zhou, Q. Estrogen Receptor α Signaling Regulates Breast Tumor-initiating Cells by Down-regulating miR-140 Which Targets the Transcription Factor SOX. J. Biol. Chem. 2012, 287, 41514–41522. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Du, T.; Huang, J.; Huang, L.-L.; Yang, D.-Z. Identification of Differentially Expressed MicroRNAs in the Ovary of Polycystic Ovary Syndrome with Hyperandrogenism and Insulin Resistance. Chin. Med. J. 2015, 128, 169–174. [Google Scholar] [CrossRef]
- Butler, A.E.; Ramachandran, V.; Hayat, S.; Dargham, S.; Cunningham, T.K.; Benurwar, M.; Sathyapalan, T.; Najafi-Shoushtari, S.H.; Atkin, S.L. Expression of microRNA in follicular fluid in women with and without PCOS. Sci. Rep. 2019, 9, 16306. [Google Scholar] [CrossRef]
- Ramalingam, H.; Yheskel, M.; Patel, V. Modulation of polycystic kidney disease by non-coding RNAs. Cell. Signal. 2020, 71, 109548. [Google Scholar] [CrossRef]
- Cowley, B.D., Jr. Polycystic Kidney Disease Progression: Learning from Europe. Am. J. Nephrol. 2018, 48, 306–307. [Google Scholar] [CrossRef]
- Pardo, P.M.; Martínez-Conejero, J.A.; Martín, J.; Simón, C.; Cervero, A. Combined Preimplantation Genetic Testing for Autosomal Dominant Polycystic Kidney Disease: Consequences for Embryos Available for Transfer. Genes 2020, 11, 692. [Google Scholar] [CrossRef]
- Torres, V.E.; Harris, P.C. Progress in the understanding of polycystic kidney disease. Nat. Rev. Nephrol. 2019, 15, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dang, Y.; Wang, Z.; Wang, H.; Pan, Y.; He, J. Identification of ADPKD-Related Genes and Pathways in Cells Overexpressing PKD2. Genes 2020, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.C.; Valencia, T.; Allerson, C.; Schairer, A.; Flaten, A.; Yheskel, M.; Kersjes, K.; Li, J.; Gatto, S.; Takhar, M.; et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat. Commun. 2019, 10, 4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, A.; Sweeney, W.E., Jr.; Pan, C.G.; Avner, E.D. Unique interstitial miRNA signature drives fibrosis in a murine model of autosomal dominant polycystic kidney disease. World J. Nephrol. 2018, 7, 108–116. [Google Scholar] [CrossRef]
- Szabó, T.; Orosz, P.; Balogh, E.; Jávorszky, E.; Máttyus, I.; Bereczki, C.; Maróti, Z.; Kalmár, T.; Szabó, A.J.; Reusz, G.; et al. Comprehensive genetic testing in children with a clinical diagnosis of ARPKD identifies phenocopies. Pediatr. Nephrol. 2018, 33, 1713–1721. [Google Scholar] [CrossRef]
- Patel, V.; Williams, D.; Hajarnis, S.; Hunter, R.; Pontoglio, M.; Somlo, S.; Igarashi, P. MiR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc. Natl. Acad. Sci. USA 2013, 110, 10765–10770. [Google Scholar] [CrossRef] [Green Version]
- Hajarnis, S.; Lakhia, R.; Yheskel, M.; Williams, D.; Sorourian, M.; Liu, X.; Aboudehen, K.; Zhang, S.; Kersjes, K.; Galasso, R.; et al. microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat. Commun. 2017, 8, 14395. [Google Scholar] [CrossRef]
- Yheskel, M.; Lakhia, R.; Cobo-Stark, P.; Flaten, A.; Patel, V. Anti-microRNA screen uncovers miR-17 family within miR-17~92 cluster as the primary driver of kidney cyst growth. Sci. Rep. 2019, 9, 1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.; Kim, D.Y.; Ko, J.Y.; Woo, Y.M.; Park, J.H. Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis. FASEB J. 2018, 32, 3574–3582. [Google Scholar] [CrossRef] [Green Version]
- Lakhia, R.; Yheskel, M.; Flaten, A.; Ramalingam, H.; Aboudehen, K.; Ferrè, S.; Biggers, L.; Mishra, A.; Chaney, C.; Wallace, D.P.; et al. Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression. JCI Insight 2020, 5, e133785. [Google Scholar] [CrossRef] [Green Version]
- Nowak, K.L.; Edelstein, C.L. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell. Signal. 2020, 68, 109518. [Google Scholar] [CrossRef] [PubMed]
- Lakhia, R.; Hajarnis, S.; Williams, D.; Aboudehen, K.; Yheskel, M.; Xing, C.; Hatley, M.; Torres, V.E.; Wallace, D.P.; Patel, V. MicroRNA-21 Aggravates Cyst Growth in a Model of Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2015, 27, 2319–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Kang, X.; Guo, P.; Shang, Y.; Du, R.; Wang, X.; Chen, L.; Yue, R.; Kong, F. miR-25-3p promotes proliferation and inhibits autophagy of renal cells in polycystic kidney mice by regulating ATG14-Beclin. Ren. Fail. 2020, 42, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Streets, A.J.; Magayr, T.A.; Huang, L.; Vergoz, L.; Rossetti, S.; Simms, R.J.; Harris, P.C.; Peters, D.J.M.; Ong, A. Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in ADPKD and a prognostic biomarker for disease progression. Am. J. Physiol. Physiol. 2017, 312, F577–F588. [Google Scholar] [CrossRef]
