Polymorphism rs3742330 in microRNA Biogenesis Gene DICER1 Is Associated with Pseudoexfoliation Glaucoma in Saudi Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Genotyping of rs3742330 in DICER1 and rs10719 in DROSHA
2.3. In Silico Analysis of rs3742330
2.4. Statistics
3. Results
3.1. Demographic Characteristics and Minor Allele Frequency Distribution
3.2. Genotype Association Analysis with PXG
3.3. Linkage and Haplotype Analysis
3.4. Regression Analysis and Genotype Influence on Clinical Parameters
3.5. Potential Significance of rs3742330
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vazquez, L.E.; Lee, R.K. Genomic and proteomic pathophysiology of pseudoexfoliation glaucoma. Int. Ophthalmol. Clin. 2014, 54, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorleifsson, G.; Magnusson, K.P.; Sulem, P.; Walters, G.B.; Gudbjartsson, D.F.; Stefansson, H.; Jonsson, T.; Jonasdottir, A.; Stefansdottir, G.; Masson, G.; et al. Common sequence variants in the loxl1 gene confer susceptibility to exfoliation glaucoma. Science 2007, 317, 1397–1400. [Google Scholar] [CrossRef]
- Dewundara, S.; Pasquale, L.R. Exfoliation syndrome: A disease with an environmental component. Curr. Opin. Ophthalmol. 2015, 26, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Ozaki, M.; Lee, M.C.; Schlotzer-Schrehardt, U.; Thorleifsson, G.; Mizoguchi, T.; Igo, R.P., Jr.; Haripriya, A.; Williams, S.E.; Astakhov, Y.S.; et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at loxl1 and five new susceptibility loci. Nat. Genet. 2017, 49, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Aung, T.; Ozaki, M.; Mizoguchi, T.; Allingham, R.R.; Li, Z.; Haripriya, A.; Nakano, S.; Uebe, S.; Harder, J.M.; Chan, A.S.; et al. A common variant mapping to cacna1a is associated with susceptibility to exfoliation syndrome. Nat. Genet. 2015, 47, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Chatzikyriakidou, A.; Founti, P.; Melidou, A.; Minti, F.; Bouras, E.; Anastasopoulos, E.; Pappas, T.; Haidich, A.B.; Lambropoulos, A.; Topouzis, F. Microrna-related polymorphisms in pseudoexfoliation syndrome, pseudoexfoliative glaucoma, and primary open-angle glaucoma. Ophthalmic. Genet. 2018, 39, 603–609. [Google Scholar] [CrossRef]
- Rong, R.; Wang, M.; You, M.; Li, H.; Xia, X.; Ji, D. Pathogenesis and prospects for therapeutic clinical application of noncoding rnas in glaucoma: Systematic perspectives. J. Cell Physiol. 2021, 236, 7097–7116. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal micrornas. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Schickel, R.; Boyerinas, B.; Park, S.M.; Peter, M.E. Micrornas: Key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008, 27, 5959–5974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardekani, A.M.; Naeini, M.M. The role of micrornas in human diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microrna biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghajanova, L.; Giudice, L.C. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod. Sci. 2011, 18, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Nothnick, W.B.; Swan, K.; Flyckt, R.; Falcone, T.; Graham, A. Human endometriotic lesion expression of the mir-144-3p/mir-451a cluster, its correlation with markers of cell survival and origin of lesion content. Sci. Rep. 2019, 9, 8823. [Google Scholar] [CrossRef]
