Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation
Abstract
:1. Chromosome Remodeling
2. Crossover Formation Triggers Chromosome Remodeling in Late Prophase I
3. Restructuring of the Bivalent to Form a Compact Structure
3.1. Regulation of SC Disassembly
3.2. Changes in Chromosome Condensation and Compaction
3.3. Regulation of Loss of Cohesion
4. Concluding Remarks/Open Questions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Láscarez-Lagunas, L.; Martinez-Garcia, M.; Colaiácovo, M. SnapShot: Meiosis—Prophase I. Cell 2020, 181, 1442. [Google Scholar] [CrossRef]
- Zickler, D.; Kleckner, N. Meiotic chromosomes: Integrating structure and function. Annu. Rev. Genet. 1999, 33, 603–754. [Google Scholar] [CrossRef]
- Hassold, T.; Hunt, P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2001, 2, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.H. The control of chiasma distribution. Symp. Soc. Exp. Biol. 1984, 38, 293–320. [Google Scholar]
- Jones, G.H.; Franklin, F.C.H. Meiotic crossing-over: Obligation and interference. Cell 2006, 126, 246–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, K.W. How meiotic cells deal with non-exchange chromosomes. Bioessays 1994, 16, 107–114. [Google Scholar] [CrossRef]
- Hunter, N. Meiotic recombination: The essence of heredity. Cold Spring Harb. Perspect. Biol. 2015, 7, a016618. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.; Cohen, P.E. Control of meiotic ccrossovers: From double-strand break formation to designation. Annu. Rev. Genet. 2016, 50, 175–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazhayam, N.M.; Turcotte, C.A.; Sekelsky, J. Meiotic crossover patterning. Front. Cell Dev. Biol. 2021, 9, 681123. [Google Scholar] [CrossRef] [PubMed]
- Colaiácovo, M.P. The many facets of SC function during C. elegans meiosis. Chromosoma 2006, 115, 195–211. [Google Scholar] [CrossRef]
- Page, S.L.; Hawley, R.S. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol. 2004, 20, 525–558. [Google Scholar] [CrossRef] [PubMed]
- Nag, D.K.; Scherthan, H.; Rockmill, B.; Bhargava, J.; Roeder, G.S. Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants. Genetics 1995, 141, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Storlazzi, A.; Xu, L.; Schwacha, A.; Kleckner, N. Synaptonemal Complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc. Natl. Acad. Sci. USA 1996, 93, 9043–9048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, S.L.; Hawley, R.S. C(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev. 2001, 15, 3130–3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacQueen, A.J.; Colaiácovo, M.P.; McDonald, K.; Villeneuve, A.M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 2002, 16, 2428–2442. [Google Scholar] [CrossRef] [Green Version]
- Colaiácovo, M.P.; MacQueen, A.J.; Martinez-Perez, E.; McDonald, K.; Adamo, A.; La Volpe, A.; Villeneuve, A.M. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 2003, 5, 463–474. [Google Scholar] [CrossRef] [Green Version]
- De Vries, F.A.T.; de Boer, E.; van den Bosch, M.; Baarends, W.M.; Ooms, M.; Yuan, L.; Liu, J.-G.; van Zeeland, A.A.; Heyting, C.; Pastink, A. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 2005, 19, 1376–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolikov, S.; Eizinger, A.; Schild-Prufert, K.; Hurlburt, A.; McDonald, K.; Engebrecht, J.; Villeneuve, A.M.; Colaiácovo, M.P. SYP-3 restricts synaptonemal complex assembly to bridge paired chromosome axes during meiosis in Caenorhabditis elegans. Genetics 2007, 176, 2015–2025. [Google Scholar] [CrossRef] [Green Version]
- Smolikov, S.; Eizinger, A.; Hurlburt, A.; Rogers, E.; Villeneuve, A.M.; Colaiácovo, M.P. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis. Genetics 2007, 176, 2027–2033. [Google Scholar] [CrossRef] [Green Version]
