A Penalization Method for Estimating Heterogeneous Covariate Effects in Cancer Genomic Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computation
- 1.
- Initialize , and set .
- 2.
- Update . For , minimize with respect to , where:This can be realized by executing the following steps:
- (a)
- Set the step size .ComputeIncrease step size by until
- (b)
- Compute
- 3.
- Repeat Step 2 until convergence is achieved. In our numerical study, the convergence criterion is .
2.2. Statistical Properties
- (C0)
- Errors are i.i.d sub-Gaussian random variables with mean zero. That is, for certain constants and , the tail probabilities of satisfy for all and .
- (C1)
- Let . Then, .
- (C2)
- Let . Then, . Moreover, there exists a constant so that .
- (C3)
- and .
- (C4)
- .
- (C5)
- Initial estimators are r-consistent for the estimation of certain :
- (C6)
- Constants satisfy:
3. Simulation
- Scenario 1.
- The coefficients are generated from trigonometric functions; for ,
- Scenario 2.
- The coefficients are generated from exponential functions:
- Scenario 3.
- The coefficients are generated from logarithmic functions:
- Scenario 4.
- The coefficients are generated from linear functions:
- Scenario 5.
- The coefficients are constants:
- Scenario 6.
- The coefficients are generated from the four above (trigonometric, exponential, logarithmic and linear) functions, respectively. Each function generates an equal number of coefficients.
- Scenario 7.
- The coefficients are generated from the four above functions, where 40% and 35% of the coefficients are generated from the trigonometric and linear functions, respectively, and 10% and 15% of the coefficients are generated from the exponential and logarithmic functions, respectively.
- Scenario 8.
- The coefficients are generated from the four functions. The trigonometric, exponential, logarithmic, and linear functions generate 35%, 15%, 20%, and 30% of the coefficients, respectively.
- Scenario 9.
- The coefficients are generated as in Scenario 5. We select 40% of the coefficients and, for each function, add random perturbations on their values in one or two ranges, where each range includes 20 consecutive subjects.
4. Data Analysis
4.1. SKCM Data
4.2. LUAD Data
4.3. Simulation on SKCM Dataset
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Estimation under the Accelerated Failure Time Model
Appendix B
Appendix C
Appendix D. More Tables and Figures
Scenario | Method | TP | FP | RMSE | RPE |
---|---|---|---|---|---|
1 | Lasso | 13.61 (2.37) | 0.20 (0.41) | 5.87 (0.50) | 14.08 (2.48) |
AdLasso | 16.23 (1.54) | 0.26 (0.83) | 5.05 (0.46) | 10.10 (0.39) | |
IVIS | 12.85 (1.43) | 2.88 (1.37) | 5.98 (1.02) | 11.72 (0.92) | |
New-Lasso | 15.56 (1.39) | 0.00 (0.00) | 4.48 (0.82) | 2.66 (0.54) | |
New-Mar | 20.00 (0.00) | 0.56 (0.19) | 1.12 (0.17) | 0.82 (0.04) | |
2 | Lasso | 11.50 (1.67) | 0.41 (0.82) | 6.72 (0.45) | 18.20 (1.97) |
AdLasso | 16.90 (1.06) | 0.11 (0.31) | 5.20 (0.44) | 10.38 (0.44) | |
