Transcriptome Analysis of Fusarium Root-Rot-Resistant and -Susceptible Alfalfa (Medicago sativa L.) Plants during Plant–Pathogen Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Screening of Susceptible and Resistant Alfalfa Plants
2.3. Determination of Sampling Time and Sample Collection for RNA-Seq
2.4. Transcriptome Sequencing
2.5. Differential Gene Expression Analysis of Alfalfa
2.6. Differential Gene Expression Analysis of F. proliferatum L1
2.7. Real-Time Quantitative PCR (qRT-PCR) Analysis of the DEGs
3. Results
3.1. Screening of Experimental Plants and Determination of Sampling Time
3.2. Alfalfa Sequence Analysis and Alignment with the Reference Genome
3.3. DEGs between Resistant and Susceptible Clonal Lines in Uninoculated or Inoculated Conditions
3.4. Transcriptional Changes in Response to F. proliferatum L1 Inoculation
3.5. Common Transcriptional Changes in Response to the Inoculation of Resistant and Susceptible Clonal Lines
3.6. Clonal Line Type-Specific Transcriptional Changes in Response to Inoculation
3.7. F. proliferatum L1 Genes Were Enriched in Resistant and Susceptible Clonal Lines after Inoculation
3.8. Validation of RNA-Seq Data by qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, L.Q.; Li, Z.; Yang, C.; Yuan, Q.H.; Wang, Y.; Miao, L.H. Identification and biological characteristics of Fusarium sporotrichioide isolated from Medicago sativa root. Acta Pratacult. Sin. 2015, 24, 88–98. [Google Scholar] [CrossRef]
- Couture, L.; Dhont, C.; Chalifour, F.P.; Drapeau, R.; Fusarium, P. Fusarium root and crown rot in alfalfa subjected to autumn harvests. Can. J. Plant Sci. 2002, 82, 621–624. [Google Scholar] [CrossRef]
- Hawn, E.J. Studies on the epidemiology of crown bud rot of alfalfa in southern alberta. Can. J. Bot. 1958, 36, 239–250. [Google Scholar] [CrossRef]
- Leath, K.T. Fusarium root rot of forage species: Pathogenicity and host range. Phytopathology 1978, 68, 826–831. [Google Scholar] [CrossRef]
- EL-NASR, H.I.S. Crown and root fungal diseases of alfalfa in Egypt. Plant Dis. 1983, 67, 509–511. [Google Scholar] [CrossRef]
- Uddin, W. Fusarium species associated with crown rot of alfalfa in Nevada. Plant Dis. 1991, 75, 51–56. [Google Scholar] [CrossRef]
- Nan, Z. Legume forage root rot. Grassl. Turf 1991, 2, 5–11. [Google Scholar]
- Yang, J.; Wang, F.; Wen, Y.; Gao, S.; Lu, C.; Liu, Y.; Liu, H. First report of Fusarium proliferatum causing root rot disease in Salvia miltiorrhizae in China. Plant Dis. 2020, 105, 1210. [Google Scholar] [CrossRef]
- Prabhukarthikeyan, S.R.; Keerthana, U.; Krishnan, N.; Yadav, M.K.; Parameswaran, C.; Panneerselvam, P.; Rath, P.C. First report of Fusarium proliferatum causing sheath rot disease of rice in Eastern India. Plant Dis. 2020, 105, 704. [Google Scholar] [CrossRef]
- Beck, K.; Reyes Corral, C.A.; Rodriguez-Rodriguez, M.; May, C.; Barnett, R.; Thornton, M.; Bates, A.A.; Woodhall, J.W.; Schroeder, B.K. First report of Fusarium proliferatum causing necrotic leaf lesions and bulb rot on storage onion (Allium cepa) in southwestern Idaho. Plant Dis. 2020, 105, 494. [Google Scholar] [CrossRef]
- Alananbeh, K.; Tahat, M.M.; Al-Taweel, H. First report of Fusarium proliferatum on date palm (Phoenix dactylifera L.) in Jordan. Plant Dis. 2021, 105, 4159. [Google Scholar] [CrossRef] [PubMed]
- Palmero, D. Fusarium proliferatum isolated from garlic in Spain: Identification, toxigenic potential and pathogenicity on related Allium species. Phytopathol. Mediterr. 2012, 51, 207–212. [Google Scholar]