- Smolikov, S.; Schild-Prüfert, K.; Colaiácovo, M.P. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans Meiosis. PLoS Genet. 2009, 5, e1000669. [Google Scholar] [CrossRef] [Green Version]
- France, M.G.; Enderle, J.; Röhrig, S.; Puchta, H.; Franklin, F.C.H.; Higgins, J.D. ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2021671118. [Google Scholar] [CrossRef] [PubMed]
- Capilla-Pérez, L.; Durand, S.; Hurel, A.; Lian, Q.; Chambon, A.; Taochy, C.; Solier, V.; Grelon, M.; Mercier, R. The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2023613118. [Google Scholar] [CrossRef] [PubMed]
- Meneely, P.M.; Farago, A.F.; Kauffman, T.M. Crossover distribution and high interference for both the X Chromosome and an autosome during oogenesis and spermatogenesis in Caenorhabditis elegans. Genetics 2002, 162, 1169–1177. [Google Scholar] [CrossRef]
- Barnes, T.M.; Kohara, Y.; Coulson, A.; Hekimi, S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics 1995, 141, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Schvarzstein, M.; Wignall, S.M.; Villeneuve, A.M. Coordinating cohesion, co-orientation, and congression during meiosis: Lessons from holocentric chromosomes. Genes Dev. 2010, 24, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, D.Y.; Colaiácovo, M.P. Meiotic development in Caenorhabditis elegans. In Germ Cell Development in C. elegans; Schedl, T., Ed.; Springer: New York, NY, USA, 2013; Volume 757, pp. 133–170. ISBN 978-1-4614-4014-7. [Google Scholar]
- Nabeshima, K.; Villeneuve, A.M.; Colaiácovo, M.P. Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J. Cell Biol. 2005, 168, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Hurlock, M.E.; Čavka, I.; Kursel, L.E.; Haversat, J.; Wooten, M.; Nizami, Z.; Turniansky, R.; Hoess, P.; Ries, J.; Gall, J.G.; et al. Identification of novel synaptonemal complex components in C. elegans. J. Cell Biol. 2020, 219, e201910043. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xie, S.; Wang, R.; Guo, S.; Zhao, Q.; Nie, H.; Liu, Y.; Zhang, F.; Chen, M.; Liu, L.; et al. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J. Cell Biol. 2020, 219, e201910086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Perez, E.; Schvarzstein, M.; Barroso, C.; Lightfoot, J.; Dernburg, A.F.; Villeneuve, A.M. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev. 2008, 22, 2886–2901. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.C.; Severson, A.F.; Meyer, B.J. Condensin restructures chromosomes in preparation for meiotic divisions. J. Cell Biol. 2004, 167, 613–625. [Google Scholar] [CrossRef]
- Clemons, A.M.; Brockway, H.M.; Yin, Y.; Kasinathan, B.; Butterfield, Y.S.; Jones, S.J.M.; Colaiácovo, M.P.; Smolikove, S. Akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic Prophase I. Mol. Biol. Cell 2013, 24, 1053–1067. [Google Scholar] [CrossRef] [PubMed]
- Altendorfer, E.; Láscarez-Lagunas, L.I.; Nadarajan, S.; Mathieson, I.; Colaiácovo, M.P. Crossover position drives chromosome remodeling for accurate meiotic chromosome segregation. Curr. Biol. 2020, 30, 1329–1338.e7. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, M.N.; Obeso, D.; Chuong, H.; Dawson, D.S. The synaptonemal complex protein Zip1 promotes bi-orientation of centromeres at Meiosis I. PLoS Genet. 2009, 5, e1000771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newnham, L.; Jordan, P.; Rockmill, B.; Roeder, G.S.; Hoffmann, E. The synaptonemal complex protein, Zip1, promotes the segregation of nonexchange chromosomes at Meiosis I. Proc. Natl. Acad. Sci. USA 2010, 107, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Takeo, S.; Lake, C.M.; Morais-de-Sá, E.; Sunkel, C.E.; Hawley, R.S. Synaptonemal complex-dependent centromeric clustering and the initiation of synapsis in drosophila oocytes. Curr. Biol. 2011, 21, 1845–1851. [Google Scholar] [CrossRef] [Green Version]