IVIS | 12.89 (1.13) | 3.03 (0.86) | 6.04 (0.78) | 11.95 (0.96) | |
New-Lasso | 15.37 (1.53) | 0.16 (0.07) | 4.90 (0.95) | 2.94 (0.64) | |
New-Mar | 20.00 (0.00) | 0.70 (0.16) | 0.84 (0.10) | 0.72 (0.05) | |
3 | Lasso | 12.90 (2.9) | 0.10 (0.31) | 7.32 (0.80) | 18.60 (3.54) |
AdLasso | 16.80 (1.32) | 0.07 (0.25) | 5.55 (0.69) | 11.16 (0.54) | |
IVIS | 13.33 (0.96) | 2.92 (1.01) | 6.55 (1.15) | 12.65 (1.24) | |
New-Lasso | 15.61 (1.73) | 0.04 (0.02) | 5.56 (1.17) | 3.10 (0.69) | |
New-Mar | 20.00 (0.00) | 0.56 (0.15) | 0.96 (0.14) | 0.76 (0.05) | |
4 | Lasso | 14.03 (2.27) | 0.20 (0.05) | 7.56 (0.82) | 18.54 (3.21) |
AdLasso | 17.34 (1.49) | 0.13 (0.51) | 6.02 (0.85) | 12.29 (0.48) | |
IVIS | 14.35 (0.93) | 3.75 (0.92) | 6.47 (0.73) | 12.43 (0.97) | |
New-Lasso | 16.90 (1.45) | 0.08 (0.01) | 5.26 (1.39) | 2.86 (0.80) | |
New-Mar | 20.00 (0.00) | 0.84 (0.75) | 0.92 (0.10) | 0.70 (0.04) | |
5 | Lasso | 20.00 (0.00) | 1.02 (0.27) | 0.50 (0.10) | 0.69 (0.07) |
AdLasso | 17.08 (1.37) | 0.07 (0.24) | 5.36 (0.67) | 11.13 (0.49) | |
IVIS | 13.54 (0.81) | 3.24 (0.90) | 6.07 (0.69) | 11.06 (0.7) | |
New-Lasso | 19.87 (0.37) | 0.00 (0.00) | 1.02 (0.49) | 0.79 (0.14) | |
New-Mar | 20.00 (0.00) | 0.84 (0.23) | 0.90 (0.12) | 0.72 (0.03) | |
6 | Lasso | 15.23 (2.65) | 0.33 (0.80) | 6.18 (0.78) | 13.52 (2.50) |
AdLasso | 17.09 (1.14) | 0.06 (0.24) | 5.39 (0.49) | 11.03 (0.44) | |
IVIS | 13.40 (1.05) | 3.04 (0.97) | 6.05 (0.89) | 12.21 (0.9) | |
New-Lasso | 17.00 (1.75) | 0.00 (0.00) | 4.36 (1.43) | 2.02 (0.68) | |
New-Mar | 20.00 (0.00) | 1.44 (0.33) | 1.16 (0.14) | 0.74 (0.05) | |
7 | Lasso | 16.25 (2.29) | 0.37 (0.81) | 5.90 (0.77) | 11.86 (2.23) |
AdLasso | 17.28 (1.11) | 0.13 (0.46) | 5.30 (0.61) | 10.99 (0.41) | |
IVIS | 13.76 (0.99) | 2.82 (1.15) | 5.97 (0.86) | 12.22 (0.92) | |
New-Lasso | 16.90 (1.07) | 0.00 (0.00) | 4.38 (0.85) | 2.02 (0.38) | |
New-Mar | 19.95 (0.22) | 1.10 (0.21) | 1.22 (0.40) | 0.80 (0.14) | |
8 | Lasso | 16.15 (2.18) | 0.16 (0.37) | 5.80 (0.93) | 11.80 (2.11) |
AdLasso | 16.75 (1.79) | 0.10 (0.36) | 6.08 (0.46) | 10.08 (0.39) | |
IVIS | 13.03 (1.22) | 3.20 (1.21) | 6.11 (0.92) | 12.39 (1.1) | |
New-Lasso | 16.70 (2.03) | 0.00 (0.00) | 4.50 (1.63) | 2.06 (0.78) | |
New-Mar | 19.90 (0.31) | 0.96 (0.15) | 1.36 (0.59) | 0.84 (0.25) |
Scenario | Method | TP | FP | RMSE | RPE |
---|---|---|---|---|---|
1 | Lasso | 36.85 (0.37) | 0.60 (0.67) | 9.20 (0.45) | 10.78 (0.74) |
AdLasso | 36.00 (1.58) | 0.14 (0.45) | 10.21 (0.61) | 12.01 (0.76) | |
IVIS | 32.92 (1.63) | 6.51 (1.77) | 12.66 (1.32) | 14.36 (1.05) | |
New-Lasso | 39.71 (0.66) | 0.08 (0.10) | 1.78 (0.24) | 0.86 (0.14) | |
New-Mar | 35.64 (2.60) | 1.20 (0.28) | 6.32 (1.12) | 3.46 (0.56) | |
2 | Lasso | 35.70 (1.69) | 0.92 (0.83) | 8.53 (0.48) | 10.14 (0.42) |
AdLasso | 35.91 (2.16) | 0.84 (1.02) | 8.58 (0.57) | 9.48 (0.64) | |
IVIS | 33.56 (1.04) | 6.94 (0.95) | 11.25 (1.23) | 14.74 (0.95) | |
New-Lasso | 38.04 (1.50) | 0.63 (0.10) | 3.76 (0.45) | 1.38 (0.46) | |
