Estimating Effects of Radiation Frost on Wheat Using a Field-Based Frost Control Treatment to Stop Freezing Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plot Heaters
2.3. In Season Measurements
2.4. Grain Yield and Yield Component Measurements
3. Results
3.1. Frost Events
3.2. Plot Heater Performance
3.3. Yield and Yield Components of Wyalkatchem after Frost in Heated and Non-Heated Plots
3.4. Grain Set and Grain Weight within Spikes of Wyalkatchem in Heated and Non-Heated Plots
3.5. The Relative Contribution of Grain Position to Spike Grain Weight and Grain Number per Spike
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Single, W.; Marcellos, H. Studies on frost injury to wheat. IV.* Freezing of ears after emergence from the leaf sheath. Aust. J. Agric. Res. 1974, 25, 679–686. [Google Scholar]
- Paulsen, G.M.; Heyne, E.G. Grain Production of Winter Wheat after Spring Freeze Injury. Agron. J. 1983, 75, 705–707. [Google Scholar]
- Fredericks, T.M.; Christopher, J.T.; Harvey, G.L.; Sutherland, M.W.; Borrell, A.K. Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley. J. Exp. Bot. 2012, 63, 5405–5416. [Google Scholar]
- Martino, D.L.; Abbate, P.E. Frost damage on grain number in wheat at different spike developmental stages and its modelling. Eur. J. of Agron. 2019, 103, 13–23. [Google Scholar]
- Teitel, M.; Peiper, U.M.; Zvieli, Y. Shading screens for frost protection. Agric. For. Meteorol. 1996, 81, 273–286. [Google Scholar]
- Crimp, S.; Bakar, K.S.; Kokic, P.; Jin, H.; Nicholls, N.; Howden, M. Bayesian space–time model to analyse frost risk for agriculture in Southeast Australia. Int. J. Climatol. 2015, 35, 2092–2108. [Google Scholar]
- Perry, W.M. Frost Incidence in Western Australia; Western Australia Department of Agriculture: South Perth, WA, Australia, 1972.
- Stutsel, B.M.; Callow, J.N.; Flower, K.C.; Biddulph, T.B.; Issa, N.A. Application of distributed temperature sensing using optical fibre to understand temperature dynamics in wheat (Triticum aestivum) during frost. Eur. J. Agron. 2020, 115, 126038. [Google Scholar]
- Risbey, J.S.; Monselesan, D.P.; O’Kane, T.J.; Tozer, C.R.; Pook, M.J.; Hayman, P.T. Synoptic and large-scale determinants of extreme austral frost events. J. Appl. Meteorol. Climatol. 2019, 58, 1103–1124. [Google Scholar]
- Banath, C.; Single, W. Frost injury to wheat stems and grain production. Aust. J. Agric. Res. 1976, 27, 749–753. [Google Scholar]
- Loss, S.P. Frost injury to wheat. J. Dep. Agric. West. Aust. Ser. 4 1989, 30, 32–34. [Google Scholar]
- Livingston, J.E.; Swinbank, J.C. Some Factors Influencing the Injury to Winter Wheat Heads by Low Temperatures. Agron. J. 1950, 42, 153–157. [Google Scholar]
- Slafer, G.A.; Rawson, H.M. Rates and cardinal temperatures for processes of development in wheat: Effects of temperature and thermal amplitude. Funct. Plant Biol. 1995, 22, 913–926. [Google Scholar]
- Chakrabarti, B.; Singh, S.; Nagarajan, S.; Aggarwal, P. Impact of temperature on phenology and pollen sterility of wheat varieties. Aust. J. Crop Sci. 2011, 5, 1039. [Google Scholar]
- Liu, L.; Xia, Y.; Liu, B.; Chang, C.; Xiao, L.; Shen, J.; Tang, L.; Cao, W.; Zhu, Y. Individual and combined effects of jointing and booting low-temperature stress on wheat yield. Eur. J. Agron. 2020, 113, 125989. [Google Scholar]
- Thakur, P.; Kumar, S.; Malik, J.A.; Berger, J.D.; Nayyar, H. Cold stress effects on reproductive development in grain crops: An overview. Environ. Exp. Bot. 2010, 67, 429–443. [Google Scholar]