- Borghini, A.; Vecoli, C.; Mercuri, A.; Turchi, S.; Andreassi, M.G. Individual and joint effects of genetic polymorphisms in microrna-machinery genes on congenital heart disease susceptibility. Cardiol. Young 2021, 31, 965–968. [Google Scholar] [CrossRef]
- Wang, M.; Gu, J.; Shen, C.; Tang, W.; Xing, X.; Zhang, Z.; Liu, X. Association of microrna biogenesis genes polymorphisms with risk of large artery atherosclerosis stroke. Cell Mol. Neurobiol. 2021, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, A.L.; Dong, C. Rs10719 polymorphism located within drosha 3’-untranslated region is responsible for development of primary hypertension by disrupting binding with microrna-27b. Med. Sci. Monit. 2017, 23, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.V.; Medeiros, R.; Dias, F.; Costa, I.A.; Ferrari, R.; Berardo, P.T.; Perini, J.A. Drosha rs10719 and dicer1 rs3742330 polymorphisms in endometriosis and different diseases: Case-control and review studies. Exp. Mol. Pathol. 2021, 119, 104616. [Google Scholar] [CrossRef]
- McDonnell, F.; O’Brien, C.; Wallace, D. The role of epigenetics in the fibrotic processes associated with glaucoma. J. Ophthalmol. 2014, 2014, 750459. [Google Scholar] [CrossRef] [Green Version]
- European Glaucoma Society. Terminology and Guidelines for Glaucoma, 5th edition. Br. J. Ophthalmol. 2021, 105, 1–169. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Mousa, A.; Azad, T.A.; Sultan, T.; Osman, E.A.; Al-Obeidan, S.A. Analysis of toll-like receptor rs4986790 polymorphism in saudi patients with primary open angle glaucoma. Ophthalmic. Genet. 2017, 38, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.; Kim, S.Y.; Carmell, M.A.; Murchison, E.P.; Alcorn, H.; Li, M.Z.; Mills, A.A.; Elledge, S.J.; Anderson, K.V.; Hannon, G.J. Dicer is essential for mouse development. Nat. Genet. 2003, 35, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Yang, D.D.; Na, S.; Sandusky, G.E.; Zhang, Q.; Zhao, G. Dicer is required for embryonic angiogenesis during mouse development. J. Biol. Chem. 2005, 280, 9330–9335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huryn, L.A.; Turriff, A.; Harney, L.A.; Carr, A.G.; Chevez-Barrios, P.; Gombos, D.S.; Ram, R.; Hufnagel, R.B.; Hill, D.A.; Zein, W.M.; et al. Dicer1 syndrome: Characterization of the ocular phenotype in a family-based cohort study. Ophthalmology 2019, 126, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Damiani, D.; Alexander, J.J.; O’Rourke, J.R.; McManus, M.; Jadhav, A.P.; Cepko, C.L.; Hauswirth, W.W.; Harfe, B.D.; Strettoi, E. Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J. Neurosci. 2008, 28, 4878–4887. [Google Scholar] [CrossRef]
- Kaneko, H.; Dridi, S.; Tarallo, V.; Gelfand, B.D.; Fowler, B.J.; Cho, W.G.; Kleinman, M.E.; Ponicsan, S.L.; Hauswirth, W.W.; Chiodo, V.A.; et al. Dicer1 deficit induces alu RNA toxicity in age-related macular degeneration. Nature 2011, 471, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Swahari, V.; Nakamura, A.; Deshmukh, M. The paradox of dicer in cancer. Mol. Cell Oncol. 2016, 3, e1155006. [Google Scholar] [CrossRef] [Green Version]
- Karube, Y.; Tanaka, H.; Osada, H.; Tomida, S.; Tatematsu, Y.; Yanagisawa, K.; Yatabe, Y.; Takamizawa, J.; Miyoshi, S.; Mitsudomi, T.; et al. Reduced expression of dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005, 96, 111–115. [Google Scholar] [CrossRef]
- Chiosea, S.; Jelezcova, E.; Chandran, U.; Acquafondata, M.; McHale, T.; Sobol, R.W.; Dhir, R. Up-regulation of dicer, a component of the microrna machinery, in prostate adenocarcinoma. Am. J. Pathol. 2006, 169, 1812–1820. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, F.; Teimoori, B.; Rezaei, M.; Mohammadpour-Gharehbagh, A.; Narooei-Nejad, M.; Mehrabani, M.; Salimi, S. Relationships between dicer 1 polymorphism and expression levels in the etiopathogenesis of preeclampsia. J. Cell Biochem. 2018, 119, 5563–5570. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Q.; Zhou, Z.X.; Zheng, S.L.; Liu, D.D.; Ye, X.H.; Zeng, C.L.; Han, Y.J.; Wen, Z.H.; Zou, X.Q.; Wu, J.; et al. Association of variants of mirna processing genes with cervical precancerous lesion risk in a southern chinese population. Biosci. Rep. 2018, 38, BSR20171565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K.; Kim, B.; Kim, V.N. Re-evaluation of the roles of drosha, export in 5, and dicer in microrna biogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E1881–E1889. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.; Farrokhnia, F.; Aplin, J.D.; Westwood, M. Dicer-dependent mirnas provide an endogenous restraint on cytotrophoblast proliferation. Placenta 2012, 33, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Drewry, M.; Helwa, I.; Allingham, R.R.; Hauser, M.A.; Liu, Y. Mirna profile in three different normal human ocular tissues by mirna-seq. Invest. Ophthalmol. Vis. Sci. 2016, 57, 3731–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molasy, M.; Walczak, A.; Szaflik, J.; Szaflik, J.P.; Majsterek, I. Micrornas in glaucoma and neurodegenerative diseases. J. Hum. Genet. 2017, 62, 105–112. [Google Scholar] [CrossRef]
- Drewry, M.D.; Challa, P.; Kuchtey, J.G.; Navarro, I.; Helwa, I.; Hu, Y.; Mu, H.; Stamer, W.D.; Kuchtey, R.W.; Liu, Y. Differentially expressed micrornas in the aqueous humor of patients with exfoliation glaucoma or primary open-angle glaucoma. Hum. Mol. Genet. 2018, 27, 1263–1275. [Google Scholar] [CrossRef]
- Kosior-Jarecka, E.; Czop, M.; Gasinska, K.; Wrobel-Dudzinska, D.; Zalewski, D.P.; Bogucka-Kocka, A.; Kocki, J.; Zarnowski, T. Micrornas in the aqueous humor of patients with different types of glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2337–2349. [Google Scholar] [CrossRef]
- Rao, A.; Chakraborty, M.; Roy, A.; Sahay, P.; Pradhan, A.; Raj, N. Differential mirna expression: Signature for glaucoma in pseudoexfoliation. Clin. Ophthalmol. 2020, 14, 3025–3038. [Google Scholar] [CrossRef]
- Hindle, A.G.; Thoonen, R.; Jasien, J.V.; Grange, R.M.H.; Amin, K.; Wise, J.; Ozaki, M.; Ritch, R.; Malhotra, R.; Buys, E.S. Identification of candidate mirna biomarkers for glaucoma. Invest. Ophthalmol. Vis. Sci. 2019, 60, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Zhavoronkov, A.; Izumchenko, E.; Kanherkar, R.R.; Teka, M.; Cantor, C.; Manaye, K.; Sidransky, D.; West, M.D.; Makarev, E.; Csoka, A.B. Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma. Cell Cycle 2016, 15, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Barenboim, M.; Zoltick, B.J.; Guo, Y.; Weinberger, D.R. Microsniper: A web tool for prediction of snp effects on putative microrna targets. Hum. Mutat. 2010, 31, 1223–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenkel, M.; Mößner, A.; Kruse, F.E.; Schlötzer-Schrehardt, U. Dysregulated expression of fibrogenic micrornas in eyes with pseudoexfoliation syndrome. Invest. Ophthalmol. Vis. Sci. 2012, 53, 3583. [Google Scholar]
- Luna, C.; Li, G.; Qiu, J.; Epstein, D.L.; Gonzalez, P. Role of mir-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol. Vis. 2009, 15, 2488–2497. [Google Scholar]
- Villarreal, G., Jr.; Oh, D.J.; Kang, M.H.; Rhee, D.J. Coordinated regulation of extracellular matrix synthesis by the microrna-29 family in the trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3391–3397. [Google Scholar] [CrossRef] [Green Version]
- Chitranshi, N.; Dheer, Y.; Abbasi, M.; You, Y.; Graham, S.L.; Gupta, V. Glaucoma pathogenesis and neurotrophins: Focus on the molecular and genetic basis for therapeutic prospects. Curr. Neuropharmacol. 2018, 16, 1018–1035. [Google Scholar] [CrossRef]
- Wareham, L.K.; Buys, E.S.; Sappington, R.M. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide 2018, 77, 75–87. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Kwon, O.; Shin, A. Dietary lutein plus zeaxanthin intake and dicer1 rs3742330 a > g polymorphism relative to colorectal cancer risk. Sci. Rep. 2019, 9, 3406. [Google Scholar] [CrossRef]
Characteristics | Controls | Cases | Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|---|---|
No. of participants | 246 | 94 | - | - |
Age in years (SD) | 59.5 (7.2) | 66.4 (9.7) | - | <0.001 1 |
Men, n (%) | 132 (53.6) | 61 (64.8) | - | - |
Women, n (%) | 114 (46.3) | 33 (33.5) | - | 0.061 2 |
Minor Allele Frequency | ||||
rs3742330 (G) | ||||
Total | 0.08 | 0.03 | 0.38 (0.16–0.92) | 0.0172 |
Men | 0.08 | 0.03 | 0.40 (0.13–1.21) | 0.076 2 |
Women | 0.08 | 0.03 | 0.34 (0.07–1.55) | 0.120 2 |
rs10719 (A) | ||||
Total | 0.43 | 0.45 | 1.08 (0.78–1.50) | 0.630 2 |
Men | 0.45 | 0.47 | 1.08 (0.71–1.65) | 0.720 2 |
Women | 0.41 | 0.42 | 1.05 (0.62–1.77) | 0.870 2 |
SNP Number | Genetic Model 1 | Genotype | Controls n (%) | Cases n (%) | Odds Ratio (95% Confidence Interval) | p-Value 2 | AIC 3 | BIC 4 | p-Value 2,5 |
---|---|---|---|---|---|---|---|---|---|
rs3742330 | Co-dominant | A/A | 204 (84.7) | 88 (93.6) | 1.00 | 0.055 | 397.9 | 409.3 | 0.170 |