New-Mar | 35.83 (2.09) | 1.83 (0.29) | 5.92 (0.36) | 2.24 (0.38) | |
3 | Lasso | 34.47 (2.26) | 0.00 (0.00) | 17.78 (1.89) | 21.82 (2.38) |
AdLasso | 36.64 (1.38) | 0.04 (0.20) | 10.18 (0.62) | 7.62 (0.47) | |
IVIS | 33.08 (1.03) | 8.25 (2.34) | 12.07 (1.84) | 16.28 (1.12) | |
New-Lasso | 40.00 (0.00) | 0.00 (0.00) | 1.26 (0.08) | 0.60 (0.02) | |
New-Mar | 36.51 (0.83) | 3.40 (0.95) | 4.62 (1.10) | 2.20 (0.74) | |
4 | Lasso | 31.35 (3.91) | 0.20 (0.52) | 30.34 (2.06) | 37.18 (2.82) |
AdLasso | 36.24 (1.41) | 0.10 (0.31) | 12.03 (0.73) | 17.19 (0.83) | |
IVIS | 34.27 (2.45) | 9.76 (2.22) | 14.49 (2.31) | 19.24 (2.69) | |
New-Lasso | 39.96 (0.22) | 0.69 (0.10) | 1.42 (0.27) | 0.68 (0.18) | |
New-Mar | 37.40 (0.68) | 5.60 (0.54) | 6.48 (0.31) | 1.16 (0.33) | |
5 | Lasso | 40.00 (0.00) | 0.70 (0.88) | 0.79 (0.10) | 1.30 (0.09) |
AdLasso | 35.67 (1.75) | 0.12 (0.39) | 13.88 (0.59) | 12.16 (0.75) | |
IVIS | 34.97 (1.2) | 5.29 (1.65) | 14.69 (1.44) | 16.20 (1.26) | |
New-Lasso | 40.00 (0.00) | 0.00 (0.00) | 1.04 (0.06) | 0.58 (0.03) | |
New-Mar | 37.54 (1.90) | 2.41 (0.98) | 5.46 (1.50) | 2.16 (0.16) | |
6 | Lasso | 34.64 (1.35) | 0.74 (0.90) | 12.08 (0.70) | 13.94 (1.11) |
AdLasso | 35.58 (0.88) | 0.08 (0.27) | 7.78 (0.50) | 8.43 (0.51) | |
IVIS | 33.80 (1.59) | 7.66 (2.80) | 11.47 (1.70) | 15.37 (1.06) | |
New-Lasso | 37.54 (1.39) | 0.10 (0.27) | 5.16 (0.84) | 2.92 (0.44) | |
New-Mar | 33.89 (2.19) | 6.10 (2.78) | 9.66 (2.17) | 3.34 (0.77) | |
7 | Lasso | 34.70 (2.13) | 0.91 (1.02) | 13.26 (0.82) | 15.32 (1.36) |
AdLasso | 35.64 (0.56) | 0.08 (0.27) | 7.79 (0.48) | 8.31 (0.46) | |
IVIS | 33.09 (1.7) | 7.72 (2.13) | 11.28 (1.90) | 14.02 (1.18) | |
New-Lasso | 37.36 (1.73) | 0.12 (0.31) | 5.72 (0.50) | 2.64 (0.31) | |
New-Mar | 33.40 (2.11) | 6.32 (2.86) | 10.02 (1.03) | 3.56 (0.44) | |
8 | Lasso | 34.30 (2.18) | 0.88 (0.73) | 13.20 (0.73) | 14.38 (1.18) |
AdLasso | 35.45 (0.73) | 0.20 (0.40) | 7.72 (0.54) | 8.25 (0.48) | |
IVIS | 34.38 (1.79) | 7.04 (1.09) | 11.43 (1.70) | 14.37 (2.21) | |
New-Lasso | 37.71 (1.54) | 0.00 (0.00) | 5.22 (0.62) | 3.04 (0.41) | |
New-Mar | 32.03 (2.35) | 5.84 (2.41) | 9.88 (1.76) | 3.74 (0.99) | |
9 | Lasso | 28.83 (3.54) | 0.40 (0.68) | 15.42 (1.68) | 14.12 (1.12) |
AdLasso | 35.34 (1.58) | 0.20 (0.48) | 21.36 (0.52) | 12.02 (0.75) | |
IVIS | 33.11 (1.20) | 6.42 (1.54) | 16.94 (2.01) | 15.97 (1.95) | |
New-Lasso | 37.56 (1.19) | 0.94 (0.29) | 4.46 (1.10) | 1.31 (0.28) | |
New-Mar | 24.82 (2.88) | 9.55 (0.80) | 12.50 (1.56) | 3.88 (0.73) |
Scenario | Method | TP | FP | RMSE | RPE |
---|---|---|---|---|---|
1 | Lasso | 31.56 (2.17) | 0.36 (0.33) | 13.40 (0.67) | 18.82 (1.86) |
AdLasso | 32.52 (1.54) | 0.14 (0.40) | 9.66 (0.75) | 13.28 (0.49) | |
IVIS | 29.46 (0.87) | 6.32 (1.21) | 13.22 (0.76) | 20.86 (0.85) | |
New-Lasso | 32.96 (2.21) | 0.00 (0.00) | 11.4 (1.40) | 3.58 (0.61) | |
New-Mar | 39.84 (0.37) | 0.44 (0.09) | 2.16 (0.40) | 0.70 (0.10) | |
2 | Lasso | 30.60 (2.44) | 0.07 (0.31) | 11.76 (0.45) | 20.90 (2.16) |