- Qiao, H.; Chen, J.K.; Reynolds, A.; Höög, C.; Paddy, M.; Hunter, N. Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLoS Genet. 2012, 8, e1002790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisig, C.G.; Guiraldelli, M.F.; Kouznetsova, A.; Scherthan, H.; Höög, C.; Dawson, D.S.; Pezza, R.J. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS Genet. 2012, 8, e1002701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resnick, T.D.; Dej, K.J.; Xiang, Y.; Hawley, R.S.; Ahn, C.; Orr-Weaver, T.L. Mutations in the chromosomal passenger complex and the condensin complex differentially affect synaptonemal complex disassembly and metaphase I configuration in drosophila female meiosis. Genetics 2009, 181, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Eijpe, M.; Offenberg, H.; Jessberger, R.; Revenkova, E.; Heyting, C. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J. Cell Biol. 2003, 160, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Storlazzi, A.; Tesse, S.; Ruprich-Robert, G.; Gargano, S.; Pöggeler, S.; Kleckner, N.; Zickler, D. Coupling meiotic chromosome axis integrity to recombination. Genes Dev. 2008, 22, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.; Higgins, J.D.; Sanchez-Moran, E.; Armstrong, S.J.; Franklin, F.C.H. Pathways to meiotic recombination in Arabidopsis Thaliana: Tansley review. New Phytol. 2011, 190, 523–544. [Google Scholar] [CrossRef] [PubMed]
- Chelysheva, L.; Vezon, D.; Chambon, A.; Gendrot, G.; Pereira, L.; Lemhemdi, A.; Vrielynck, N.; Le Guin, S.; Novatchkova, M.; Grelon, M. The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet. 2012, 8, e1002799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colas, I.; Darrier, B.; Arrieta, M.; Mittmann, S.U.; Ramsay, L.; Sourdille, P.; Waugh, R. Observation of extensive chromosome axis remodeling during the “diffuse-phase” of meiosis in large genome cereals. Front. Plant Sci. 2017, 8, 1235. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, C.K.; Hawley, R.S. Regulating the construction and demolition of the synaptonemal complex. Nat. Struct. Mol. Biol. 2016, 23, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Colaiácovo, M.P. Zipping and unzipping: Protein modifications regulating synaptonemal complex dynamics. Trends Genet. 2018, 34, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Sourirajan, A.; Lichten, M. Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev. 2008, 22, 2627–2632. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P.; Copsey, A.; Newnham, L.; Kolar, E.; Lichten, M.; Hoffmann, E. Ipl1/Aurora B kinase coordinates synaptonemal complex disassembly with cell cycle progression and crossover formation in budding yeast meiosis. Genes Dev. 2009, 23, 2237–2251. [Google Scholar] [CrossRef] [Green Version]
- Argunhan, B.; Leung, W.-K.; Afshar, N.; Terentyev, Y.; Subramanian, V.V.; Murayama, Y.; Hochwagen, A.; Iwasaki, H.; Tsubouchi, T.; Tsubouchi, H. Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis. EMBO J. 2017, 36, 2488–2509. [Google Scholar] [CrossRef]
- Jordan, P.W.; Karppinen, J.; Handel, M.A. Polo-like Kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J. Cell Sci. 2012, 125, 5061–5072. [Google Scholar] [CrossRef] [Green Version]
- Parra, M.T.; Viera, A.; Gómez, R.; Page, J.; Carmena, M.; Earnshaw, W.C.; Rufas, J.S.; Suja, J.A. Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J. Cell Sci. 2003, 116, 961–974. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Handel, M.A. Regulation of the meiotic Prophase I to Metaphase I transition in mouse spermatocytes. Chromosoma 2008, 117, 471–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.W.; Dix, D.J.; Collins, B.W.; Merrick, B.A.; He, C.; Selkirk, J.K.; Poorman-Allen, P.; Dresser, M.E.; Eddy, E.M. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma 1996, 104, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Dix, D.J.; Allen, J.W.; Collins, B.W.; Poorman-Allen, P.; Mori, C.; Blizard, D.R.; Brown, P.R.; Goulding, E.H.; Strong, B.D.; Eddy, E.M. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic Prophase in juvenile and adult mouse spermatocytes. Development 1997, 124, 4595–4603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Dix, D.J.; Eddy, E.M. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development 1997, 124, 3007–3014. [Google Scholar] [CrossRef] [PubMed]
- Nadarajan, S.; Mohideen, F.; Tzur, Y.B.; Ferrandiz, N.; Crawley, O.; Montoya, A.; Faull, P.; Snijders, A.P.; Cutillas, P.R.; Jambhekar, A.; et al. The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis. eLife 2016, 5, e12039. [Google Scholar] [CrossRef] [PubMed]
- Sato-Carlton, A.; Nakamura-Tabuchi, C.; Li, X.; Boog, H.; Lehmer, M.K.; Rosenberg, S.C.; Barroso, C.; Martinez-Perez, E.; Corbett, K.D.; Carlton, P.M. Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic Prophase in Caenorhabditis elegans. PLoS Genet. 2020, 16, e1008968. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 2006, 7, 311–322. [Google Scholar] [CrossRef]
- Hirano, T. Condensins: Universal organizers of chromosomes with diverse functions. Genes Dev. 2012, 26, 1659–1678. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-G.; Koshland, D.E. Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages. J. Cell Biol. 2003, 163, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-G.; Koshland, D. Chromosome morphogenesis: Condensin-dependent cohesin removal during meiosis. Cell 2005, 123, 397–407. [Google Scholar] [CrossRef]
- Rabitsch, K.P.; Petronczki, M.; Javerzat, J.P.; Genier, S.; Chwalla, B.; Schleiffer, A.; Tanaka, T.U.; Nasmyth, K. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in Meiosis I. Dev. Cell 2003, 4, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Corbett, K.D.; Yip, C.K.; Ee, L.-S.; Walz, T.; Amon, A.; Harrison, S.C. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 2010, 142, 556–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, I.L.; Yu, H.-G.; Amon, A. Condensins promote coorientation of sister chromatids during Meiosis I in budding yeast. Genetics 2010, 185, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, N.U.; Stronghill, P.E.; Dengler, R.E.; Hasenkampf, C.A.; Riggs, C.D. Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development 2003, 130, 3283–3295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, N.U.; Rusyniak, S.; Hasenkampf, C.A.; Riggs, C.D. Disruption of the Arabidopsis SMC4 gene, AtCAP-C, compromises gametogenesis and embryogenesis. Planta 2006, 223, 990–997. [Google Scholar] [CrossRef]
- Sakamoto, T.; Inui, Y.T.; Uraguchi, S.; Yoshizumi, T.; Matsunaga, S.; Mastui, M.; Umeda, M.; Fukui, K.; Fujiwara, T. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 2011, 23, 3533–3546. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ogushi, S.; Saitou, M.; Hirano, T. Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes. Mol. Biol. Cell 2011, 22, 3465–3477. [Google Scholar] [CrossRef]
- Cobb, J.; Miyaike, M.; Kikuchi, A.; Handel, M.A. Meiotic events at the centromeric heterochromatin: Histone H3 phosphorylation, Topoisomerase II alpha localization and chromosome condensation. Chromosoma 1999, 108, 412–425. [Google Scholar] [CrossRef]
- Agnieszka, W. Etoposide interferes with the process of chromatin condensation during alga Chara Vulgaris spermiogenesis. Micron 2014, 65, 45–50. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Schubert, V.; Osman, K.; Darbyshire, A.; Sanchez-Moran, E.; Franklin, F.C.H. TOPII and chromosome movement help remove interlocks between entangled chromosomes during Meiosis. J. Cell Biol. 2018, 217, 4070–4079. [Google Scholar] [CrossRef]