- Pearce, R.S.; Fuller, M.P. Freezing of barley studied by infrared video thermography. Plant Physiol. 2001, 125, 227–240. [Google Scholar]
- Fuller, M.P.; Fuller, A.M.; Kaniouras, S.; Christopher, J.; Fredericks, T. The freezing characteristics of wheat at ear emergence. Eur. J. Agron. 2007, 26, 435–441. [Google Scholar]
- Livingston, D.P.; Tuong, T.D.; Murphy, J.P.; Gusta, L.V.; Willick, I.; Wisniewski, M.E. High-definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing. Planta 2018, 247, 791–806. [Google Scholar]
- Fuller, M.; Wisniewski, M. The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. J. Therm. Biol. 1998, 23, 81–89. [Google Scholar]
- Cocks, N.A.; March, T.J.; Biddulph, T.B.; Smith, A.B.; Cullis, B.R. The provision of grower and breeder information on the frost susceptibility of wheat in Australia. J. Agric. Sci. 2019, 157, 382–398. [Google Scholar]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar]
- Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crop. Res. 2017, 209, 108–119. [Google Scholar]
- Mushtaq, S.; An-Vo, D.-A.; Christopher, M.; Zheng, B.; Chenu, K.; Chapman, S.C.; Christopher, J.T.; Stone, R.C.; Frederiks, T.M.; Alam, G.M.M. Economic assessment of wheat breeding options for potential improved levels of post head-emergence frost tolerance. Field Crop. Res. 2017, 213, 75–88. [Google Scholar]
- Farre, I.; Foster, I.; Biddulph, B.; Asseng, S. Is there a value in having a frost forecast for wheat in the South-West of Western Australia. In Proceedings of the 15th Australian Agronomy Conference, Lincoln, New Zealand, 15–18 November 2010. [Google Scholar]
- Bell, L.W.; Lilley, J.M.; Hunt, J.R.; Kirkegaard, J.A. Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: A simulation analysis. 1. Wheat. Crop Pasture Sci. 2015, 66, 332–348. [Google Scholar]
- Zheng, B.; Chenu, K.; Fernanda Dreccer, M.; Chapman, S.C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Chang. Biol. 2012, 18, 2899–2914. [Google Scholar]
- Barlow, K.M.; Christy, B.P.; O’Leary, G.J.; Riffkin, P.A.; Nuttall, J.G. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crop. Res. 2015, 171, 109–119. [Google Scholar]
- Zheng, B.; Chapman, S.C.; Christopher, J.T.; Frederiks, T.M.; Chenu, K. Frost trends and their estimated impact on yield in the Australian wheatbelt. J. Exp. Bot. 2015, 66, 3611–3623. [Google Scholar]
- Crimp, S.; Zheng, B.; Khimashia, N.; Gobbett, D.; Chapman, S.; Howden, M.; Nicholls, N. Recent changes in Southern Australian frost occurrence: Implications for wheat production risk. Crop Pasture Sci. 2016, 67, 801–811. [Google Scholar]
- Hunt, J.R.; Lilley, J.M.; Trevaskis, B.; Flohr, B.M.; Peake, A.; Fletcher, A.; Zwart, A.B.; Gobbett, D.; Kirkegaard, J.A. Early sowing systems can boost Australian wheat yields despite recent climate change. Nat. Clim. Chang. 2019, 9, 244. [Google Scholar]
- Fischer, R.; Stockman, Y. Kernel Number Per Spike in Wheat (Triticum aestivum L.): Responses to Preanthesis Shading. Func. Plant Biol. 1980, 7, 169–180. [Google Scholar]
- Zhang, H.; Turner, N.C.; Poole, M.L. Source–sink balance and manipulating sink–source relations of wheat indicate that the yield potential of wheat is sink-limited in high-rainfall zones. Crop Pasture Sci. 2010, 61, 852–861. [Google Scholar]
- Stutsel, B.M.; Callow, J.N.; Flower, K.; Biddulph, T.B.; Cohen, B.; Leske, B. An Automated Plot Heater for Field Frost Research in Cereals. Agronomy 2019, 9, 96. [Google Scholar]