AdLasso | 31.06 (2.20) | 0.02 (0.14) | 8.60 (0.69) | 10.08 (0.53) | |
IVIS | 30.46 (1.68) | 5.31 (0.91) | 13.22 (0.85) | 21.86 (0.98) | |
New-Lasso | 31.80 (1.94) | 0.00 (0.00) | 11.76 (1.14) | 4.18 (0.65) | |
New-Mar | 39.60 (0.68) | 0.23 (0.15) | 2.58 (0.47) | 0.78 (0.18) | |
3 | Lasso | 34.30 (2.88) | 0.10 (0.30) | 19.28 (1.83) | 24.90 (2.63) |
AdLasso | 32.04 (1.40) | 0.00 (0.00) | 13.20 (1.43) | 17.40 (0.81) | |
IVIS | 31.86 (1.49) | 7.37 (1.36) | 14.38 (1.28) | 25.43 (1.3) | |
New-Lasso | 33.20 (2.17) | 0.03 (0.02) | 12.92 (3.07) | 3.76 (0.77) | |
New-Mar | 40.00 (0.00) | 0.60 (0.08) | 2.12 (0.17) | 0.66 (0.03) | |
4 | Lasso | 32.85 (3.45) | 0.20 (0.41) | 31.06 (1.42) | 38.52 (3.74) |
AdLasso | 33.34 (0.82) | 0.15 (0.55) | 16.36 (1.55) | 18.56 (0.83) | |
IVIS | 31.15 (1.57) | 8.13 (1.44) | 19.42 (1.93) | 28.65 (2.23) | |
New-Lasso | 32.90 (2.47) | 0.96 (0.12) | 23.28 (3.47) | 5.54 (1.04) | |
New-Mar | 40.00 (0.00) | 0.90 (0.19) | 1.76 (0.13) | 0.60 (0.03) | |
5 | Lasso | 40.00 (0.00) | 1.44 (0.74) | 0.69 (0.08) | 1.01 (0.03) |
AdLasso | 33.53 (1.54) | 0.18 (0.44) | 12.34 (0.76) | 13.28 (0.49) | |
IVIS | 30.48 (1.38) | 6.44 (0.93) | 16.01 (2.53) | 21.08 (1.54) | |
New-Lasso | 40.00 (0.00) | 0.00 (0.00) | 1.66 (0.13) | 0.64 (0.06) | |
New-Mar | 40.00 (0.00) | 0.84 (0.10) | 1.72 (0.15) | 0.62 (0.02) | |
6 | Lasso | 30.81 (2.35) | 0.22 (0.57) | 16.80 (1.59) | 22.90 (2.74) |
AdLasso | 33.82 (2.08) | 0.08 (0.34) | 13.78 (1.24) | 19.28 (0.81) | |
IVIS | 30.42 (2.02) | 6.24 (0.97) | 15.49 (1.86) | 21.18 (1.14) | |
New-Lasso | 32.40 (2.09) | 0.00 (0.00) | 11.06 (2.49) | 3.18 (0.90) | |
New-Mar | 39.80 (0.41) | 1.76 (0.27) | 2.48 (1.22) | 0.72 (0.21) | |
7 | Lasso | 31.40 (2.35) | 0.31 (0.32) | 18.38 (1.02) | 23.54 (2.13) |
AdLasso | 34.45 (1.81) | 0.10 (0.42) | 13.32 (1.21) | 18.16 (0.65) | |
IVIS | 31.65 (2.31) | 5.43 (1.24) | 15.13 (1.35) | 22.11 (1.47) | |
New-Lasso | 32.71 (1.69) | 0.04 (0.02) | 12.90 (2.15) | 3.62 (0.66) | |
New-Mar | 39.65 (0.67) | 1.57 (0.39) | 3.06 (1.03) | 0.88 (0.16) | |
8 | Lasso | 30.50 (1.99) | 0.40 (0.41) | 17.48 (1.18) | 22.74 (2.19) |
AdLasso | 32.04 (1.86) | 0.12 (0.39) | 13.04 (1.12) | 17.84 (0.79) | |
IVIS | 30.96 (2.58) | 6.68 (1.75) | 15.22 (2.55) | 23.64 (3.41) | |
New-Lasso | 32.23 (1.80) | 0.00 (0.00) | 12.70 (2.05) | 3.64 (0.80) | |
New-Mar | 39.51 (0.61) | 1.85 (0.29) | 3.48 (0.68) | 0.96 (0.22) |
New | Lasso | AdLasso | IVIS | |
---|---|---|---|---|
SKCM Dat | ||||
New | 6 | 6 | 4 | 3 |
Lasso | 38 | 12 | 6 | |
AdLasso | 25 | 5 | ||
IVIS | 21 | |||
LUAD data | ||||
New | 7 | 3 | 4 | 3 |
Lasso | 29 | 8 | 5 | |
AdLasso | 27 | 4 | ||
IVIS | 25 |
Method | TP | FP | RMSE | RPE |
---|---|---|---|---|
Lasso | 1.70 (1.09) | 6.60 (2.12) | 1.37 (0.05) | 1.30 (0.04) |
AdLasso | 2.60 (0.70) | 4.40 (2.37) | 1.35 (0.09) | 1.18 (0.11) |
IVIS | 1.88 (0.69) | 11.47 (2.30) | 1.66 (0.07) | 1.26 (0.13) |
New-Lasso | 3.43 (0.53) | 3.25 (2.43) | 1.22 (0.11) | 0.95 (0.05) |
New-Mar | 2.96 (0.89) | 8.20 (2.09) | 1.36 (0.15) | 1.04 (0.06) |
References
