Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Diet and Samples Collection
2.2. Determination of Fatty Acid Content in Subcutaneous Fat
2.3. Proteomics Analyses
2.3.1. Protein Extraction and Sodium Dodecyl Sulfate-Polyacrylamide Gel (SDS-PAGE)
2.3.2. Digestion with Trypsin and Tandem Mass Tag (TMT) Labeling
2.3.3. Reverse-Phase Liquid Chromatography (RPLC) Separation and Mass Spectrometry (MS) Analysis
2.4. Liquid Chromatography–Parallel Reaction Monitoring–Mass Spectrometry (LC-PRM-MS) Analysis
2.5. Statistical Analysis
3. Results
3.1. Fatty Acid Content in Yak Subcutaneous Fat
3.2. Protein Quantification and Identification
3.3. Functional Enrichment Analysis of Differentially Expressed Proteins (DEPs)
3.4. Correlation of UFA Content with Crucial Protein Abundance
3.5. Quantitative Results of DEPs by LC-PRM-MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Ethics Approval And Consent To Participate
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, C.L.; Gao, C.Q.; Wang, Q.; Zhang, Z.M.; Xu, Y.L.; Li, H.C.; Yan, H.C.; Wang, X.Q. Effects of pioglitazone hydrochloride and vitamin E on meat quality, antioxidant status and fatty acid profiles in finishing pigs. Meat Sci. 2018, 145, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, C.; Belsito, E.; Marco, R.D.; Gioia, M.L.D.; Leggio, A.; Liguori, A. Quantitative determination of fatty acid chain composition in pork meat products by high resolution 1H NMR spectroscopy. Food Chem. 2013, 136, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Berton, M.P.; Fonseca, L.F.S.; Gimenez, D.F.J.; Utembergue, B.L.; Cesar, A.S.M.; Coutinho, L.L.; Baldi, F. Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genom. 2016, 17, 972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.H.; Ekine-Dzivenu, C.; Vinsky, M.; Basara, J.; Aalhus, J.; Dugan, M.E.R.; Li, C.X. Genome-wide association and genomic prediction of breeding values for fatty acid composition in subcutaneous adipose and longissimus lumborum muscle of beef cattle. BMC Genet. 2015, 16, 135. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Huang, Z.Y.; Liu, H.N.; Zhang, Y.; Ren, F.Z. Yak milk fat globules from the Qinghai-Tibetan Plateau: Membrane lipid composition and morphological properties. Food Chem. 2018, 245, 731–737. [Google Scholar] [CrossRef]
- Luo, X.L.; Tong, Z.B.; Wei, Y.P.; Zhao, X.Q. Meat characteristics of Qinghai yak and semi-wild yak. Anim. Sci. J. 2006, 77, 230–234. [Google Scholar] [CrossRef]
- Lang, Y.M.; Sha, K.; Zhang, R.; Xie, P.; Luo, X.; Sun, B.Z.; Liu, X. Effect of electrical stimulation and hot boning on the eating quality of Gannan yak longissimus lumborum. Meat Sci. 2016, 112, 3–8. [Google Scholar] [CrossRef]
- Guo, S.K.; Cao, M.L.; Wang, X.D.; Yan, P.; Guo, X. Analysis of Meat Quality and Nutritional Components of Gannan Yak. China Herbiv. Sci. 2021, 41, 13–17. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M.; Jammas, M.A.; Bonnet, M. Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices. J. Proteom. 2019, 200, 1–10. [Google Scholar] [CrossRef]
- Cesar, A.S.M.; Regitano, L.C.A.; Poleti1, M.D.; Andrade, S.C.S.; Tizioto, P.C.; Oliveira, P.S.N.; Coutinho, L.L. Differences in the skeletal muscle transcriptome profile associated with extreme values of fatty acids content. BMC Genom. 2016, 17, 961. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.K.; Cho, S.; Lee, S.H.; Park, H.R.; Lee, C.S.; Cho, Y.M.; Park, E.W. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci. 2008, 80, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.H.P.; Rodrigues, R.T.S.; Assis, D.E.F.; Benedeti, P.D.B.; Duarte, M.S.; Chizzotti, M.L. Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. J. Proteom. 2019, 199, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Morton, J.D.; Clerens, S.; Dyer, J.M. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting. Meat Sci. 2016, 119, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, W.J.; Xie, S.X.; Liu, Y.; Xu, D.D.; Chen, G.; Xu, Y.J. Multi-omics analysis of brain tissue metabolome and proteome reveals the protective effect of gross saponins of Tribulus terrestris L. fruit against ischemic stroke in rat. J. Ethnopharmacol. 2021, 278, 114280. [Google Scholar] [CrossRef] [PubMed]
- Zhai, C.Y.; Djimsa, B.A.; Brown, K.; Prenni, J.E.; Woerner, D.R.; Belk, K.E.; Nair, M.N. Tandem mass tagged dataset used to characterize muscle-specific proteome changes in beef during early postmortem period. J. Proteom. 2020, 32, 106064. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.B.; Yang, S.P.; Li, X.; Liu, X.-F.; Zhang, L.L.; Ding, X.B.; Guo, H. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen. Comp. Endocrinol. 2020, 291, 113237. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Z.; Wu, J.P.; Zhao, S.G.; Casper, D.P.; He, B.; Liu, T. The effect of energy restriction on fatty acid profiles of longissimus dorsi and tissue adipose depots in sheep. J. Anim. Sci. 2017, 95, 3940–3948. [Google Scholar] [CrossRef]