- Biddulph, B.; Laws, M.; Eckermann, P.; Leske, B.; March, T.; Eglinton, J. Preliminary Ratings of Wheat Varieties for Susceptibility to Reproductive Frost Damage; The Grains Research and Development Corporation Grain Research Updates: Perth, Australia, 2015. [Google Scholar]
- Martynov, S.; Dobrotvorskaya, T.; Dobrotvorskiy, D. Genetic Resources Information System of Wheat and Triticale; N.I.Vavilov Research Institute of Plant Industry (VIR): Saint Petersburg, Russia; The International Maize and Wheat Improvement Center (CIMMYT): Texcoco, Mexico, 2012. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar]
- Smith, R.; Minkey, D.; Butcher, T.; Hyde, S.; Jackson, S.; Reeves, K.; Biddulph, B. Stubble Management Recommendations and Limitations for Frost Prone Landscapes; The Grains Research and Development Corporation Grain Research Updates: Perth, Australia, 2017. [Google Scholar]
- Coombes, N.E. The Reactive Tabu Search for Efficient Correlated Experimental Designs. Ph.D. Thesis, John Moores University, Liverpool, UK, 2002. [Google Scholar]
- Reinheimer, J.L.; Barr, A.R.; Eglinton, J.K. QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2004, 109, 1267–1274. [Google Scholar] [PubMed]
- Cheong, B.E.; Ho, W.W.H.; Biddulph, B.; Wallace, X.; Rathjen, T.; Rupasinghe, T.W.T.; Roessner, U.; Dolferus, R. Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics 2019, 15, 144. [Google Scholar] [PubMed]
- Zheng, B.; Biddulph, B.; Li, D.; Kuchel, H.; Chapman, S. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J. Exp. Bot. 2013, 64, 3747–3761. [Google Scholar]
- Pask, A.J.D.; Pietragalla, J.; Mullan, D.M.; Reynolds, M.P. Grain yield and yield components. In Physiological Breeding II: A Field Guide to Wheat Phenotyping; CIMMYT: Texcoco, Mexico, 2012; pp. 95–103. [Google Scholar]
- Rebetzke, G.; Bonnett, D.; Reynolds, M. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J. Exp. Bot. 2016, 67, 2573–2586. [Google Scholar]
- Ferrante, A.; Cullis, B.R.; Smith, A.B.; Able, J.A. A Multi-Environment Trial Analysis of Frost Susceptibility in Wheat and Barley Under Australian Frost-Prone Field Conditions. Front. Plant Sci. 2021, 12, 1662. [Google Scholar]
- Ferrante, A.; Savin, R.; Slafer, G.A. Differences in yield physiology between modern, well adapted durum wheat cultivars grown under contrasting conditions. Field Crop. Res. 2012, 136, 52–64. [Google Scholar]
- Bremner, P.; Rawson, H. The Weights of Individual Grains of the Wheat Ear in Relation to Their Growth Potential, the Supply of Assimilate and Interaction Between Grains. Funct. Plant Biol. 1978, 5, 61–72. [Google Scholar]
- Calderini, D.F.; Reynolds, M.P. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum × T. tauschii). Funct. Plant Biol. 2000, 27, 183–191. [Google Scholar]
- Acreche, M.M.; Slafer, G.A. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crop. Res. 2006, 98, 52–59. [Google Scholar]
- Ferrante, A.; Savin, R.; Slafer, G.A. Floret development and grain setting differences between modern durum wheats under contrasting nitrogen availability. J. Exp. Bot. 2013, 64, 169–184. [Google Scholar] [PubMed]
- Leske, B.; Biddulph, B.; D’Antuono, M.; Onyemaobi, I.; Colmer, T. Sample size is critical when exploring the grain set in wheat cultivars grown under frost-prone field conditions in Western Australia. In Proceedings of the 19th Australian Agronomy Conference, Wagga Wagga, NSW, Australia, 25–29 August 2019. [Google Scholar]