- Ford, D.; Easton, D.F.; Stratton, M.; Narod, S.; Goldgar, D.; Devilee, P.; Bishop, D.T.; Weber, B.; Lenoir, G.; Chang-Claude, J.; et al. Genetic Heterogeneity and Penetrance Analysis of the BRCA1 and BRCA2 Genes in Breast Cancer Families. Am. J. Hum. Genet. 1998, 62, 676–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvan, A.; Dragani, T.A. Nicotine dependence may link the 15q25 locus to lung cancer risk. Carcinogenesis 2010, 31, 331–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; He, X. Inference for Subgroup Analysis with a Structured Logistic-Normal Mixture Model. J. Am. Stat. Assoc. 2015, 110, 303–312. [Google Scholar] [CrossRef]
- Lloyd-Jones, R.; Nguyen, D.; McLachlan, J. A globally convergent algorithm for lasso-penalized mixture of linear regression models. Comput. Stat. Data Anal. 2018, 119, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Huynh, Y.; Chamroukhi, F. Estimation and Feature Selection in Mixtures of Generalized Linear Experts Models. arXiv 2019, arXiv:1907.06994. [Google Scholar]
- Ma, S.; Huang, J. A Concave Pairwise Fusion Approach to Subgroup Analysis. J. Am. Stat. Assoc. 2015, 112, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Huang, J.; Zhang, Z.; Liu, M. Exploration of Heterogeneous Treatment Effects via Concave Fusion. Int. J. Biostat. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Shi, Z.; Phillips, P. Identifying Latent Structures in Panel Data. Econometrica 2016, 84, 2215–2264. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.; Rice, J.; Wu, C. Smoothing spline estimation for varying coefficient models with repeatedly measured dependent variables. J. Am. Stat. Assoc. 2001, 96, 309–376. [Google Scholar] [CrossRef]
- Huang, J.; Wu, C.; Zhou, L. Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Stat. Sin. 2004, 14, 763–788. [Google Scholar]
- Wang, H.; Xia, Y. Shrinkage Estimation of the Varying Coefficient Model. J. Am. Stat. Assoc. 2009, 104, 747–757. [Google Scholar] [CrossRef]
- Wei, F.; Huang, J.; Li, H. Variable selection in high-dimensional varying-coefficient models. Stat. Sin. 2011, 21, 1515–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Qu, A. Variable Selection in High-dimensional Varying-coefficient Models with Global Optimality. J. Mach. Learn. Res. 2012, 13, 1973–1998. [Google Scholar]
- Song, R.; Yi, F.; Zou, H. On varying-coefficient independence screening for high-dimensional varying-coefficient models. Stat. Sin. 2014, 24, 1735–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Bai, Y.; Fung, W. Structural identification and variable selection in high-dimensional varying-coefficient models. J. Nonparametric Stat. 2017, 29, 258–279. [Google Scholar] [CrossRef]
- Ye, M.; Lu, Z.; Li, Y.; Song, X. Finite mixture of varying coefficient model: Estimation and component selection. J. Multivar. Anal. 2019, 171, 452–474. [Google Scholar] [CrossRef]
- Wu, C.; Zhong, P.S.; Cui, Y. Additive varying-coefficient model for nonlinear gene-environment interactions. Stat. Appl. Genet. Mol. Biol. 2017, 17, 2119–2126. [Google Scholar] [CrossRef]
- Wu, C.; Shi, X.; Cui, Y.; Ma, S. A penalized robust semiparametric approach for gene-environment interactions. Stat. Med. 2015, 34, 4016–4030. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Zhang, Q.; Ma, S. Structured gene-environment interaction analysis. Biometrics 2020, 76, 23–25. [Google Scholar] [CrossRef]
- Zhang, B.; Geng, J.; Lai, L. Multiple Change-Points Estimation in Linear Regression Models via Sparse Group Lasso. IEEE Trans. Signal Process. 2015, 63, 2209–2224. [Google Scholar] [CrossRef]
- Kaul, A.; Jandhyala, V.; Fotopoulos, S. Detection and estimation of parameters in high dimensional multiple change point regression models via ℓ1/ℓ0 regularization and discrete optimization. IEEE Trans. Signal Process. 2019, arXiv:1906.04396. [Google Scholar]
- Lee, S.; Seo, M.; Shin, Y. The lasso for high dimensional regression with a possible change point. J. R. Stat. Soc. 2016, 78, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hu, J.; Jing, B.Y.; Zhang, Z. Spline-Lasso in High-Dimensional Linear Regression. J. Am. Stat. Assoc. 2016, 111, 288–297. [Google Scholar] [CrossRef]
- Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and Smoothness via the Fused Lasso. J. R. Stat. Soc. B 2010, 67, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H.; Geer, S. The Smooth-Lasso and other ℓ1+ℓ2-penalized methods. Electron. J. Stat. 2011, 5, 1184–1226. [Google Scholar]
- Huang, J.; Ma, S.; Zhang, C. Adaptive LASSO for sparse high-dimensional regression. Stat. Sin. 2008, 18, 1603–1618. [Google Scholar]
- Martinussen, T.; Scheike, T. Covariate Selection for the Semiparametric Additive Risk Model. Scand. J. Stat. 2009, 36, 602–619. [Google Scholar] [CrossRef]
- Binkiewicz, N.; Vogelstein, J. Covariate-assisted spectral clustering. Biometrika 2017, 104, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Huang, J. Consistent Group Selection in High-Dimensional Linear Regression. Bernoulli 2010, 16, 1369–1384. [Google Scholar] [CrossRef] [Green Version]
- Shao, F.; Li, J.; Ma, S.; Lee, M.L.T. Semiparametric varying-coefficient model for interval censored data with a cured proportion. Stat. Med. 2014, 33, 1700–1712. [Google Scholar] [CrossRef]
- Mu, Y.; Li, J.; Ma, S. Sparse boosting for high-dimensional survival data with varying coefficients. Stat. Med. 2017, 37, 789–800. [Google Scholar]
- Song, R.; Yi, F.; Zou, H. Correlation Between Prognostic Factors and Increasing Age in Melanoma. Ann. Surg. Oncol. 2004, 11, 259–264. [Google Scholar]
- Molony, C.; Sieberts, S.K.; Schadt, E.E. Processing Large-Scale, High-Dimension Genetic and Gene Expression Data; Springer Press: Berlin/Heidelberg, Germany, 2009; pp. 307–330. [Google Scholar]
- Ronit, L. Endothelin receptor B is required for the expansion of melanocyte precursors and malignant melanoma. Int. J. Dev. Biol. 2005, 49, 173–180. [Google Scholar]
- Shi, X.; Nie, F.; Wang, Z.; Sun, M. Pseudogene-expressed RNAs: A new frontier in cancers. Tumor Biol. 2016, 37, 1471–1478. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, J.; Chen, G.; Ardekani, G.S.; Rotte, A.; Martinka, M.; Xu, X.; McElwee, K.J.; Zhang, G.; Zhou, Y. Stage-specific prognostic biomarkers in melanoma. Oncotarget 2015, 6, 4180–4189. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiang, H.; Dai, D.; Su, M.; Martinka, M.; Brasher, P.; Zhang, Y.; McLean, D.; Zhang, J.; Ip, W.; et al. Alpha 1 antichymotrypsin is aberrantly expressed during melanoma progression and predicts poor survival for patients with metastatic. Pigment. Cell Melanoma Res. 2010, 23, 575–578. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, Y.; Tang, L.; Martinka, M.; Kalia, S. Up-regulation of SERPINA3 correlates with high mortality of melanoma patients and increased migration and invasion of cancer cells. Oncotarget 2017, 8, 18712–18725. [Google Scholar] [CrossRef] [Green Version]
- Foy, J.P.; Pickering, C.R.; Papadimitrakopoulou, V.A.; Jelinek, J.; Lin, S.H.; William, W.N.; Frederick, M.J.; Wang, J.; Lang, W.; Feng, L.; et al. New DNA methylation markers and global DNA hypomethylation are associated with oral cancer development. Cancer Prev. Res. 2015, 8, 1027–1035. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Xia, Z.; Ye, C.; Lu, C.; Zhou, S.; Pan, J.; Liu, C.; Zhang, J.; Liu, T.; Hu, T.; et al. AGTR1 promotes lymph node metastasis in breast cancer by upregulating CXCR4/SDF-1α and inducing cell migration and invasion. Aging 2019, 11, 3969–3992. [Google Scholar] [CrossRef]
- Guo, S.; Yan, F.; Xu, J.; Bao, Y.; Zhu, J.; Wang, X.; Wu, J.; Li, Y.; Pu, W.; Liu, Y.; et al. Identification and validation of the methylation biomarkers of non-small cell lung cancer. Clin. Epigenetics 2015, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Wei, L. The accelerated failure time model: A useful alternative to the cox regression model in survival analysis. Stat. Med. 1992, 11, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
Scenario | Method | TP | FP | RMSE | RPE |
---|---|---|---|---|---|
1 | Lasso | 14.57 (1.39) | 0.30 (0.67) | 6.56 (0.69) | 12.92 (1.80) |
AdLasso | 16.64 (1.22) | 0.71 (0.95) | 4.69 (0.34) | 8.41 (0.47) | |
IVIS | 13.76 (1.31) | 3.29 (0.66) | 5.91 (0.74) | 11.17 (0.84) | |
New-Lasso | 18.45 (1.36) | 0.17 (0.03) | 2.34 (0.21) | 1.92 (0.29) | |
New-Mar | 16.14 (2.16) | 1.84 (0.53) | 3.98 (0.43) | 3.52 (0.38) | |
2 | Lasso | 14.43 (1.45) | 0.00 (0.00) | 6.30 (0.86) | 12.38 (2.12) |
AdLasso | 17.50 (0.86) | 0.69 (0.84) | 4.74 (0.48) | 8.54 (0.62) | |
IVIS | 14.20 (0.92) | 3.10 (0.88) | 5.85 (0.66) | 10.23 (0.90) | |
New-Lasso | 19.76 (0.44) | 0.00 (0.00) | 0.98 (0.20) | 1.02 (0.32) | |
New-Mar | 18.03 (1.88) | 2.40 (0.42) | 2.82 (0.53) | 2.34 (0.40) | |
3 | Lasso | 14.35 (1.76) | 0.15 (0.37) | 7.24 (0.90) | 13.70 (2.42) |
AdLasso | 16.90 (1.27) | 0.30 (0.53) | 5.44 (0.66) | 9.64 (0.91) | |
IVIS | 14.99 (0.89) | 3.58 (0.91) | 6.32 (0.71) | 11.37 (0.96) | |