- Rheeder, J.P.; Marasas, W.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Micro. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Serna, J.; Gálvez, L.; París, M.; Palmero, D. Fusarium proliferatum from rainwater and rooted garlic show genetic and pathogenicity differences. Eur. J. Plant Pathol. 2016, 146, 199–206. [Google Scholar] [CrossRef]
- Isack, Y.; Benichis, M.; Gillet, D.; Gamliel, A. A selective agar medium for isolation, enumeration and morphological identification of Fusarium proliferatum. Phytoparasitica 2014, 42, 541–547. [Google Scholar] [CrossRef]
- Nguyen, T.; Dehne, H.W.; Steiner, U. Histopathological assessment of the infection ofmaize leaves by Fusarium graminearum, F.proliferatum, and F. verticillioides. Fungal Biol. 2016, 120, 1094–1104. [Google Scholar] [CrossRef]
- Jones, J.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef]
- Cong, L.-L.; Sun, Y.; Long, R.-C.; Kang, J.M.; Zhang, T.-J.; Li, M.N.; Wang, Z.; Yang, Q.-C. Modulation of protein expression in alfalfa (Medicago sativa L.) root and leaf tissues by Fusarium proliferatum. J. Integr. Agric. 2017, 16, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.H.; Stephen, S.; Kazan, K.; Jin, G.; Fan, L.; Taylor, J.; Dennis, E.S.; Helliwell, C.A.; Wang, M.B. Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 2013, 512, 259–266. [Google Scholar] [CrossRef]
- Perazzolli, M.; Moretto, M.; Fontana, P.; Ferrarini, A.; Velasco, R.; Moser, C.; Delledonne, M.; Pertot, I. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genom. 2012, 13, 660. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Liu, K.; Kang, J.; Xu, K.; Zhang, Y.; Hu, L.; Zhang, J.; Li, C. Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Front. Plant Sci. 2015, 6, 428. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.S.; Zhu, H.Y.; Bai, Y.B.; Hui, L.; Cheng, Z.M. RNA sequencing-based transcriptome analysis of mature strawberry fruit infected by necrotrophic fungal pathogen Botrytis cinerea. Physiol. Mol. Plant Pathol. 2018, 104, 77–85. [Google Scholar] [CrossRef]
- Gómez-Cano, F.; Soto, J.; Restrepo, S.; Bernal, A.; López-Kleine, L.; López, C. Gene co-expression network for xanthomonas-challenged cassava reveals key regulatory elements of immunity processes. Eur. J. Plant Pathol. 2018, 153, 1083–1104. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, C.; Niu, X.; Zhang, M.; Wei, X. Detecting novel loci underlying rice blast resistance by integrating a genome-wide association study and RNA sequencing. Mol. Breed. 2019, 39, 81. [Google Scholar] [CrossRef] [Green Version]
- Sari, E.; Cabral, A.L.; Polley, B.; Tan, Y.; Fobert, P.R. Weighted gene co-expression network analysis unveils gene networks associated with the Fusarium head blight resistance in tetraploid wheat. BMC Genom. 2019, 20, 925. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Mideros, S.X.; Jamann, T.M. Differential regulation of maize and sorghum orthologs in response to the fungal pathogen Exserohilum turcicum. Front. Plant Sci. 2021, 12, 675208. [Google Scholar] [CrossRef] [PubMed]
- Baetsen-Young, A.; Chen, H.; Shiu, S.H.; Day, B. Contrasting transcriptional responses to Fusarium virguliforme colonization in symptomatic and asymptomatic hosts. Plant Cell 2021, 33, 224–247. [Google Scholar] [CrossRef]