- Piperigkou, Z.; Karamanos, N.K. Dynamic Interplay between miRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem. Sci. 2019, 44, 1076–1088. [Google Scholar] [CrossRef]
- Zhang, Y.; Reif, G.; Wallace, D.P. Extracellular matrix, integrins, and focal adhesion signaling in polycystic kidney disease. Cell. Signal. 2020, 72, 109646. [Google Scholar] [CrossRef]
- Jinwoong, B.; Kim, D.Y.; Koo, N.J.; Kim, Y.-M.; Lee, S.; Ko, J.Y.; Shin, Y.; Kim, B.H.; Mun, H.; Choi, S.; et al. Profiling of miRNAs and target genes related to cystogenesis in ADPKD mouse models. Sci. Rep. 2017, 7, 14151. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.-Y.; Ye, Z. Pancreatic cystic tumors: An update. J. Pancreatol. 2018, 1, 2–18. [Google Scholar] [CrossRef]
- Lee, L.S.; Szafranska-Schwarzbach, A.E.; Wylie, D.C.; Doyle, L.A.; Bellizzi, A.; Kadiyala, V.; Suleiman, S.; Banks, P.A.; Andruss, B.F.; Conwell, D.L. Investigating MicroRNA Expression Profiles in Pancreatic Cystic Neoplasms. Clin. Transl. Gastroenterol. 2014, 5, e47. [Google Scholar] [CrossRef]
- Permuth-Wey, J.; Chen, Y.; Fisher, K.; McCarthy, S.; Qu, X.; Lloyd, M.C.; Kasprzak, A.; Fournier, M.; Williams, V.L.; Ghia, K.M.; et al. A Genome-Wide Investigation of MicroRNA Expression Identifies Biologically-Meaningful MicroRNAs That Distinguish between High-Risk and Low-Risk Intraductal Papillary Mucinous Neoplasms of the Pancreas. PLoS ONE 2015, 10, e0116869. [Google Scholar] [CrossRef]
- Permuth-Wey, J.; Chen, D.-T.; Fulp, W.J.; Yoder, S.J.; Zhang, Y.; Georgeades, C.; Husain, K.; Centeno, B.A.; Magliocco, A.M.; Coppola, D.; et al. Plasma MicroRNAs as Novel Biomarkers for Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Cancer Prev. Res. 2015, 8, 826–834. [Google Scholar] [CrossRef] [Green Version]
- de Palma, F.D.E.; Raia, V.; Kroemer, G.; Maiuri, M.C. The Multifaceted Roles of MicroRNAs in Cystic Fibrosis. Diagnostics 2020, 10, 1102. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, E.; Neveu, B.; Kostantin, E.; Tsongalis, G.J.; de Guire, V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. Ejifcc 2019, 30, 114–127. [Google Scholar]
- Saini, V.; Dawar, R.; Suneja, S.; Gangopadhyay, S.; Kaur, C. Can microRNA become next-generation tools in molecular diagnostics and therapeutics? A systematic review. Egypt. J. Med. Hum. Genet. 2021, 22, 4. [Google Scholar] [CrossRef]
- van der Ree, M.H.; van der Meer, A.J.; van Nuenen, A.C.; de Bruijne, J.; Ottosen, S.; Janssen, H.L.; Kootstra, N.A.; Reesink, H.W. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 2016, 43, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Campbell, F.; Han, K.; Theodore, D.; Deeg, M.; Huang, M.; Hamatake, R.; Lahiri, S.; Chen, S.; Horvath, G.; et al. Randomized clinical trials towards a single-visit cure for chronic hepatitis C: Oral GSK2878175 and injectable RG-101 in chronic hepatitis C patients and long-acting injectable GSK2878175 in healthy participants. J. Viral Hepat. 2020, 27, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Kang, Y.-K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.-L.; Kim, T.-Y.; et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef]
- Hanna, J.; Hossain, G.S.; Kocerha, J. The Potential for microRNA Therapeutics and Clinical Research. Front. Genet. 2019, 10, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.-S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res. 2021, 28, 127–138. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Manriquez, L.M.; Ledesma Pacheco, S.J.; Medina-Gomez, D.; Uriostegui-Pena, A.G.; Estrada-Meza, C.; Bandyopadhyay, A.; Pathak, S.; Banerjee, A.; Chakraborty, S.; Srivastava, A.; et al. A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes 2022, 13, 191. https://doi.org/10.3390/genes13020191
Ruiz-Manriquez LM, Ledesma Pacheco SJ, Medina-Gomez D, Uriostegui-Pena AG, Estrada-Meza C, Bandyopadhyay A, Pathak S, Banerjee A, Chakraborty S, Srivastava A, et al. A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes. 2022; 13(2):191. https://doi.org/10.3390/genes13020191
Chicago/Turabian StyleRuiz-Manriquez, Luis M., Schoenstatt Janin Ledesma Pacheco, Daniel Medina-Gomez, Andrea G. Uriostegui-Pena, Carolina Estrada-Meza, Anindya Bandyopadhyay, Surajit Pathak, Antara Banerjee, Samik Chakraborty, Aashish Srivastava, and et al. 2022. "A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers" Genes 13, no. 2: 191. https://doi.org/10.3390/genes13020191
APA StyleRuiz-Manriquez, L. M., Ledesma Pacheco, S. J., Medina-Gomez, D., Uriostegui-Pena, A. G., Estrada-Meza, C., Bandyopadhyay, A., Pathak, S., Banerjee, A., Chakraborty, S., Srivastava, A., & Paul, S. (2022). A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes, 13(2), 191. https://doi.org/10.3390/genes13020191