- De Carvalho, C.E.; Zaaijer, S.; Smolikov, S.; Gu, Y.; Schumacher, J.M.; Colaiacovo, M.P. LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev. 2008, 22, 2869–2885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marston, A.L. Shugoshins: Tension-sensitive pericentromeric adaptors safeguarding chromosome segregation. Mol. Cell. Biol. 2015, 35, 634–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clyne, R.K.; Katis, V.L.; Jessop, L.; Benjamin, K.R.; Herskowitz, I.; Lichten, M.; Nasmyth, K. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at Meiosis I. Nat. Cell Biol. 2003, 5, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Amon, A. Role of polo-like kinase CDC5 in programming Meiosis I chromosome segregation. Science 2003, 300, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Brar, G.A.; Kiburz, B.M.; Zhang, Y.; Kim, J.-E.; White, F.; Amon, A. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 2006, 441, 532–536. [Google Scholar] [CrossRef]
- Katis, V.L.; Lipp, J.J.; Imre, R.; Bogdanova, A.; Okaz, E.; Habermann, B.; Mechtler, K.; Nasmyth, K.; Zachariae, W. Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev. Cell 2010, 18, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, T.; Tanaka, K.; Sakuno, T.; Watanabe, Y. Shugoshin–PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase. Nat. Cell Biol. 2010, 12, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Riedel, C.G.; Katis, V.L.; Katou, Y.; Mori, S.; Itoh, T.; Helmhart, W.; Gálová, M.; Petronczki, M.; Gregan, J.; Cetin, B.; et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during Meiosis I. Nature 2006, 441, 53–61. [Google Scholar] [CrossRef]
- Kitajima, T.S.; Sakuno, T.; Ishiguro, K.; Iemura, S.; Natsume, T.; Kawashima, S.A.; Watanabe, Y. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 2006, 441, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Cetin, B.; Anger, M.; Cho, U.S.; Helmhart, W.; Nasmyth, K.; Xu, W. Structure and function of the PP2A-shugoshin interaction. Mol. Cell 2009, 35, 426–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, E.; Bishop, J.D.; Waddle, J.A.; Schumacher, J.M.; Lin, R. The Aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol. 2002, 157, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Tzur, Y.B.; Egydio de Carvalho, C.; Nadarajan, S.; Van Bostelen, I.; Gu, Y.; Chu, D.S.; Cheeseman, I.M.; Colaiácovo, M.P. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol. 2012, 10, e1001378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrandiz, N.; Barroso, C.; Telecan, O.; Shao, N.; Kim, H.-M.; Testori, S.; Faull, P.; Cutillas, P.; Snijders, A.P.; Colaiácovo, M.P.; et al. Spatiotemporal regulation of Aurora B recruitment ensures release of cohesion during C. elegans oocyte meiosis. Nat. Commun. 2018, 9, 834. [Google Scholar] [CrossRef] [PubMed]
- Nadarajan, S.; Altendorfer, E.; Saito, T.T.; Martinez-Garcia, M.; Colaiácovo, M.P. HIM-17 regulates the position of recombination events and GSP-1/2 localization to establish short arm identity on bivalents in meiosis. Proc. Natl. Acad. Sci. USA 2021, 118, e2016363118. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Láscarez-Lagunas, L.I.; Martinez-Garcia, M.; Colaiácovo, M.P. Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Genes 2022, 13, 546. https://doi.org/10.3390/genes13030546
Láscarez-Lagunas LI, Martinez-Garcia M, Colaiácovo MP. Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Genes. 2022; 13(3):546. https://doi.org/10.3390/genes13030546
Chicago/Turabian StyleLáscarez-Lagunas, Laura I., Marina Martinez-Garcia, and Monica P. Colaiácovo. 2022. "Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation" Genes 13, no. 3: 546. https://doi.org/10.3390/genes13030546
APA StyleLáscarez-Lagunas, L. I., Martinez-Garcia, M., & Colaiácovo, M. P. (2022). Loss, Gain, and Retention: Mechanisms Driving Late Prophase I Chromosome Remodeling for Accurate Meiotic Chromosome Segregation. Genes, 13(3), 546. https://doi.org/10.3390/genes13030546