- Candiano, G.; Bruschi, M.; Musante, L. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef]
- Tan, S.H.; Reverter, A.; Wang, Y.H.; Byrne, K.A.; McWilliam, S.M.; Lehnert, S.A. Gene expression profiling of bovine in vitro adipogenesis using a cDNA microarray. Funct. Integr. Genom. 2006, 6, 235–249. [Google Scholar] [CrossRef]
- Sobczuk-Szul, M.; Mochol, M.; Nogalski, Z.; Pogorzelska-Przybyłek, P. Fatty acid profile as affected by fat depot and the sex category of Polish Holstein-Friesian × Limousin fattening cattle fed silage ad libitum. Anim. Sci. J. 2021, 92, e13516. [Google Scholar] [CrossRef] [PubMed]
- Weech, M.; Vafeiadou, K.; Hasaj, M.; Todd, S.; Yaqoo, P.; Jackson, K.G.; Lovegrove, J.A. Development of a food-exchange model to replace saturated fat with MUFAs and n-6 PUFAs in adults at moderate cardiovascular risk. J. Nutr. 2014, 144, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Schenker, S. UK recommendations for dietary fat: Should they be reassessed in light of the recent joint FAO/WHO recommendations? Nutr. Bull. 2012, 37, 37–46. [Google Scholar] [CrossRef]
- Gunn, K.H.; Roberts, B.S.; Wang, F.B.; Strauss, J.D.; Borgnia, M.J.; Egelman, E.H.; Neher, S.B. The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage. Proc. Natl. Acad. Sci. USA 2020, 117, 10254–10264. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaka, T.; Shimano, H. Elovl6: A new player in fatty acid metabolism and insulin sensitivity. J. Mol. Med. 2009, 87, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.B.; Wu, M.; Zhu, J.J.; Zhang, C.H.; Yao, D.W.; Luo, J.; Loor, J.J. Fatty acid elongase 6 plays a role in the synthesis of long-chain fatty acids in goat mammary epithelial cells. J. Dairy Sci. 2017, 100, 4987–4995. [Google Scholar] [CrossRef] [Green Version]
- Junjvliekea, Z.; Khana, R.; Meia, C.; Cheng, G.; Wang, S.H.; Razaa, S.H.A.; Zan, L.S. Effect of ELOVL6 on the lipid metabolism of bovine adipocytes. Genomics 2020, 112, 2282–2290. [Google Scholar] [CrossRef]
- Flowers, M.T.; Ntambi, J.M. Role of stearoyl-coenzyme Adesaturase in regulating lipid metabolism. Curr. Opin. Lipidol. 2018, 19, 248–256. [Google Scholar] [CrossRef] [Green Version]
- John, L.C.S.; Lunt, D.K.; Smith, S.B. Fatty acid elongation and desaturation enzyme activities of bovine liver and subcutaneous adipose tissue microsomes. J. Anim. Sci. 1991, 69, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Dan, N.; Ao, C.J.; Wang, S.Z.; Erdene, K.; Ashraf, M.U. Effects of exogenous C18 unsaturated fatty acids on milk lipid synthesis in bovine mammary epithelial cells. J. Dairy Res. 2020, 87, 344–348. [Google Scholar] [CrossRef]
- Beare-Rogers, J.; Dieffenbacher, A.; Holm, J.V. Lexicon of lipid nutrition (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 685–744. [Google Scholar] [CrossRef]
- Rossi, R.; Pastorelli, G.; Cannata, S.; Corino, C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Anim. Feed Sci. Tech. 2010, 162, 1–11. [Google Scholar] [CrossRef]
- Ikeda, M.; Kanao, Y.; Yamanaka, M.; Sakuraba, H.; Mizutania, Y.; Igarashi, Y.; Kihara, A. Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis. FEBS Lett. 2008, 582, 2435–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawai, M.; Uchida, Y.; Ohno, Y.; Miyamoto, M.; Nishioka, C.; Itohara, S.; Kihara, A. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways. J. Biol. Chem. 2017, 292, 15538–15551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.S.; Færgeman, N.J.; Kragelund, B.B.; Knudsen, J. Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells. Biochem. J. 2008, 410, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Chye, M.-L. An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol. Biochem. 2009, 47, 479–484. [Google Scholar] [CrossRef]
- Yu, X.; Fang, X.B.; Xiao, H.; Zhao, Z.H.; Maak, S.; Wang, M.Y.; Yang, R.J. The effect of acyl-CoA synthetase long-chain family member 5 on triglyceride synthesis in bovine preadipocytes. Arch. Anim. Breed. 2019, 62, 257–264. [Google Scholar] [CrossRef]
- Tong, F.; Black, P.N.; Coleman, R.A.; DiRusso, C.C. Fatty acid transport by vectorial acylation in mammals: Roles played by diVerent isoforms of rat long-chain acyl-CoA synthetases. Arch. Biochem. Biophys. 2006, 447, 46–52. [Google Scholar] [CrossRef]
- Liu, R.L.; Liu, X.X.; Bai, X.J.; Xiao, C.Z.; Dong, Y.J. A Study of the Regulatory Mechanism of the CB1/PPARγ2/PLIN1/HSL Pathway for Fat Metabolism in Cattle. Front. Genet. 2021, 12, 631187. [Google Scholar] [CrossRef]
- Oh, D.P.; Lee, J.Y.; Jang, J.E.; Lee, S.U. Genetic effects of sterol regulatory element binding proteins and fatty acid-binding protein4 on the fatty acid composition of Korean cattle (Hanwoo). Asian-Australas. J. Anim. Sci. 2017, 30, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Peng, X.; Zhu, Y.; Yan, X.; Chen, W.; Lin, X. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein. J. Virol. 2015, 90, 1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravnskjaer, K.; Frigerio, F.; Boergesen, M.; Nielsen, T.; Maechler, P.; