Mediterranean Diet and Genetic Determinants of Obesity and Metabolic Syndrome in European Children and Adolescents
Abstract
:1. Introduction
2. Obesity and Metabolic Syndrome: Definitions and Reference Values for Risk Estimation
3. Mediterranean Diet Assessment
4. Genomics of Obesity and Metabolic Syndrome
5. Association between Mediterranean Diet and Body Composition and Metabolic Syndrome in Youth
6. The Gene-Mediterranean Diet Interaction Effect in Obesity and Metabolic Syndrome
Author | Outcome | Year | Country | Age Group | Study Design | Sample Size | Diet Assessment † | Genetic Input | Results |
---|---|---|---|---|---|---|---|---|---|
Wang, T. et al. [98] | Obesity | 2018 | US (European ancestry) | Adults. 30–55 yo | Prospective cohort study. 20 year follow-up | 14,046 (62.8% females) | FFQ. Traditional MDS (9-point score) | 77 obesity related SNP GRS | The beneficial effect of improved diet quality on weight management was particularly pronounced in people at high genetic risk for obesity. |
Roswall, N. et al. [94] | Obesity | 2014 | Multicentric: 5 European countries. | Adults. 47.6 ± 7.5 yo | Longitudinal. Median follow-up 6.8 years | 11,048 (55.1% females) | FFQ. Traditional MDS (18-point score) | 2 SNPs: FTOrs9939609 and TCF7L2rs7903146 | High MDS was associated with lower changes in WC and BMI, regardless of FTO and TCF7L2 risk alleles. In weight, the effect may depend on the TCF7L2rs7903146 variant (beneficial effect only in subjects with 1 or 2 risk alleles). |
Lowry, E. et al. [11] | MetS | 2018 | Canada (European ancestry) | Adults 60.7 ± 0.73 yo | Longitudinal. 1 year intervention | 159 (51.6% females) | 24 h recall. Mediterranean based Canadian Healthy eating Index. (Range 0–100) [99] | 2 SNPs: APOA5rs662799 and ADIPOQrs1501299 GRS | Participants carrying none of the risk alleles in the 2 SNPs (GRS = 0) showed the greatest reduction in MetS score during the intervention. |
Author | Outcome | Year | Country | Age Group | Study Design | Sample Size | Diet Assessment † | Genetic Input | Results |
---|---|---|---|---|---|---|---|---|---|
Baratali, L. et al. [101] | Obesity | 2021 | Switzerland | Adults. CS: 58.4 ± 10.6 yo PS: 58.0 ± 10.4 yo | Cross-sectional and prospective. 5.3 year follow-up | CS: 3033 PS: 2542 (CS: 53.2% females; PS: 54.7% females) | FFQ. 2 MDS: Traditional MDS I (8-point score) Swiss MDS II (9-point score) | 2 obesity GRSs based on 31 and 68 SNPs. | No gene-diet interaction was found for changes in obesity markers, suggesting that diet exerts the same effect irrespective of the genetic background of the participants. |
Wang, T. et al. [98] | Obesity | 2018 | US (European ancestry) | Adults. 30–55 yo | Prospective cohort study. 20 year follow-up | 14,046 (62.8% females) | FFQ. Traditional MDS (9-point score) | 77 obesity related SNP GRS | MD could not significantly attenuate the genetic association with increases in BMI and body weight. |
Livingstone, K.M. et al. [95] | Obesity | 2016 | Multicentric. 7 European countries | Adults. 40.4 ± 13.0 yo | RCT. 6 month follow-up | 1607 (58.0% females) | FFQ. PREDIMED MDS (14-point score) | 1 SNP: FTOrs9939609 | No evidence of interactions between FTO genotype and dietary intakes on BMI and WC were found. |
Corella, D. et al. [102] | Obesity | 2014 | Spain | Adults. 67.0 ± 6.2 yo | RCT. Median follow up 4.8 years | 7161 (57.4% females) | FFQ. PREDIMED MDS (14-point score) | 1 SNP: FAIM2rs7138803 | No statistically significant gene-diet interactions between MD and FAIM2rs7138803 were found in determining BMI. |
Corella, D. et al. [33] | Obesity | 2012 | Spain | Adults. 67.0 ± 6.2 yo | RCT. Median follow up 4.8 years | 7052 (57.3% females) | FFQ. PREDIMED MDS (14-point score) | 2 SNPs: MC4Rrs17782313 and FTOrs9939609 | Statistical and biological interactions with MD modulate the effects of FTO and MC4R polymorphisms on obesity. |
Razquin, C. et al. [96] | Obesity | 2010 | Spain | Adults. 55–80 yo | RCT. 3 year follow-up | 776 (54.9% females) | FFQ. Not specified | 1 SNP: FTOrs9939609 | After a nutritional intervention with MD, A-allele carriers had lower body weight gain than wild type subjects. |
Razquin, C. et al. [103] | Obesity | 2010 | Spain | Adults. 55–80 yo | RCT 3 year follow-up. MD + virgin olive oil | 737 (55% females) | FFQ. Not specified | 1 SNP: −174G/C on the IL6 gene | After a nutritional intervention with MD + olive oil, CC subjects for the −174G/C had the greatest reduction in body weight. |
Razquin, C. et al. [104] | Obesity | 2009 | Spain | Adults. 55–80 yo | RCT 3 year follow-up MD + virgin olive oil | 774 (59.3% females) | FFQ. Not specified | 1 SNP: Pro12Ala of the PPARγgene | After a nutritional intervention with MD, reduced WC was observed among the population studied, reversing the negative effect of the 12Ala allele carriers |
Coltell, O. et al. [105] | MetS | 2021 | Spain | Adults 67.0 ± 0.2 yo | Cross-sectional | 954 (63.5% females) | FFQ. Spanish short screener (14-point score) | GWAS identified OPCMLrs2917570 | If MD is low, the minor allele of the rs2917570 is associated with higher adiponectin concentration. However, when adherence to MD is high, the minor allele is associated with lower adiponectin concentration. * |
Coltell, O. et al. [106] | MetS | 2020 | Spain | Adults 65.1 ± 0.2 yo | Cross-sectional | 426 (56.5% females) | FFQ. PREDIMED PLUS MDS (17-point score) | 13 SNPs from GWAS in the ME1 gene in relation to serum omega- 3 PUFA | When MD adherence to is low, the minor allele is associated with an increase in serum omega-3 PUFA concentrations. If MD adherence is high, the minor allele is associated with a decrease in serum omega-3 PUFA concentrations. ** |
San Cristobal, R. et al. [107] | MetS | 2017 | Multicentric. 7 European countries | Adults. 40.8 ± 13.0 yo | RCT. 6 month follow-up. On-line | 1263 (57.1% females) | FFQ. PREDIMED MDS (14-point score) | 14 SNPs GRS of MetS related traits | Higher GRS may reduce MD adherence benefits on total cholesterol concentration. |
Corella, D. et al. [108] | MetS | 2016 | Spain | Adults. 66.9 ± 6.2 yo | RCT. Median follow up 4.8 years | 7098 (58.2% females) | FFQ. PREDIMED MDS (14-point score) | 1 SNP: CLOCKrs4580704 | The interaction between the SNP and MD did not reach the statistical significance and the heterogeneity by MD is not confirmed. |
Ortega-Azorín, C.S. et al. [109] | MetS | 2014 | Spain | Adults. 66.9 ± 6.2 yo | RCT. Median follow up 4.8 years | 7166 (58.1% females) | FFQ. PREDIMED MDS (14-point score) | 1 SNP: MLXIPLrs3812316 | MD enhances the triglyceride lowering effect of the MLXIPLrs3812316 variant. |
Corella, D. et al. [34] | MetS | 2013 | Spain | Adults. 67.0 ± 6.2 yo | RCT. Median follow up 4.8 years | 7018 (57.4% females) | FFQ. PREDIMED MDS (14-point score) | 1 SNP: TCF7L2rs7903146 | MD may reduce increased fasting glucose and lipids in TT individuals. |
Ortega-Azorín, C.S. et al. [97] | MetS | 2012 | Spain | Adults 66.9 ± 6.2 yo | RCT. Median follow up 4.8 years | 7052 (57.3% females) | FFQ. PREDIMED MDS (14-point score) | 2 SNPs: FTOrs9939609 and MC4Rrs17782313 | The FTOrs9939609 and the MC4R-rs17782313 association with T2DM depends on diet. High MD adherence counteracts the genetic predisposition. |
7. Evaluation of the Genomic Role in the Mediterranean Diet Impact: Children, Understudied Population
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rolland-Cachera, M.F. Childhood obesity: Current definitions and recommendations for their use. Pediatr. Obes. 2011, 6, 325–331. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Browne, N.T.; Snethen, J.A.; Greenberg, C.S.; Frenn, M.; Kilanowski, J.F.; Gance-Cleveland, B.; Burke, P.J.; Lewandowski, L. When Pandemics Collide: The Impact of COVID-19 on Childhood Obesity. J. Pediatr. Nurs. 2020, 56, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Fiechtner, L.; Vincenti, A.; Magenes, V.C.; De Giuseppe, R.; Manuelli, M.; Zuccotti, G.V.; Calcaterra, V. COVID-19 Pandemic as Risk Factors for Excessive Weight Gain in Pediatrics: The Role of Changes in Nutrition Behavior. A Narrative Review. Nutrients 2021, 13, 4255. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Owen, C.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2015, 17, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Olza, J.; Gil-Campos, M.; Leis, R.; Bueno, G.; Aguilera, C.; Valle, M.; Cañete, R.; Tojo, R.; Moreno, L.; Gil, A. Presence of the Metabolic Syndrome in Obese Children at Prepubertal Age. Ann. Nutr. Metab. 2011, 58, 343–350. [Google Scholar] [CrossRef]
- Börnhorst, C.; Russo, P.; Veidebaum, T.; Tornaritis, M.; Molnár, D.; Lissner, L.; Marild, S.; De Henauw, S.; Moreno, L.A.; Intemann, T.; et al. Metabolic status in children and its transitions during childhood and adolescence—The IDEFICS/I.Family study. Int. J. Epidemiol. 2019, 48, 1673–1683. [Google Scholar] [CrossRef]
- Weiss, R.; Caprio, S. The metabolic consequences of childhood obesity. Best Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 405–419. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents? an IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Follis, J.L.; Ngwa, J.S.; Smith, C.E.; Ahmad, S.; Tanaka, T.; Wojczynski, M.K.; Voortman, T.; Lemaitre, R.N.; Kristiansson, K.; et al. Gene × dietary pattern interactions in obesity: Analysis of up to 68 317 adults of European ancestry. Hum. Mol. Genet. 2015, 24, 4728–4738. [Google Scholar] [CrossRef] [Green Version]
- Lowry, D.E.; Fenwick, P.H.; Roke, K.; Jeejeebhoy, K.; Dhaliwal, R.; Brauer, P.; Royall, D.; Tremblay, A.; Klein, D.; Mutch, D.M. Variants in APOA5 and ADIPOQ Moderate Improvements in Metabolic Syndrome during a One-Year Lifestyle Intervention. Lifestyle Genom. 2018, 11, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Razquin, C.; Marti, A.; Martinez, J.A. Evidences on three relevant obesogenes: MC4R, FTO and PPAR γ. Approaches for personalized nutrition. Mol. Nutr. Food Res. 2010, 55, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Qi, L. Gene-Diet Interactions in Complex Disease: Current Findings and Relevance for Public Health. Curr. Nutr. Rep. 2012, 1, 222–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silventoinen, K.; Hasselbalch, A.L.; Lallukka, T.; Bogl, L.; Pietiläinen, K.H.; Heitmann, B.L.; Schousboe, K.; Rissanen, A.; Kyvik, K.O.; Sørensen, T.I.; et al. Modification effects of physical activity and protein intake on heritability of body size and composition. Am. J. Clin. Nutr. 2009, 90, 1096–1103. [Google Scholar] [CrossRef] [Green Version]
- Jacob, R.; Bertrand, C.; Llewellyn, C.; Couture, C.; Labonté, M.; Tremblay, A.; Bouchard, C.; Drapeau, V.; Pérusse, L. Dietary Mediators of the Genetic Susceptibility to Obesity—Results from the Quebec Family Study. J. Nutr. 2021, 152, 49–58. [Google Scholar] [CrossRef]
- Masip, G.; Foraita, R.; Silventoinen, K.; Adan, R.A.H.; Ahrens, W.; De Henauw, S.; Hebestreit, A.; Keski-Rahkonen, A.; Lissner, L.; Mehlig, K.; et al. The temporal relationship between parental concern of overeating and childhood obesity considering genetic susceptibility: Longitudinal results from the IDEFICS/I.Family study. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 1–11. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Ahluwalia, N.; Lassale, C.; Hercberg, S.; Fezeu, L.; Lairon, D. Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutr. Metab. Cardiovasc. Dis. 2012, 23, 677–683. [Google Scholar] [CrossRef]
- Funtikova, A.N.; Benítez-Arciniega, A.A.; Gomez, S.F.; Fitó, M.; Elosua, R.; Schröder, H. Mediterranean diet impact on changes in abdominal fat and 10-year incidence of abdominal obesity in a Spanish population. Br. J. Nutr. 2014, 111, 1481–1487. [Google Scholar] [CrossRef] [Green Version]
- Koloverou, E.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Georgousopoulou, E.N.; Grekas, A.; Christou, A.; Chatzigeorgiou, M.; Skoumas, I.N.; Tousoulis, D.; et al. Adherence to Mediterranean diet and 10-year incidence (2002-2012) of diabetes: Correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study. Diabetes/Metab. Res. Rev. 2015, 32, 73–81. [Google Scholar] [CrossRef]
- Cowell, O.R.; Mistry, N.; Deighton, K.; Matu, J.; Griffiths, A.; Minihane, A.M.; Mathers, J.C.; Shannon, O.M.; Siervo, M. Effects of a Mediterranean diet on blood pressure: A systematic review and meta-analysis of randomized controlled trials and observational studies. J. Hypertens. 2020, 39, 729–739. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). New WHO Studies: Europe Battles Childhood Obesity and Experts Confirm Breastfeeding Protects against Child Obesity. Available online: https://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/news/news/2019/4/new-who-studies-europe-battles-childhood-obesity-and-experts-confirm-breastfeeding-protects-against-child-obesity (accessed on 15 January 2022).
- Bravi, F.; Di Maso, M.; Eussen, S.; Agostoni, C.; Salvatori, G.; Profeti, C.; Tonetto, P.; Quitadamo, P.; Kazmierska, I.; Vacca, E.; et al. Dietary Patterns of Breastfeeding Mothers and Human Milk Composition: Data from the Italian MEDIDIET Study. Nutrients 2021, 13, 1722. [Google Scholar] [CrossRef]
- Sánchez, C.; Fente, C.; Barreiro, R.; López-Racamonde, O.; Cepeda, A.; Regal, P. Association between Breast Milk Mineral Content and Maternal Adherence to Healthy Dietary Patterns in Spain: A Transversal Study. Foods 2020, 9, 659. [Google Scholar] [CrossRef]
- Notario-Barandiaran, L.; Valera-Gran, D.; Gonzalez-Palacios, S.; Garcia-de-la-Hera, M.; Fernández-Barrés, S.; Pereda-Pereda, E.; Fernández-Somoano, A.; Guxens, M.; Iñiguez, C.; Romaguera, D.; et al. High adherence to a mediterranean diet at age 4 reduces overweight, obesity and abdominal obesity incidence in children at the age of 8. Int. J. Obes. 2020, 44, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Bacopoulou, F.; Landis, G.; Rentoumis, A.; Tsitsika, A.; Efthymiou, V. Mediterranean diet decreases adolescent waist circumference. Eur. J. Clin. Investig. 2017, 47, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-López, L.; Santiago-Díaz, G.; Nava-Hernández, J.; Muñoz-Torres, A.V.; Medina-Bravo, P.; Torres-Tamayo, M. Mediterranean-style diet reduces metabolic syndrome components in obese children and adolescents with obesity. BMC Pediatr. 2014, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D.R., Jr.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78 (Suppl. 3), 508S–513S. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Roman-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2013, 17, 2769–2782. [Google Scholar] [CrossRef] [Green Version]
- Iaccarino Idelson, P.; Scalfi, L.; Valerio, G. Adherence to the Mediterranean Diet in children and adolescents: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Ortega-Azorín, C.; Sorlí, J.V.; Covas, M.I.; Carrasco, P.; Salas-Salvadó, J.; Martínez-González, M.; Arós, F.; Lapetra, J.; Serra-Majem, L.; et al. Statistical and Biological Gene-Lifestyle Interactions of MC4R and FTO with Diet and Physical Activity on Obesity: New Effects on Alcohol Consumption. PLoS ONE 2012, 7, e52344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corella, D.; Carrasco, P.; Sorlí, J.V.; Estruch, R.; Rico-Sanz, J.; Martínez-González, M.; Salas-Salvadó, J.; Covas, M.I.; Coltell, O.; Arós, F.; et al. Mediterranean Diet Reduces the Adverse Effect of the TCF7L2-rs7903146 Polymorphism on Cardiovascular Risk Factors and Stroke Incidence. Diabetes Care 2013, 36, 3803–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef] [Green Version]
- Janssens, A.C.J.; Aulchenko, Y.S.; Elefante, S.; Borsboom, G.J.; Steyerberg, E.W.; van Duijn, C.M. Predictive testing for complex diseases using multiple genes: Fact or fiction? Genet. Med. 2006, 8, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Da-Silva, L.; Rêgo, C.; Pietrobelli, A. The Diet of Preschool Children in the Mediterranean Countries of the European Union: A Systematic Review. Int. J. Environ. Res. Public Health 2016, 13, 572. [Google Scholar] [CrossRef] [Green Version]
- Seral-Cortes, M.; Sabroso-Lasa, S.; Miguel-Etayo, D.; Gonzalez-Gross, M.; Gesteiro, E.; Molina-Hidalgo, C.; De Henauw, S.; Erhardt, É.; Censi, L.; Manios, Y. Interaction effect of the mediterranean diet and an obesity genetic risk score on adiposity and metabolic syndrome in adolescents: The HELENA study. Nutrients 2020, 12, 3841. [Google Scholar] [CrossRef]
- Martino, F.; Puddu, P.E.; Lamacchia, F.; Colantoni, C.; Zanoni, C.; Barillà, F.; Martino, E.; Angelico, F. Mediterranean diet and physical activity impact on metabolic syndrome among children and adolescents from Southern Italy: Contribution from the Calabrian Sierras Community Study (CSCS). Int. J. Cardiol. 2016, 225, 284–288. [Google Scholar] [CrossRef]
- Ojeda-Rodríguez, A.; Zazpe, I.; Morell-Azanza, L.; Chueca, M.J.; Azcona-Sanjulian, M.C.; Marti, A. Improved Diet Quality and Nutrient Adequacy in Children and Adolescents with Abdominal Obesity after a Lifestyle Intervention. Nutrients 2018, 10, 1500. [Google Scholar] [CrossRef] [Green Version]
- Sarría, A.; Moreno, L.; García-Llop, L.; Fleta, J.; Morellón, M.; Bueno, M. Body mass index, triceps skinfold and waist circumference in screening for adiposity in male children and adolescents. Acta Paediatr. 2001, 90, 387–392. [Google Scholar] [CrossRef]
- Moreno, L.A.; Blay, M.G.; Rodríguez, G.; Blay, V.A.; Mesana, M.I.; Olivares, J.L.; Fleta, J.; Sarría, A.; Bueno, M.; AVENA-Zaragoza Study Group. Screening Performances of the International Obesity Task Force Body Mass Index Cut-Off Values in Adolescents. J. Am. Coll. Nutr. 2006, 25, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bermejo, M.; Alcalá-Dávalos, L.; Pérez-Murillo, J.; Legidos-García, M.E.; Murillo-Llorente, M.T. Are the Growth Standards of the World Health Organization Valid for Spanish Children? The SONEV Study. Front. Pediatr. 2021, 9, 848. [Google Scholar] [CrossRef]
- Janssen, I.; Katzmarzyk, P.; Srinivasan, S.R.; Chen, W.; Malina, R.M.; Bouchard, C.; Berenson, G.S. Utility of Childhood BMI in the Prediction of Adulthood Disease: Comparison of National and International References. Obes. Res. 2005, 13, 1106–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaisar, R.; Karim, A. BMI status relative to international and national growth references among Pakistani school-age girls. BMC Pediatr. 2021, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; on the behalf of the Childhood Obesity Group of the Italian Society of Pediatric Endocrinology and Diabetology; Balsamo, A.; Baroni, M.G.; Brufani, C.; Forziato, C.; Grugni, G.; Licenziati, M.R.; Maffeis, C.; Del Giudice, E.M.; et al. Childhood obesity classification systems and cardiometabolic risk factors: A comparison of the Italian, World Health Organization and International Obesity Task Force references. Ital. J. Pediatr. 2017, 43, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, P.; Bedogni, G.; Moreno, L.A.; Goran, M.I.; Gutin, B.; Fox, K.R.; Peters, D.; Barbeau, P.; De Simone, M.; Pietrobelli, A. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int. J. Obes. 2005, 30, 23–30. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, H.D.; Ellis, S.M.; Cole, T.J. Central overweight and obesity in British youth aged 11-16 years: Cross sectional surveys of waist circumference. BMJ 2003, 326, 624. [Google Scholar] [CrossRef] [Green Version]
- Flemming, G.M.C.; Bussler, S.; Körner, A.; Kiess, W. Definition and early diagnosis of metabolic syndrome in children. J. Pediatr. Endocrinol. Metab. 2020, 33, 821–833. [Google Scholar] [CrossRef]
- Weiss, R.; Dziura, J.; Burgert, T.S.; Tamborlane, W.V.; Taksali, S.E.; Yeckel, C.W.; Allen, K.; Lopes, M.; Savoye, M.; Morrison, J.; et al. Obesity and the Metabolic Syndrome in Children and Adolescents. N. Engl. J. Med. 2004, 350, 2362–2374. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a Metabolic Syndrome Phenotype in Adolescents. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, C.J.; Janssen, I. Development of Age-Specific Adolescent Metabolic Syndrome Criteria That Are Linked to the Adult Treatment Panel III and International Diabetes Federation Criteria. J. Am. Coll. Cardiol. 2007, 49, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavnsbo, M.; Resaland, G.K.; Anderssen, S.A.; Steene-Johannessen, J.; Domazet, S.L.; Skrede, T.; Sardinha, L.; Kriemler, S.; Ekelund, U.; Andersen, L.B.; et al. Reference values for cardiometabolic risk scores in children and adolescents: Suggesting a common standard. Atherosclerosis 2018, 278, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrens, W.; Iacoviello, L.; Lissner, L.; Veidebaum, T.; Pohlabeln, H.; Pigeot, I.; Moreno, L.A.; Marild, S.; Molnar, D.; Siani, A.; et al. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38, S4–S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights From the predimed study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Vilarnau, C.; Stracker, D.M.; Funtikov, A.; Da Silva, R.; Estruch, R.; Bach-Faig, A. Worldwide adherence to Mediterranean Diet between 1960 and 2011. Eur. J. Clin. Nutr. 2018, 72, 83–91. [Google Scholar] [CrossRef]
- Farajian, P.; Risvas, G.; Karasouli, K.; Pounis, G.; Kastorini, C.M.; Panagiotakos, D.B.; Zampelas, A. Very high childhood obesity prevalence and low adherence rates to the Mediterranean diet in Greek children: The GRECO study. Atherosclerosis 2011, 217, 525–530. [Google Scholar] [CrossRef]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulou, A.; Orfanos, P.; Norat, T.; Bueno-De-Mesquita, B.; Ocké, M.C.; Peeters, P.H.; Van Der Schouw, Y.T.; Boeing, H.; Hoffmann, K.; Boffetta, P.; et al. Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ 2005, 330, 991. [Google Scholar] [CrossRef] [Green Version]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Ugarriza, R.; Cuenca-García, M.; Gonzalez-Gross, M.; Julián, C.; Bel-Serrat, S.; Moreno, L.A.; Breidenassel, C.; Kersting, M.; Arouca, A.B.; Michels, N.; et al. Relative validation of the adapted Mediterranean Diet Score for Adolescents by comparison with nutritional biomarkers and nutrient and food intakes: The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Public Health Nutr. 2019, 22, 2381–2397. [Google Scholar] [CrossRef] [PubMed]
- Tognon, G.; Hebestreit, A.; Lanfer, A.; Moreno, L.; Pala, V.; Siani, A.; Tornaritis, M.; De Henauw, S.; Veidebaum, T.; Molnár, D.; et al. Mediterranean diet, overweight and body composition in children from eight European countries: Cross-sectional and prospective results from the IDEFICS study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Tognon, G.; on behalf of the IDEFICS consortium; Moreno, L.A.; Mouratidou, T.; Veidebaum, T.; Molnár, D.; Russo, P.; Siani, A.; Akhandaf, Y.; Krogh, V.; et al. Adherence to a Mediterranean-like dietary pattern in children from eight European countries. The IDEFICS study. Int. J. Obes. 2014, 38, S108–S114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, L.F.; on behalf of the EFCOVAL Consortium; Lioret, S.; Brants, H.; Kaic-Rak, A.; de Boer, E.J.; Amiano, P.; Trolle, E. Recommendations for a trans-European dietary assessment method in children between 4 and 14 years. Eur. J. Clin. Nutr. 2011, 65, S58–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A New Statistical Method for Estimating the Usual Intake of Episodically Consumed Foods with Application to Their Distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [Green Version]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.; Frayling, T.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Yeo, G.S.H. The bigger picture of FTO—The first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 2014, 10, 51–61. [Google Scholar] [CrossRef]
- Hubáček, J.A.; Pikhart, H.; Peasey, A.; Kubínová, R.; Bobák, M. FTO Variant, Energy Intake, Physical Activity and Basal Metabolic Rate in Caucasians. The HAPIEE Study. Physiol. Res. 2011, 60, 175–183. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, H.; Zhou, M.; Wang, S.; Zhang, J.; Liao, L.; He, F. Common variant (rs9939609) in the FTO gene is associated with metabolic syndrome. Mol. Biol. Rep. 2012, 39, 6555–6561. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Chaffin, M.; Wade, K.H.; Zahid, S.; Brancale, J.; Xia, R.; Distefano, M.; Senol-Cosar, O.; Haas, M.E.; Bick, A.; et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell 2019, 177, 587–596.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradfield, J.P.; Vogelezang, S.; Felix, J.F.; Chesi, A.; Helgeland, Ø.; Horikoshi, M.; Karhunen, V.; Lowry, E.; Cousminer, D.L.; Ahluwalia, T.S.; et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum. Mol. Genet. 2019, 28, 3327–3338. [Google Scholar] [CrossRef]
- Alves, A.C.; De Silva, N.M.G.; Karhunen, V.; Sovio, U.; Das, S.; Taal, H.R.; Warrington, N.M.; Lewin, A.M.; Kaakinen, M.; Cousminer, D.L.; et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci. Adv. 2019, 5, eaaw3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seral-Cortes, M.; Sabroso-Lasa, S.; De Miguel-Etayo, P.; Gonzalez-Gross, M.; Gesteiro, E.; Molina-Hidalgo, C.; De Henauw, S.; Gottrand, F.; Mavrogianni, C.; Manios, Y.; et al. Development of a Genetic Risk Score to predict the risk of overweight and obesity in European adolescents from the HELENA study. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Henneman, P.; Aulchenko, Y.S.; Frants, R.R.; Zorkoltseva, I.V.; Zillikens, M.C.; Frolich, M.; Oostra, B.A.; van Dijk, K.W.; van Duijn, C.M. Genetic Architecture of Plasma Adiponectin Overlaps With the Genetics of Metabolic Syndrome–Related Traits. Diabetes Care 2010, 33, 908–913. [Google Scholar] [CrossRef] [Green Version]
- Monda, K.L.; North, K.E.; Hunt, S.C.; Rao, D.; Province, M.A.; Kraja, A.T. The Genetics of Obesity and the Metabolic Syndrome. Endocr. Metab. Immune Disord.-Drug Targets 2010, 10, 86–108. [Google Scholar] [CrossRef]
- Jeong, S.W.; Chung, M.; Park, S.-J.; Cho, S.B.; Hong, K.-W. Genome-Wide Association Study of Metabolic Syndrome in Koreans. Genom. Inform. 2014, 12, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhu, Y.; Zhang, D.; Zhang, D.; Zhou, D.; Zhou, D.; Li, Z.; Li, Z.; Li, Z.; Li, Z.; et al. Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: A multi-stage genome-wide association study. J. Cell. Mol. Med. 2017, 21, 1106–1116. [Google Scholar] [CrossRef]
- Kraja, A.T.; Vaidya, D.; Pankow, J.S.; Goodarzi, M.O.; Assimes, T.L.; Kullo, I.J.; Sovio, U.; Mathias, R.A.; Sun, Y.V.; Franceschini, N.; et al. A Bivariate Genome-Wide Approach to Metabolic Syndrome. Diabetes 2011, 60, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-S.; Kim, Y.; Park, T. New Common and Rare Variants Influencing Metabolic Syndrome and Its Individual Components in a Korean Population. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nagrani, R.; Foraita, R.; Gianfagna, F.; Iacoviello, L.; Marild, S.; Michels, N.; Molnár, D.; Moreno, L.; Russo, P.; Veidebaum, T.; et al. Common genetic variation in obesity, lipid transfer genes and risk of Metabolic Syndrome: Results from IDEFICS/I.Family study and meta-analysis. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Corella, D.; Coltell, O.; Sorlí, J.V.; Estruch, R.; Quiles, L.; Martínez-González, M.; Salas-Salvadó, J.; Castañer, O.; Arós, F.; Ortega-Calvo, M.; et al. Polymorphism of the Transcription Factor 7-Like 2 Gene (TCF7L2) Interacts with Obesity on Type-2 Diabetes in the PREDIMED Study Emphasizing the Heterogeneity of Genetic Variants in Type-2 Diabetes Risk Prediction: Time for Obesity-Specific Genetic Risk Scores. Nutrients 2016, 8, 793. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Ware, E.B.; Middha, P.; Beacher, L.; Kardia, S.L.R. Current Applications of Genetic Risk Scores to Cardiovascular Outcomes and Subclinical Phenotypes. Curr. Epidemiol. Rep. 2015, 2, 180–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistretta, A.; Marventano, S.; Antoci, M.; Cagnetti, A.; Giogianni, G.; Nolfo, F.; Rametta, S.; Pecora, G.; Marranzano, M. Mediterranean diet adherence and body composition among Southern Italian adolescents. Obes. Res. Clin. Pract. 2017, 11, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; Buscemi, S.; Scuderi, A.; Matalone, M.; Platania, A.; Giorgianni, G.; Rametta, S.; Nolfo, F.; Galvano, F.; et al. Factors Associated with Adherence to the Mediterranean Diet among Adolescents Living in Sicily, Southern Italy. Nutrients 2013, 5, 4908–4923. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Mendez, M.A.; Ribas-Barba, L.; Covas, M.-I.; Serra-Majem, L. Mediterranean diet and waist circumference in a representative national sample of young Spaniards. Pediatr. Obes. 2010, 5, 516–519. [Google Scholar] [CrossRef]
- George, E.S.; Gavrili, S.; Itsiopoulos, C.; Manios, Y.; Moschonis, G. Poor adherence to the Mediterranean diet is associated with increased likelihood of metabolic syndrome components in children: The Healthy Growth Study. Public Health Nutr. 2021, 24, 2823–2833. [Google Scholar] [CrossRef]
- Labayen Goñi, I.; Arenaza, L.; Medrano, M.; García, N.; Cadenas-Sanchez, C.; Ortega, F.B. Associations between the adherence to the Mediterranean diet and cardiorespiratory fitness with total and central obesity in preschool children: The PREFIT project. Eur. J. Nutr. 2018, 57, 2975–2983. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Ojeda-Pardo, M.L.; Sandoval-Cuellar, C.; García-Hermoso, A.; Carrillo, H.A.; González-Ruíz, K.; Prieto-Benavides, D.H.; Tordecilla-Sanders, A.; Martinkėnas, A.; et al. Optimal Adherence to a Mediterranean Diet and High Muscular Fitness Are Associated with a Healthier Cardiometabolic Profile in Collegiate Students. Nutrients 2018, 10, 511. [Google Scholar] [CrossRef] [Green Version]
- Arenaza, L.; Huybrechts, I.; Ortega, F.B.; Ruiz, J.R.; De Henauw, S.; Manios, Y.; Marcos, A.; Julián, C.; Widhalm, K.; Bueno, G.; et al. Mediterranean diet in metabolically healthy and unhealthy overweight and obese European adolescents: The HELENA study. Eur. J. Nutr. 2018, 58, 2615–2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.; González-Gross, M.; Kersting, M.; Molnár, D.; de Henauw, S.; Beghin, L.; Sjöström, M.; Hagströmer, M.; Manios, Y.; Gilbert, C.; et al. Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2008, 11, 288–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roswall, N.; Ängquist, L.; Ahluwalia, T.; Romaguera, D.; Larsen, S.; Østergaard, J.; Halkjaer, J.; Vimaleswaran, K.; Wareham, N.; Bendinelli, B.; et al. Association between Mediterranean and Nordic diet scores and changes in weight and waist circumference: Influence of FTO and TCF7L2 loci. Am. J. Clin. Nutr. 2014, 100, 1188–1197. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, K.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Forster, H.; O’Donovan, C.; Woolhead, C.; Marsaux, C.; Macready, A.; Fallaize, R.; et al. Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: The Food4Me study. Br. J. Nutr. 2015, 115, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Razquin, C.; Martinez, J.; Martinez-Gonzalez, M.; Bes-Rastrollo, M.; Fernández-Crehuet, J.; Marti, A. A 3-year intervention with a Mediterranean diet modified the association between the rs9939609 gene variant in FTO and body weight changes. Int. J. Obes. 2009, 34, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Azorín, C.; Sorlí, J.V.; Asensio, E.M.; Coltell, O.; Martínez-González, M.Á.; Salas-Salvadó, J.; Covas, M.I.; Arós, F.; Lapetra, J.; Serra-Majem, L.; et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc. Diabetol. 2012, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Heianza, Y.; Sun, D.; Huang, T.; Ma, W.; Rimm, E.; Manson, J.; Hu, F.; Willett, W.; Qi, L. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: Gene-diet interaction analysis in two prospective cohort studies. BMJ 2018, 360, j5644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garriguet, D. Diet quality in Canada. Health Rep. 2009, 20, 41–52. [Google Scholar]
- Royall, D.; Brauer, P.; Bjorklund, L.; O’Young, O.; Tremblay, A.; Jeejeebhoy, K.; Heyland, D.; Dhaliwal, R.; Klein, D.; Mutch, D. Development of a Dietary Management Care Map for Metabolic Syndrome. Can. J. Diet. Pract. Res. 2014, 75, 132–139. [Google Scholar] [CrossRef]
- Baratali, L.; Mean, M.; Marques-Vidal, P. Impact of dietary and obesity genetic risk scores on weight gain. Am. J. Clin. Nutr. 2021, 114, 741–751. [Google Scholar] [CrossRef]
- Corella, D.; Sorlí, J.; González, J.; Ortega, C.; Fitó, M.; Bulló, M.; Martínez-González, M.; Ros, E.; Arós, F.; Lapetra, J.; et al. Novel association of the obesity risk-allele near Fas Apoptotic Inhibitory Molecule 2 (FAIM2) gene with heart rate and study of its effects on myocardial infarction in diabetic participants of the PREDIMED trial. Cardiovasc. Diabetol. 2014, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razquin, C.; Martinez, J.; Martinez-Gonzalez, M.; Fernández-Crehuet, J.; Santos, J.; Marti, A. A Mediterranean diet rich in virgin olive oil may reverse the effects of the −174G/C IL6 gene variant on 3-year body weight change. Mol. Nutr. Food Res. 2010, 54, S75–S82. [Google Scholar] [CrossRef] [PubMed]
- Razquin, C.; Alfredo Martinez, J.; Martinez-Gonzalez, M.; Corella, D.; Santos, J.; Marti, A. The Mediterranean diet protects against waist circumference enlargement in 12Ala carriers for the PPARγ gene: 2 years’ follow-up of 774 subjects at high cardiovascular risk. Br. J. Nutr. 2009, 102, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coltell, O.; Ortega-Azorín, C.; Sorlí, J.; Portolés, O.; Asensio, E.; Saiz, C.; Barragán, R.; Estruch, R.; Corella, D. Circulating Adiponectin and Its Association with Metabolic Traits and Type 2 Diabetes: Gene-Diet Interactions Focusing on Selected Gene Variants and at the Genome-Wide Level in High-Cardiovascular Risk Mediterranean Subjects. Nutrients 2021, 13, 541. [Google Scholar] [CrossRef]
- Coltell, O.; Sorlí, J.; Asensio, E.; Barragán, R.; González, J.; Giménez-Alba, I.; Zanón-Moreno, V.; Estruch, R.; Ramírez-Sabio, J.; Pascual, E.; et al. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020, 12, 310. [Google Scholar] [CrossRef] [Green Version]
- San-Cristobal, R.; Navas-Carretero, S.; Livingstone, K.M.; Celis-Morales, C.; Macready, A.L.; Fallaize, R.; O’Donovan, C.B.; Lambrinou, C.P.; Moschonis, G.; Marsaux, C.F.M.; et al. Mediterranean Diet Adherence and Genetic Background Roles within a Web-Based Nutritional Intervention: The Food4Me Study. Nutrients 2017, 9, 1107. [Google Scholar] [CrossRef] [Green Version]
- Corella, D.; Asensio, E.; Coltell, O.; Sorlí, J.; Estruch, R.; Martínez-González, M.; Salas-Salvadó, J.; Castañer, O.; Arós, F.; Lapetra, J.; et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: Dietary modulation in the PREDIMED randomized trial. Cardiovasc. Diabetol. 2016, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Azorín, C.; Sorlí, J.; Estruch, R.; Asensio, E.; Coltell, O.; González, J.; Martínez-González, M.; Ros, E.; Salas-Salvadó, J.; Fitó, M.; et al. Amino Acid Change in the Carbohydrate Response Element Binding Protein Is Associated With Lower Triglycerides and Myocardial Infarction Incidence Depending on Level of Adherence to the Mediterranean Diet in the PREDIMED Trial. Circ. Cardiovasc. Genet. 2014, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Vormund, K.; Braun, J.; Rohrmann, S.; Bopp, M.; Ballmer, P.; Faeh, D. Mediterranean diet and mortality in Switzerland: An alpine paradox? Eur. J. Nutr. 2014, 54, 139–148. [Google Scholar] [CrossRef]
- Galilea-Zabalza, I.; Buil-Cosiales, P.; Salas-Salvadó, J.; Toledo, E.; Ortega-Azorín, C.; Díez-Espino, J.; Vázquez-Ruiz, Z.; Zomeño, M.; Vioque, J.; Martínez, J.; et al. Mediterranean diet and quality of life: Baseline cross-sectional analysis of the PREDIMED-PLUS trial. PLoS ONE 2018, 13, e0198974. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelezang, S.; Bradfield, J.; Ahluwalia, T.; Curtin, J.; Lakka, T.; Grarup, N.; Scholz, M.; van der Most, P.; Monnereau, C.; Stergiakouli, E.; et al. Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genet. 2020, 16, e1008718. [Google Scholar] [CrossRef] [PubMed]
- Tekola-Ayele, F.; Lee, A.; Workalemahu, T.; Sánchez-Pozos, K. Shared genetic underpinnings of childhood obesity and adult cardiometabolic diseases. Hum. Genom. 2019, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiuve, S.; Fung, T.; Rimm, E.; Hu, F.; McCullough, M.; Wang, M.; Stampfer, M.; Willett, W. Alternative Dietary Indices Both Strongly Predict Risk of Chronic Disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.; Chiuve, S.; McCullough, M.; Rexrode, K.; Logroscino, G.; Hu, F. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corella, D.; Coltell, O.; Mattingley, G.; Sorlí, J.; Ordovas, J. Utilizing nutritional genomics to tailor diets for the prevention of cardiovascular disease: A guide for upcoming studies and implementations. Expert Rev. Mol. Diagn. 2017, 17, 495–513. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.; Valerio, J.; Garcia de la Torre, N.; Jimenez, I.; Del Valle, L.; Melero, V.; Assaf-Balut, C.; Fuentes, M.; Bordiu, E.; Durán, A.; et al. TCF7L2 rs7903146 polymorphism modulates the association between adherence to a Mediterranean diet and the risk of gestational diabetes mellitus. Metab. Open 2020, 8, 100069. [Google Scholar] [CrossRef]
- Coltell, O.; Asensio, E.; Sorlí, J.; Barragán, R.; Fernández-Carrión, R.; Portolés, O.; Ortega-Azorín, C.; Martínez-LaCruz, R.; González, J.; Zanón-Moreno, V.; et al. Genome-Wide Association Study (GWAS) on Bilirubin Concentrations in Subjects with Metabolic Syndrome: Sex-Specific GWAS Analysis and Gene-Diet Interactions in a Mediterranean Population. Nutrients 2019, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- García-Calzón, S.; Martínez-González, M.; Razquin, C.; Corella, D.; Salas-Salvadó, J.; Martínez, J.; Zalba, G.; Marti, A. Pro12Ala Polymorphism of the PPARγ2 Gene Interacts With a Mediterranean Diet to Prevent Telomere Shortening in the PREDIMED-NAVARRA Randomized Trial. Circ. Cardiovasc. Genet. 2015, 8, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Corella, D.; González, J.; Bulló, M.; Carrasco, P.; Portolés, O.; Díez-Espino, J.; Covas, M.; Ruíz-Gutierrez, V.; Gómez-Gracia, E.; Arós, F.; et al. Polymorphisms Cyclooxygenase-2 −765G>C and Interleukin-6 −174G>C Are Associated with Serum Inflammation Markers in a High Cardiovascular Risk Population and Do Not Modify the Response to a Mediterranean Diet Supplemented with Virgin Olive Oil or Nuts. J. Nutr. 2008, 139, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Dumont, J.; Huybrechts, I.; Spinneker, A.; Gottrand, F.; Grammatikaki, E.; Bevilacqua, N.; Vyncke, K.; Widhalm, K.; Kafatos, A.; Molnar, D.; et al. FADS1 Genetic Variability Interacts with Dietary α-Linolenic Acid Intake to Affect Serum Non-HDL–Cholesterol Concentrations in European Adolescents. J. Nutr. 2011, 141, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüls, A.; Wright, M.; Bogl, L.; Kaprio, J.; Lissner, L.; Molnár, D.; Moreno, L.; De Henauw, S.; Siani, A.; Veidebaum, T.; et al. Polygenic risk for obesity and its interaction with lifestyle and sociodemographic factors in European children and adolescents. Int. J. Obes. 2021, 45, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Boqué, N.; Tarro, L.; Rosi, A.; Torrell, H.; Saldaña, G.; Luengo, E.; Rachman, Z.; Pires, A.; Tavares, N.; Pires, A.; et al. Study Protocol of a Multicenter Randomized Controlled Trial to Tackle Obesity through a Mediterranean Diet vs. a Traditional Low-Fat Diet in Adolescents: The MED4Youth Study. Int. J. Environ. Res. Public Health 2021, 18, 4841. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Macready, A.; Fallaize, R.; Forster, H.; Woolhead, C.; O’Donovan, C.; Marsaux, C.; et al. Effect of an Internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: The Food4Me Study. Am. J. Clin. Nutr. 2016, 104, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hu, Y. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases. Adv. Genet. 2016, 93, 147–190. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.; Ruiz-Canela, M.; Hruby, A.; Liang, L.; Trichopoulou, A.; Hu, F. Intervention Trials with the Mediterranean Diet in Cardiovascular Prevention: Understanding Potential Mechanisms through Metabolomic Profiling. J. Nutr. 2015, 146, 913S–919S. [Google Scholar] [CrossRef] [Green Version]
- Corella, D.; Ordovás, J.M. How does the Mediterranean diet promote cardiovascular health? Current progress toward molecular mechanisms. BioEssays 2014, 36, 526–537. [Google Scholar] [CrossRef]
- Loos, R.; Yeo, G. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2021, 23, 120–133. [Google Scholar] [CrossRef]
- Fitó, M.; Melander, O.; Martínez, J.; Toledo, E.; Carpéné, C.; Corella, D. Advances in Integrating Traditional and Omic Biomarkers When Analyzing the Effects of the Mediterranean Diet Intervention in Cardiovascular Prevention. Int. J. Mol. Sci. 2016, 17, 1469. [Google Scholar] [CrossRef] [Green Version]
- Corella, D.; Coltell, O.; Macian, F.; Ordovás, J. Advances in Understanding the Molecular Basis of the Mediterranean Diet Effect. Annu. Rev. Food Sci. Technol. 2018, 9, 227–249. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seral-Cortes, M.; Larruy-García, A.; De Miguel-Etayo, P.; Labayen, I.; Moreno, L.A. Mediterranean Diet and Genetic Determinants of Obesity and Metabolic Syndrome in European Children and Adolescents. Genes 2022, 13, 420. https://doi.org/10.3390/genes13030420
Seral-Cortes M, Larruy-García A, De Miguel-Etayo P, Labayen I, Moreno LA. Mediterranean Diet and Genetic Determinants of Obesity and Metabolic Syndrome in European Children and Adolescents. Genes. 2022; 13(3):420. https://doi.org/10.3390/genes13030420
Chicago/Turabian StyleSeral-Cortes, Miguel, Alicia Larruy-García, Pilar De Miguel-Etayo, Idoia Labayen, and Luis A. Moreno. 2022. "Mediterranean Diet and Genetic Determinants of Obesity and Metabolic Syndrome in European Children and Adolescents" Genes 13, no. 3: 420. https://doi.org/10.3390/genes13030420
APA StyleSeral-Cortes, M., Larruy-García, A., De Miguel-Etayo, P., Labayen, I., & Moreno, L. A. (2022). Mediterranean Diet and Genetic Determinants of Obesity and Metabolic Syndrome in European Children and Adolescents. Genes, 13(3), 420. https://doi.org/10.3390/genes13030420