Molecularly Guided Drug Repurposing for Cholangiocarcinoma: An Integrative Bioinformatic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Pre-Processing
2.2. Survival Analysis
2.3. Unsupervised Hierarchical Clustering
2.4. Differential Gene Expression Analysis
2.5. Pathway Enrichment Analysis
2.6. Pharmacogenomic Connectivity Analysis
2.7. Drug–Gene Network Analysis
3. Results
3.1. Deriving the Mortality-Associated Immune-Related Genes for CCA
3.2. CCA Immune-Oncogenic Gene Signature Involved in Various Cancer Signaling Pathways
3.3. Drug Repurposing for the High-Risk CCA Patients
3.4. Pharmacogenomic Connectivity and the CCA Immune-Oncogenic Gene Signature
3.5. Validation Analysis Using a Pooled CCA Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Loeuillard, E.; Conboy, C.B.; Gores, G.J.; Rizvi, S. Immunobiology of cholangiocarcinoma. JHEP Rep. 2019, 1, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Paillet, J.; Kroemer, G.; Pol, J.G. Immune contexture of cholangiocarcinoma. Curr. Opin. Gastroenterol. 2020, 36, 70–76. [Google Scholar] [CrossRef]
- Venkatraman, S.; Meller, J.; Hongeng, S.; Tohtong, R.; Chutipongtanate, S. Transcriptional Regulation of Cancer Immune Checkpoints: Emerging Strategies for Immunotherapy. Vaccines 2020, 8, 735. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Oh, D.Y.; Ueno, M.; Malka, D.; Chung, H.C.; Nagrial, A.; Kelley, R.K.; Ros, W.; Italiano, A.; Nakagawa, K.; et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int. J. Cancer 2020, 147, 2190–2198. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, K.; Liu, Y.; Wu, Z.; Dai, H.; Yang, Q.; Wang, Y.; Jia, H.; Han, W. Phase I Study of Chimeric Antigen Receptor-Modified T Cells in Patients with EGFR-Positive Advanced Biliary Tract Cancers. Clin. Cancer Res. 2018, 24, 1277–1286. [Google Scholar] [CrossRef] [Green Version]
- Marin, J.J.; Macias, R.I. Understanding drug resistance mechanisms in cholangiocarcinoma: Assisting the clinical development of investigational drugs. Expert Opin. Investig. Drugs 2021, 30, 675–679. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Venkatraman, S.; Janvilisri, T.; Suthiphongchai, T.; Jitkaew, S.; Sripa, J.; Tohtong, R. RTK25: A Comprehensive Molecular Profiling Strategy in Cholangiocarcinoma Using an Integrated Bioinformatics Approach. Pharmaceuticals 2021, 14, 898. [Google Scholar] [CrossRef]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830.e14. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilarczyk, M.; Kouril, M.; Shamsaei, B.; Vasiliauskas, J.; Niu, W.; Mahi, N.; Zhang, L.; Clark, N.; Ren, Y.; White, S.; et al. Connecting omics signatures of diseases, drugs, and mechanisms of actions with iLINCS. bioRxiv 2020, 826271. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452.e17. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2008, 36, D684–D688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bu, X.; Wang, H.; Zhu, Y.; Geng, Y.; Nihira, N.T.; Tan, Y.; Ci, Y.; Wu, F.; Dai, X.; et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 2018, 553, 91–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef]
- Briukhovetska, D.; Dorr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef]
- Nieto-Rementeria, N.; Perez-Yarza, G.; Boyano, M.D.; Apraiz, A.; Izu, R.; Diaz-Perez, J.L.; Asumendi, A. Bexarotene activates the p53/p73 pathway in human cutaneous T-cell lymphoma. Br. J. Dermatol. 2009, 160, 519–526. [Google Scholar] [CrossRef]
- Wu, J.; Yang, L.; Shan, Y.; Cai, C.; Wang, S.; Zhang, H. AURKA promotes cell migration and invasion of head and neck squamous cell carcinoma through regulation of the AURKA/Akt/FAK signaling pathway. Oncol. Lett. 2016, 11, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
- Kessler, B.E.; Sharma, V.; Zhou, Q.; Jing, X.; Pike, L.A.; Kerege, A.A.; Sams, S.B.; Schweppe, R.E. FAK Expression, Not Kinase Activity, Is a Key Mediator of Thyroid Tumorigenesis and Protumorigenic Processes. Mol. Cancer Res. 2016, 14, 869–882. [Google Scholar] [CrossRef] [Green Version]
- Sasai, K.; Treekitkarnmongkol, W.; Kai, K.; Katayama, H.; Sen, S. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer. Front. Oncol. 2016, 6, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, S.; Zacchigna, L.; Adorno, M.; Soligo, S.; Volpin, D.; Piccolo, S.; Cordenonsi, M. Convergence of p53 and TGF-beta signaling networks. Cancer Lett. 2004, 213, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Wang, M.; Shen, Z.; Zhu, J. A new immune signature for survival prediction and immune checkpoint molecules in lung adenocarcinoma. J. Transl. Med. 2020, 18, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Wang, Q.; Fu, C.; Jiang, C.; Ma, S. Exploration of the immune-related signature and immune infiltration analysis for breast ductal and lobular carcinoma. J. Transl. Med. 2019, 7, 730. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef]
- Nicolini, A.; Carpi, A. Immune manipulation of advanced breast cancer: An interpretative model of the relationship between immune system and tumor cell biology. Med. Res. Rev. 2009, 29, 436–471. [Google Scholar] [CrossRef]
- Li, J.; Stanger, B.Z. Cell Cycle Regulation Meets Tumor Immunosuppression. Trends Immunol. 2020, 41, 859–863. [Google Scholar] [CrossRef]
- Balli, D.; Rech, A.J.; Stanger, B.Z.; Vonderheide, R.H. Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin. Cancer Res. 2017, 23, 3129–3138. [Google Scholar] [CrossRef] [Green Version]
- Suman, S.; Mishra, A. Network analysis revealed aurora kinase dysregulation in five gynecological types of cancer. Oncol. Lett. 2018, 15, 1125–1132. [Google Scholar] [CrossRef] [Green Version]
- Vilgelm, A.E.; Pawlikowski, J.S.; Liu, Y.; Hawkins, O.E.; Davis, T.A.; Smith, J.; Weller, K.P.; Horton, L.W.; McClain, C.M.; Ayers, G.D.; et al. Mdm2 and aurora kinase a inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res. 2015, 75, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.; Cumpian, A.M.; Caetano, M.S.; Ochoa, C.E.; De la Garza, M.M.; Lapid, D.J.; Mirabolfathinejad, S.G.; Dickey, B.F.; Zhou, Q.; Moghaddam, S.J. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol. Cancer 2013, 12, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschos, S.J.; Edington, H.D.; Land, S.R.; Rao, U.N.; Jukic, D.; Shipe-Spotloe, J.; Kirkwood, J.M. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J. Clin. Oncol. 2006, 24, 3164–3171. [Google Scholar] [CrossRef] [PubMed]
- Nam, A.R.; Kim, J.W.; Park, J.E.; Bang, J.H.; Jin, M.H.; Lee, K.H.; Kim, T.Y.; Han, S.W.; Im, S.A.; Kim, T.Y.; et al. Src as a Therapeutic Target in Biliary Tract Cancer. Mol. Cancer Ther. 2016, 15, 1515–1524. [Google Scholar] [CrossRef] [Green Version]
- Geisler, F.; Strazzabosco, M. Emerging roles of Notch signaling in liver disease. Hepatology 2015, 61, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Gurule, N.J.; Heasley, L.E. Linking tyrosine kinase inhibitor-mediated inflammation with normal epithelial cell homeostasis and tumor therapeutic responses. Cancer Drug Resist. 2018, 1, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; He, L.; Wang, X.; Lin, M.; Dai, J. Effects of dasatinib on CD8(+)T, Th1, and Treg cells in patients with chronic myeloid leukemia. J. Int. Med. Res. 2020, 48, 300060519877321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, L.; Hei, R.; Li, X.; Cai, H.; Wu, X.; Zheng, Q.; Cai, C. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 2021, 11, 1913–1935. [Google Scholar]
- Walsby, E.; Lazenby, M.; Pepper, C.; Burnett, A.K. The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine. Leukemia 2011, 25, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Sittithumcharee, G.; Suppramote, O.; Vaeteewoottacharn, K.; Sirisuksakun, C.; Jamnongsong, S.; Laphanuwat, P.; Suntiparpluacha, M.; Matha, A.; Chusorn, P.; Buraphat, P.; et al. Dependency of Cholangiocarcinoma on Cyclin D-Dependent Kinase Activity. Hepatology 2019, 70, 1614–1630. [Google Scholar] [CrossRef]
Perturbagen | Drug Class | Drug Target | Signature Gene | FDA-Approval/Clinical Trial Phase (Clinicaltrials.gov Identifier) |
---|---|---|---|---|
Bexarotene | RXR agonist | RXRA, RXRB, RXRG | MDM2 | Approved for skin manifestations of cutaneous T-cell lymphoma |
Cabozantinib | Tyrosine kinase inhibitor | KDR, MET, KIT, FLT3, TIE-2, RET, AXL | NA | Approved for hepatocellular carcinoma and advanced renal cell carcinoma Investigated as a monotherapy for cholangiocarcinoma after progression on first line and second line therapy (NCT01954745) |
Dasatinib | Tyrosine kinase inhibitor | ABL1, FYN, LCK, SRC, KIT, YES1, EPHA2, LYN, PDGFRB, BCR, HCK, FGR, FRK, BLK, SRMS | ABL1, FYN, LCK, SRC, FRK | Approval for chronic myeloid leukemia with Philadelphia chromosome-positive Investigated for isocitrate dehydrogenase (IDH)-mutant advanced intrahepatic cholangiocarcinoma (NCT02428855) |
Binimetinib (MEK162) | MEK inhibitor | MAP2K1, MAP2K2 | NA | Approved in combination with encorafenib for unresectable/metastatic melanoma with BRAF V600E or V600K variants |
Ibrutinib (PCI-32765) | BTK inhibitor | BTK | NA | Approved for B cell malignancies |
Mirdametinib (PD-0325901) | MEK inhibitor | MAP2K1, MAP2K2 | NA | Approved for neurofibromatosis type 1 |
Selumetinib | MEK inhibitor | MAP2K1, MAP2K2 | NA | Approved for neurofibromatosis type 1 Investigated for unresectable cholangiocarcinoma with Ras pathway activation (NCT00553332) |
Trametinib | MEK inhibitor | MAP2K1, MAP2K2 | NA | Approved for unresectable/metastatic malignant melanoma with BRAF V600E or V600K variants Investigated in combination with hydroxycholoroquine in KRAS mutated refractory cholangiocarcinoma (NCT04566133) |
Allitinib | Tyrosine kinase inhibitor | EGFR, ERBB2 | NA | Phase II (NCT04671303) |