New-Lasso | 19.81 (0.41) | 0.00 (0.00) | 1.02 (0.21) | 1.02 (0.39) | |
New-Mar | 18.11 (1.02) | 4.44 (0.31) | 3.74 (0.42) | 2.80 (0.58) | |
4 | Lasso | 17.57 (1.73) | 0.10 (0.31) | 7.08 (0.95) | 12.90 (2.00) |
AdLasso | 17.34 (1.15) | 0.16 (0.46) | 5.77 (0.55) | 10.35 (0.75) | |
IVIS | 15.28 (0.81) | 4.58 (1.65) | 6.11 (0.62) | 12.78 (0.82) | |
New-Lasso | 20.00 (0.00) | 0.00 (0.00) | 0.54 (0.06) | 0.68 (0.04) | |
New-Mar | 19.14 (1.18) | 9.24 (2.59) | 2.38 (0.59) | 1.56 (0.22) | |
5 | Lasso | 20.00 (0.00) | 0.10 (0.31) | 0.43 (0.06) | 0.82 (0.09) |
AdLasso | 16.74 (1.23) | 0.70 (0.64) | 6.04 (0.40) | 8.36 (0.50) | |
IVIS | 15.62 (0.88) | 3.38 (0.96) | 5.93 (0.56) | 10.14 (0.63) | |
New-Lasso | 20.00 (0.00) | 0.00 (0.00) | 0.54 (0.07) | 0.70 (0.04) | |
New-Mar | 18.30 (1.34) | 4.40 (0.74) | 2.58 (0.37) | 2.04 (0.26) | |
6 | Lasso | 15.56 (2.46) | 0.24 (0.91) | 6.42 (1.04) | 11.98 (2.22) |
AdLasso | 16.64 (1.19) | 0.18 (0.44) | 5.21 (0.47) | 9.41 (0.74) | |
IVIS | 14.37 (1.02) | 3.16 (1.05) | 6.01 (0.69) | 10.79 (0.95) | |
New-Lasso | 19.65 (0.59) | 0.00 (0.00) | 1.16 (0.25) | 1.08 (0.24) | |
New-Mar | 18.14 (1.53) | 4.24 (1.77) | 3.12 (0.49) | 2.46 (0.35) | |
7 | Lasso | 14.64 (2.48) | 0.16 (0.49) | 6.68 (0.92) | 12.58 (2.03) |
AdLasso | 16.05 (1.43) | 0.10 (0.36) | 5.33 (0.49) | 9.58 (0.65) | |
IVIS | 15.05 (1.14) | 2.94 (0.83) | 5.98 (0.68) | 11.16 (0.88) | |
New-Lasso | 19.77 (0.55) | 0.00 (0.00) | 1.02 (0.22) | 1.00 (0.35) | |
New-Mar | 17.65 (1.57) | 4.04 (1.88) | 3.38 (0.34) | 2.72 (0.25) | |
8 | Lasso | 16.50 (2.44) | 0.50 (0.41) | 6.08 (1.17) | 11.04 (2.41) |
AdLasso | 16.06 (1.46) | 0.12 (0.33) | 5.38 (0.46) | 9.63 (0.69) | |
IVIS | 14.70 (1.19) | 3.32 (1.12) | 6.19 (0.73) | 11.24 (1.04) | |
New-Lasso | 19.50 (0.69) | 0.00 (0.00) | 1.36 (0.33) | 1.24 (0.25) | |
New-Mar | 17.63 (1.63) | 3.40 (0.30) | 3.50 (0.33) | 2.84 (0.33) | |
9 | Lasso | 15.41 (2.03) | 2.60 (1.41) | 6.72 (1.10) | 5.66 (1.02) |
AdLasso | 15.74 (1.57) | 0.41 (0.62) | 7.62 (0.32) | 9.38 (0.52) | |
IVIS | 14.24 (1.32) | 4.63 (1.39) | 7.43 (1.07) | 11.02 (1.19) | |
New-Lasso | 18.30 (1.49) | 0.00 (0.00) | 2.52 (0.11) | 1.56 (0.59) | |
New-Mar | 14.45 (2.01) | 10.00 (2.97) | 5.52 (0.92) | 2.58(0.68) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Zhang, Y.; Sun, Y. A Penalization Method for Estimating Heterogeneous Covariate Effects in Cancer Genomic Data. Genes 2022, 13, 702. https://doi.org/10.3390/genes13040702
Luo Z, Zhang Y, Sun Y. A Penalization Method for Estimating Heterogeneous Covariate Effects in Cancer Genomic Data. Genes. 2022; 13(4):702. https://doi.org/10.3390/genes13040702
Chicago/Turabian StyleLuo, Ziye, Yuzhao Zhang, and Yifan Sun. 2022. "A Penalization Method for Estimating Heterogeneous Covariate Effects in Cancer Genomic Data" Genes 13, no. 4: 702. https://doi.org/10.3390/genes13040702
APA StyleLuo, Z., Zhang, Y., & Sun, Y. (2022). A Penalization Method for Estimating Heterogeneous Covariate Effects in Cancer Genomic Data. Genes, 13(4), 702. https://doi.org/10.3390/genes13040702