A/G | 36 (14.9) | 6 (6.4) | 0.39 (0.16–0.95) 6 | ||||||
G/G | 1 (0.4) | 0 (0.0) | 0.00 (0.00-NA) | ||||||
Dominant | A/A | 204 (84.7) | 88 (93.6) | 1.00 | 0.019 | 396.2 | 403.8 | 0.077 | |
A/G-G/G | 37 (15.3) | 6 (6.4) | 0.38 (0.15–0.92) | ||||||
Recessive | A/A-A/G | 240 (99.6) | 94 (100.0) | 1.00 | 0.420 | 401.0 | 408.6 | 0.380 | |
G/G | 1 (0.4) | 0 (0.0) | 0.00 (0.00-NA) | ||||||
Over-dominant | A/A-G/G | 205 (85.1) | 88 (93.6) | 1.00 | 0.024 | 396.6 | 404.2 | 0.098 | |
A/G | 36 (14.9) | 6 (6.4) | 0.39 (0.16–0.95) | ||||||
Log-additive | - | - | - | 0.38 (0.16–0.92) 7 | 0.017 | 396.0 | 403.6 | 0.068 | |
rs10719 | Co-dominant | G/G | 82 (33.3) | 32 (34.0) | 1.00 | 0.530 | 405.6 | 417.1 | 0.250 |
A/G | 116 (47.1) | 39 (41.5) | 0.86 (0.50–1.49) | ||||||
A/A | 48 (19.5) | 23 (24.5) | 1.23 (0.65–2.34) | ||||||
Dominant | G/G | 82 (33.3) | 32 (34.0) | 1.00 | 0.900 | 404.9 | 412.6 | 0.350 | |
A/G-A/A | 164 (66.7) | 62 (66.0) | 0.97 (0.59–1.60) | ||||||
Recessive | G/G-A/G | 198 (80.5) | 71 (75.5) | 1.00 | 0.320 | 403.9 | 411.6 | 0.350 | |
A/A | 48 (19.5) | 23 (24.5) | 1.34 (0.76–2.35) | ||||||
Over-dominant | G/G-A/A | 130 (52.9) | 55 (58.5) | 1.00 | 0.350 | 404.0 | 411.7 | 0.098 | |
A/G | 116 (47.1) | 39 (41.5) | 0.79 (0.49–1.29) | ||||||
Log-additive | - | - | - | 1.08 (0.78–1.50) | 0.630 | 404.7 | 412.3 | 0.930 |
Group | Genetic Model 1 | Genotype | Control n (%) | Cases n (%) | Odds Ratio (95% Confidence Interval) | p-Value 2 | AIC 3 | BIC 4 | p-Value 2,5 |
---|---|---|---|---|---|---|---|---|---|
Men | Co-dominant | A/A | 109 (85.2) | 57 (93.4) | 1.00 | 0.190 | 240.4 | 250.1 | 0.430 |
A/G | 18 (14.1) | 4 (6.6) | 0.42 (0.14–1.32) | ||||||
G/G | 1 (0.8) | 0 (0.0) | 0.00 (0.00–NA) | ||||||
Dominant | A/A | 109 (85.2) | 57 (93.4) | 1.00 | 0.087 | 238.8 | 245.3 | 0.280 | |
A/G-G/G | 19 (14.8) | 4 (6.6) | 0.40 (0.13–1.24) | ||||||
Recessive | A/A-A/G | 127 (99.2) | 61 (100.0) | 1.00 | 0.380 | 241.0 | 247.4 | 0.380 | |
G/G | 1 (0.8) | 0 (0.0) | 0.00 (0.00–NA) | ||||||
Over-dominant | A/A-G/G | 110 (85.9) | 57 (93.4) | 1.00 | 0.120 | 239.3 | 245.7 | 0.350 | |
A/G | 18 (14.1) | 4 (6.6) | 0.43 (0.14–1.33) | ||||||
Log-additive | - | - | - | 0.40 (0.13–1.21) | 0.076 | 238.6 | 245.1 | 0.240 | |
Women | -- | A/A | 95 (84.1) | 31 (93.9) | 1.00 | 0.120 | 157.6 | 163.6 | 0.120 |
A/G | 18 (15.9) | 2 (6.1) | 0.34 (0.07–1.55) | ||||||
G/G | 0 (0.0) | 0 (0.0) | - |
Group | Genetic Model 1 | Genotype | Control n (%) | Cases n (%) | Odds Ratio (95% Confidence Interval) | p 2 | AIC 3 | BIC 4 | p 2,5 |
---|---|---|---|---|---|---|---|---|---|
Men | Co-dominant | G/G | 40 (30.3) | 20 (32.8) | 1.00 | 0.450 | 245.2 | 255.0 | 0.230 |
A/G | 66 (50) | 25 (41.0) | 0.76 (0.37–1.54) | ||||||
A/A | 26 (19.7) | 16 (26.2) | 1.23 (0.54–2.80) | ||||||
Dominant | G/G | 40 (30.3) | 20 (32.8) | 1.00 | 0.730 | 244.7 | 251.2 | 0.470 | |
A/G-A/A | 92 (69.7) | 41 (67.2) | 0.89 (0.46–1.71) | ||||||
Recessive | G/G-A/G | 106 (80.3) | 45 (73.8) | 1.00 | 0.310 | 243.8 | 250.3 | 0.230 | |
A/A | 26 (19.7) | 16 (26.2) | 1.45 (0.71–2.96) | ||||||