- Ferrante, A.; Zerner, M.; Leske, B.; Biddulph, B.; March, T. Differences in yield physiology in wheat cultivars grown under frost-prone field conditions in Southern Australia. In Proceedings of the 18th Australian Society of Agronomy Conference, Ballarat, Auatralia, 24–28 September 2017. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods Applied to Experiments in Biology and Agriculture; Iowa State University Press: Iowa, IA, USA, 1956. [Google Scholar]
- Genstat—VSN-International Ltd. GenStat for Windows, 20th ed.; VSN International Ltd.: Hemel Hempstead, UK, 2020. [Google Scholar]
- Feng, F.; Han, Y.; Wang, S.; Yi, S.; Peng, Z.; Zhou, M.; Gao, W.; Wen, X.; Qin, X.; Siddique, K.H. The effect of grain position on genetic improvement of grain number and thousand grain weight in winter wheat in north China. Front. Plant Sci. 2018, 9, 129. [Google Scholar] [PubMed]
- Saini, H.; Sedgley, M.; Aspinall, D. Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Funct. Plant Biol. 1983, 10, 137–144. [Google Scholar]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar]
- Ji, H.; Xiao, L.; Xia, Y.; Song, H.; Liu, B.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agric. For. Meteorol. 2017, 243, 33–42. [Google Scholar]
- Oliver, S.N.; Dennis, E.S.; Dolferus, R. ABA Regulates Apoplastic Sugar Transport and is a Potential Signal for Cold-Induced Pollen Sterility in Rice. Plant Cell Physiol. 2007, 48, 1319–1330. [Google Scholar]
- Cromey, M.G.; Wright, D.S.C.; Boddington, H.J. Effects of frost during grain filling on wheat yield and grain structure. N. Z. J. Crop Hortic. Sci. 1998, 26, 279–290. [Google Scholar]
- Allen, H.M.; Pumpa, J.K.; Batten, G.D. Effect of frost on the quality of samples of Janz wheat. Aust. J. Exp. Agric. 2001, 41, 641–647. [Google Scholar]
- Bányai, J.; Maccaferri, M.; Láng, L.; Mayer, M.; Tóth, V.; Cséplő, M.; Pál, M.; Mészáros, K.; Vida, G. Abiotic Stress Response of Near-Isogenic Spring Durum Wheat Lines under Different Sowing Densities. Int. J. Mol. Sci. 2021, 22, 2053. [Google Scholar] [PubMed]
- Marcellos, H.; Single, W. Temperatures in wheat during radiation frost. Aust. J. Exp. Agric. 1975, 15, 818–822. [Google Scholar]
- Slafer, G.A.; Savin, R. Source—sink relationships and grain mass at different positions within the spike in wheat. Field Crop. Res. 1994, 37, 39–49. [Google Scholar]
- Ferrante, A.; Cossani, C.M.; Able, J.A.; Sadras, V.O. Assessing frost damage in a set of historic wheat varieties using a passive heating system. In Proceedings of the 19th Australian Society of Agronomy Conference, Wagga Wagga, NSW, Australia, 25–29 August 2019. [Google Scholar]
- Miralles, D.J.; Slafer, G.A. Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crop. Res. 1995, 43, 55–66. [Google Scholar]
- Slafer, G.A.; Calderini, D.F.; Miralles, D.J. Yield Components and Compensation in Wheat: Opportunities for Further Increasing Yield Potential. In Increasing Yield Potential in Wheat: Breaking the Barriers; Reynolds, M.P., Rajaram, S., McNab, A., Eds.; CIMMYT: Texcoco, Mexico, 1996; pp. 101–133. [Google Scholar]
- Xie, Q.; Mayes, S.; Sparkes, D.L. Carpel size, grain filling, and morphology determine individual grain weight in wheat. J. Exp. Bot. 2015, 66, 6715–6730. [Google Scholar]
- Guo, Z.; Slafer, G.A.; Schnurbusch, T. Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. J. Exp. Bot. 2016, 67, 4221–4230. [Google Scholar]
- Fischer, R.A. Number of kernels in wheat crops and the influence of solar radiation and temperature. J. Agric. Sci. 1985, 105, 447–461. [Google Scholar]
- Perry, M.W.; D’Antuono, M.F. Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Aust. J. Agric. Res. 1989, 40, 457–472. [Google Scholar]
- Marcellos, H.; Single, W. Frost Injury in Wheat Ears After Ear Emergence. Funct. Plant Biol. 1984, 11, 7–15. [Google Scholar]
- Leske, B.; Nicol, D.; Biddulph, B. Optimising sowing time in frost prone environments is key to unlocking yield potential of wheat. In Proceedings of the 18th Australian Society of Agronomy Conference, Ballarat, Auatralia, 24–28 September 2017. [Google Scholar]
- Marcellos, H.; Single, W. Supercooling and heterogeneous nucleation of freezing in tissues of tender plants. Cryobiology 1979, 16, 74–77. [Google Scholar]
- Lindow, S.E.; Arny, D.C.; Upper, C.D. Bacterial Ice Nucleation: A Factor in Frost Injury to Plants. Plant Physiol. 1982, 70, 1084–1089. [Google Scholar] [PubMed]
- Wisniewski, M.E.; Gusta, L.V.; Fuller, M.P.; Karlson, D. Ice Nucleation, Propagation and Deep Supercooling: The Lost Tribes of Freezing Studies. In Plant Cold Hardiness: From the Laboratory to the Field; Gusta, L.V., Wisniewski, M.E., Tanino, K.K., Eds.; CABI: Wallingford, UK, 2009; pp. 1–11. [Google Scholar]
- Biddulph, B.; Bekuma, A.; Jackson, S.; Ryan, K.; Cooper, C.; Swift, R.; Diepeveen, D. Bacterial ice nucleation activity in rainfall and on crop residues may be increasing frost damage in WA cropping systems. In Proceedings of the 20th Australian Society of Agronomy Conference, Toowoomba, Australia, 18–22 September 2021. [Google Scholar]
- Stockman, Y.M.; Fischer, R.A.; Brittain, E.G. Assimilate Supply and Floret Development within the Spike of Wheat (Triticum aestivum L.). Funct. Plant Biol. 1983, 10, 585–594. [Google Scholar]
- Hao, S.; Ryu, D.; Western, A.; Perry, E.; Bogena, H.; Franssen, H.J.H. Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis. Agric. Syst. 2021, 194, 103278. [Google Scholar]
Sowing Date | Treatment | Grain Yield A (t ha−1) | Harvest Index B (%) | Anthesis Biomass C (t ha−1) | Floret Sterility D (%) | Grains B Spike−1 | Grains B m−2 (000s) | Average Grain Weight A (mg grain−1) | Spikes B m−2 |
---|---|---|---|---|---|---|---|---|---|
Mid-April 2018 | Heater+ | 3.4 a | 0.23 a | - | 33 a | - | 9.5 a | 36.4 a | - |
Heater− | 2.4 b | 0.17 b | 7.1 | 44 b | 14 | 7.3 b | 33.0 b | 522 | |
Mid-May 2018 | Heater+ | 4.9 ns | - | - | 28 a | - | 9.9 ns | 49.4 a | - |
Heater− | 4.4 ns | 0.2 | 9.9 | 59 b | 18 | 8.5 ns | 51.7 b | 463 | |
Mid-April 2019 | Heater+ | 2.3 a | 0.22 a | - | 21 a | 25 a | 5.8 a | 48.3 a | 232 a |
Heater− | 0.8 b | 0.06 b | 7.2 | 36 b | 8 b | 1.4 b | 45.3 a | 209 a | |
Mid-May 2019 | Heater+ | 5.0 a | 0.40 a | - | 8 a | 41 a | 11.3 a | 44.3 a | 278 a |
Heater− | 4.5 a | 0.40 a | 9. | 11.2 b | 40 a | 11.7 a | 43.2 a | 299 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leske, B.A.; Biddulph, T.B. Estimating Effects of Radiation Frost on Wheat Using a Field-Based Frost Control Treatment to Stop Freezing Damage. Genes 2022, 13, 578. https://doi.org/10.3390/genes13040578
Leske BA, Biddulph TB. Estimating Effects of Radiation Frost on Wheat Using a Field-Based Frost Control Treatment to Stop Freezing Damage. Genes. 2022; 13(4):578. https://doi.org/10.3390/genes13040578
Chicago/Turabian StyleLeske, Brenton A., and Thomas Ben Biddulph. 2022. "Estimating Effects of Radiation Frost on Wheat Using a Field-Based Frost Control Treatment to Stop Freezing Damage" Genes 13, no. 4: 578. https://doi.org/10.3390/genes13040578
APA StyleLeske, B. A., & Biddulph, T. B. (2022). Estimating Effects of Radiation Frost on Wheat Using a Field-Based Frost Control Treatment to Stop Freezing Damage. Genes, 13(4), 578. https://doi.org/10.3390/genes13040578