- Hoseinzadeh, A.H.; Soorni, A.; Shoorooei, M.; Torkzadeh Mahani, M.; Maali Amiri, R.; Allahyari, H.; Mohammadi, R. Comparative transcriptome provides molecular insight into defense-associated mechanisms against spider mite in resistant and susceptible common bean cultivars. PLoS ONE 2020, 15, e0228680. [Google Scholar] [CrossRef]
- Xu, L.; Nicolaisen, M.; Larsen, J.; Zeng, R.; Gao, S.; Dai, F. Pathogen infection and host-resistance interactively affect root-associated fungal communities in watermelon. Front. Microbiol. 2020, 11, 605622. [Google Scholar] [CrossRef]
- Lanubile, A.; Ferrarini, A.; Maschietto, V.; Delledonne, M.; Marocco, A.; Bellin, D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genom. 2014, 15, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, S.; Label, P.; Garcia, D.; Montoro, P.; Pujade-Renaud, V. Transcriptome profiling in susceptible and tolerant rubber tree clones in response to cassiicolin Cas1, a necrotrophic effector from Corynespora cassiicola. PLoS ONE 2021, 16, e0254541. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, Y.; Acharya, A.; Jiang, Q.; Kang, J.; Brummer, E.C. A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3 Genes Genomes Genet. 2014, 4, 1971–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, L.L.; Sun, Y.; Kang, J.M.; Li, M.N.; Long, R.C.; Zhang, T.J.; Yang, Q.C. First report of root rot disease caused by Fusarium proliferatum on alfalfa in China. Plant Dis. 2016, 100, 2526. [Google Scholar] [CrossRef]
- Wang, B.; Jeffers, S.N. Fusarium Root and Crown Rot: A disease of container-grown hostas. Plant Dis. 2000, 84, 980–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, L.L.; Sun, Y.; Wang, Z.; Kang, J.M.; Yang, Q.C. A rapid screening method for evaluating resistance of alfalfa (Medicago sativa L.) to Fusarium root rot. Can. J. Plant Pathol. 2017, 40, 61–69. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, W.; Liu, Y.; Li, S.; Yao, W.; Sun, X.; Li, S.; Ma, L.; Sun, J.; Yang, Q.; et al. De novo hydroponics system efficiency for the cuttings of alfalfa (Medicago sativa L.). Physiol. Mol. Biol. Plants 2021, 27, 1413–1421. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Kong, M.; Freeman, A.; Chen, H.; Liu, F. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. Plant Cell Environ. 2021, 44, 1716–1727. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Z.; Zhang, X.; Wang, M.; Zhang, L.; Zheng, K.; Liu, J.; Hu, X.; Di, C.; Qian, Q.; et al. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat. Plants 2019, 5, 389–400. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, Y.; Yang, Y.; Huang, L.; Tang, B.; Zhang, H.; Hao, F.; Liu, W.; Li, Y.; Liu, Y.; et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat. Commun. 2020, 11, 2494. [Google Scholar] [CrossRef]
- Huang, W.; Chung, H.Y.; Xuan, W.; Wang, G.; Li, Y. The cholesterol-lowering activity of miracle fruit (Synsepalum dulcificum). J. Food Biochem. 2020, 44, e13185. [Google Scholar] [CrossRef] [PubMed]
- Swamy, K.B.; Hadi, S.A.; Sekaran, M.; Pichika, M.R. The clinical effects of Synsepalum dulcificum: A review. J. Med. Food 2014, 17, 1165–1169. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Z.; Xu, H.; Chen, Y.; Du, P.; Li, P.; Lai, W.; Hu, H.; Luo, J.; Ding, Y. The chromosome-level genome of miracle fruit (Synsepalum dulcificum) provides new insights into the evolution and function of miraculin. Front. Plant Sci. 2021, 12, 804662. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Heard, W.; Mbengue, M.; Robatzek, S. The INs and OUTs of pattern recognition receptors at the cell surface. Curr. Opin. Plant Biol. 2012, 15, 367–374. [Google Scholar] [CrossRef]
- Zipfel, C.; Kunze, G.; Chinchilla, D.; Caniard, A.; Jones, J.D.; Boller, T.; Felix, G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 2006, 125, 749–760. [Google Scholar] [CrossRef]
- Romeis, T. Protein kinases in the plant defense response. Curr. Opin. Plant Biol. 2001, 4, 407–414. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; Petersen, M.; Mundy, J. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 2010, 61, 621–649. [Google Scholar] [CrossRef]
- Romeis, T.; Ludwig, A.A.; Martin, R.; Jones, J. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J. 2014, 20, 5556–5567. [Google Scholar] [CrossRef] [Green Version]
- Asai, T.; Tena, G.; Plotnikova, J.; Willmann, M.R.; Chiu, W.L.; Gomez-Gomez, L.; Boller, T.; Ausubel, F.M.; Sheen, J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002, 415, 977–983. [Google Scholar] [CrossRef]
- Gao, M.; Liu, J.; Bi, D.; Zhang, Z.; Cheng, F.; Chen, S.; Zhang, Y. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 2008, 18, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Zong, X.; Ren, P.; Qian, Y.; Fu, A. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 7152. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Reddy, M.S.; Wang, L. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Lattanzino, V.; Lattanzino, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 2006, 37, 23–67. [Google Scholar]
- Sperschneider, J.; Gardiner, D.M.; Thatcher, L.F.; Lyons, R.; Singh, K.B.; Manners, J.M.; Taylor, J.M. Genome-Wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol. Evol. 2015, 7, 1613–1627. [Google Scholar] [CrossRef]
- Gao, M.; Yao, S.; Liu, Y.; Yu, H.; Xu, P.; Sun, W.; Pu, Z.; Hou, H.; Bao, Y. Transcriptome analysis of tomato leaf spot pathogen Fusarium proliferatum: De novo assembly, expression profiling, and identification of candidate Effectors. Int. J. Mol. Sci. 2017, 19, 31. [Google Scholar] [CrossRef] [Green Version]
- Hogenhout, S.A.; Van der Hoorn, R.A.; Terauchi, R.; Kamoun, S. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 2009, 22, 115–122. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, Z.; Dan, Z.; Zhang, L.; Xu, M.; Yang, G.; Chai, M.; Li, Z.; Xie, H.; Cong, L. Transcriptome Analysis of Fusarium Root-Rot-Resistant and -Susceptible Alfalfa (Medicago sativa L.) Plants during Plant–Pathogen Interactions. Genes 2022, 13, 788. https://doi.org/10.3390/genes13050788
Zhang W, Wang Z, Dan Z, Zhang L, Xu M, Yang G, Chai M, Li Z, Xie H, Cong L. Transcriptome Analysis of Fusarium Root-Rot-Resistant and -Susceptible Alfalfa (Medicago sativa L.) Plants during Plant–Pathogen Interactions. Genes. 2022; 13(5):788. https://doi.org/10.3390/genes13050788
Chicago/Turabian StyleZhang, Wenyu, Zicheng Wang, Zhencuo Dan, Lixia Zhang, Ming Xu, Guofeng Yang, Maofeng Chai, Zhenyi Li, Hongli Xie, and Lili Cong. 2022. "Transcriptome Analysis of Fusarium Root-Rot-Resistant and -Susceptible Alfalfa (Medicago sativa L.) Plants during Plant–Pathogen Interactions" Genes 13, no. 5: 788. https://doi.org/10.3390/genes13050788
APA StyleZhang, W., Wang, Z., Dan, Z., Zhang, L., Xu, M., Yang, G., Chai, M., Li, Z., Xie, H., & Cong, L. (2022). Transcriptome Analysis of Fusarium Root-Rot-Resistant and -Susceptible Alfalfa (Medicago sativa L.) Plants during Plant–Pathogen Interactions. Genes, 13(5), 788. https://doi.org/10.3390/genes13050788