Over-dominant | G/G-A/A | 66 (50.0) | 36 (59.0) | 1.00 | 0.240 | 243.4 | 250.0 | 0.094 | |
A/G | 66 (50.0) | 25 (41.0) | 0.69 (0.38–1.28) | ||||||
Log-additive | - | - | - | 1.08 (0.71–1.65) | 0.720 | 244.7 | 251.2 | 0.830 | |
Women | Co-dominant | G/G | 42 (36.8) | 12 (36.4) | 1.00 | 0.970 | 162.5 | 171.5 | 0.800 |
A/G | 50 (43.9) | 14 (42.4) | 0.98 (0.41–2.35) | ||||||
A/A | 22 (19.3) | 7 (21.2) | 1.11 (0.38–3.23) | ||||||
Dominant | G/G | 42 (36.8) | 12 (36.4) | 1.00 | 0.960 | 160.6 | 166.5 | 0.510 | |
A/G-A/A | 72 (63.2) | 21 (63.6) | 1.02 (0.46–2.28) | ||||||
Recessive | G/G-A/G | 92 (80.7) | 26 (78.8) | 1.00 | 0.810 | 160.5 | 166.5 | 0.900 | |
A/A | 22 (19.3) | 7 (21.2) | 1.13 (0.43–2.93) | ||||||
Over-dominant | G/G-A/A | 64 (56.1) | 19 (57.6) | 1.00 | 0.8800 | 160.5 | 166.5 | 0.590 | |
A/G | 50 (43.9) | 14 (42.4) | 0.94 (0.43–2.06) | ||||||
Log-additive | - | - | - | 1.05 (0.62–1.77) | 0.870 | 160.5 | 166.5 | 0.610 |
Haplotypes 1 | Controls, Frequency | Cases, Frequency | p-Value | Odds Ratio (95% Confidence Interval) |
---|---|---|---|---|
AA | 0.38 | 0.44 | 0.179 | 1.26 (0.89–1.77) |
AG | 0.53 | 0.52 | 0.821 | 0.96 (0.68–1.35) |
GA | 0.04 | 0.01 | 0.034 | 0.20 (0.04–1.03) |
GG | 0.04 | 0.02 | 0.334 | 0.59 (0.21–1.71) |
Group Variables | B | SE | Wald | Odds Ratio (95% Confidence Interval) | p |
---|---|---|---|---|---|
Age | 0.100 | 0.017 | 35.755 | 1.10 (1.07–1.14) | 0.000 |
Sex | 0.392 | 0.273 | 2.068 | 1.48 (0.86–2.52) | 0.150 |
rs3742330 | 2.350 | 0.309 | |||
A/G | −0.729 | 0.476 | 2.349 | 0.48 (0.19–1.22) | 0.125 |
G/G | - | - | - | - | 1.000 |
rs10719 | 3.002 | 0.223 | |||
G/A | −0.410 | 0.305 | 1.801 | 0.66 (0.36–1.20) | 0.180 |
A/A | 0.127 | 0.364 | 0.121 | 1.13 (0.55–2.31) | 0.728 |
Constant | −7.236 | 1.079 | 44.981 | 0.001 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondkar, A.A.; Azad, T.A.; Sultan, T.; Radhakrishnan, R.; Osman, E.A.; Almobarak, F.A.; Lobo, G.P.; Al-Obeidan, S.A. Polymorphism rs3742330 in microRNA Biogenesis Gene DICER1 Is Associated with Pseudoexfoliation Glaucoma in Saudi Cohort. Genes 2022, 13, 489. https://doi.org/10.3390/genes13030489
Kondkar AA, Azad TA, Sultan T, Radhakrishnan R, Osman EA, Almobarak FA, Lobo GP, Al-Obeidan SA. Polymorphism rs3742330 in microRNA Biogenesis Gene DICER1 Is Associated with Pseudoexfoliation Glaucoma in Saudi Cohort. Genes. 2022; 13(3):489. https://doi.org/10.3390/genes13030489
Chicago/Turabian StyleKondkar, Altaf A., Taif A. Azad, Tahira Sultan, Rakesh Radhakrishnan, Essam A. Osman, Faisal A. Almobarak, Glenn P. Lobo, and Saleh A. Al-Obeidan. 2022. "Polymorphism rs3742330 in microRNA Biogenesis Gene DICER1 Is Associated with Pseudoexfoliation Glaucoma in Saudi Cohort" Genes 13, no. 3: 489. https://doi.org/10.3390/genes13030489
APA StyleKondkar, A. A., Azad, T. A., Sultan, T., Radhakrishnan, R., Osman, E. A., Almobarak, F. A., Lobo, G. P., & Al-Obeidan, S. A. (2022). Polymorphism rs3742330 in microRNA Biogenesis Gene DICER1 Is Associated with Pseudoexfoliation Glaucoma in Saudi Cohort. Genes, 13(3), 489. https://doi.org/10.3390/genes13030489