AT-7519 | CDK inhibitor | CDK2, CDK1, CDK9, CDK4, CDK5, CDK6, CDK14, CDK11B, CDK8, CDK7, CDK3, CDK16, CDK17, CDK18, CDK13, CDK10, CDK20, CDK15, CDK19, CDK12 | NA | Phase I–phase II (NCT01183949, NCT02503709, NCT01652144, NCT01627054, NCT00390117) |
AZD4547 | FGFR inhibitor | FGFR1, FGFR2, FGFR3, FGFR4 | NA | Phase I/II-phase II/III (NCT04439240, NCT02965378, NCT02824133, NCT01824901, NCT01791985, NCT01213160) |
AZD-8330 | MEK inhibitor | MAP2K1, MAP2K2 | NA | Phase I (NCT00454090) |
Canertinib | pan-EGFR inhibitor | EGFR, ERBB2, ERBB4 | NA | Phase II (NCT00050830, NCT00051051, NCT00174356) |
CI-1040 | MEK inhibitor | MAP2K1, MAP2K2 | NA | Phase II (NCT00033384, NCT00034827) |
Triptolide (PG 490) | HSP70 inhibitor | NA | NA | Phase I–phase II (NCT03117920, NCT03129139) |
Pictilisib | pan-PI3K inhibitor | PIK3CG, PIK3CD, PIK3R2, PIK3R1, PIK3CA, PIK3CB, PIK3R5, PIK3R3 | NA | Phase I–phase II (NCT00975182, NCT00876122, NCT01740336, NCT02389842, NCT00876109, NCT00960960, NCT01493843) |
Pracinostat | HDAC inhibitor | HDAC | NA | Phase I–phase III (NCT01912274, NCT03151408, NCT03848754, NCT01112384, NCT01075308, NCT00741234) |
RO4987655 | MEK inhibitor | MAP2K1, MAP2K2 | NA | Phase I (NCT00817518) |
SNS-032 (BMS-387032) | CDK inhibitor | CDK2, CDK7, CDK9 | NA | Phase I (NCT00446342, NCT00292864) |
NVP-TAE226 (761437-28-9) | Phenylmorpholines | FAK, InsR, IGF-1R, ALK, MET | AURKA | No entry in clinical trials yet |
PF-573228 (869288-64-2) | Tyrosine kinase inhibitor | FAK, Pyk2, CDK1, CDK7, GSK-3β | SRC | No entry in clinical trials yet |
AZ628 | pan-Raf inhibitor | BRAF, RAF1 | NA | No entry in clinical trials yet |
CGP 60474 | CDK inhibitor | CDK1 | NA | No entry in clinical trials yet |
CHEMBL1242477 | NA | NA | NA | No entry in clinical trials yet |
Kitasamycin (CPD000469235) | NA | NA | NA | No entry in clinical trials yet |
EX-8678 | NA | NA | NA | No entry in clinical trials yet |
HG-14-10-04 | NA | NA | NA | No entry in clinical trials yet |
S+A19RC | NA | NA | NA | No entry in clinical trials yet |
WH-4-025 | Tyrosine kinase inhibitor | LCK, SRC, p38α, KDR | LCK, SRC | No entry in clinical trials yet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatraman, S.; Balasubramanian, B.; Pongchaikul, P.; Tohtong, R.; Chutipongtanate, S. Molecularly Guided Drug Repurposing for Cholangiocarcinoma: An Integrative Bioinformatic Approach. Genes 2022, 13, 271. https://doi.org/10.3390/genes13020271
Venkatraman S, Balasubramanian B, Pongchaikul P, Tohtong R, Chutipongtanate S. Molecularly Guided Drug Repurposing for Cholangiocarcinoma: An Integrative Bioinformatic Approach. Genes. 2022; 13(2):271. https://doi.org/10.3390/genes13020271
Chicago/Turabian StyleVenkatraman, Simran, Brinda Balasubramanian, Pisut Pongchaikul, Rutaiwan Tohtong, and Somchai Chutipongtanate. 2022. "Molecularly Guided Drug Repurposing for Cholangiocarcinoma: An Integrative Bioinformatic Approach" Genes 13, no. 2: 271. https://doi.org/10.3390/genes13020271
APA StyleVenkatraman, S., Balasubramanian, B., Pongchaikul, P., Tohtong, R., & Chutipongtanate, S. (2022). Molecularly Guided Drug Repurposing for Cholangiocarcinoma: An Integrative Bioinformatic Approach. Genes, 13(2), 271. https://doi.org/10.3390/genes13020271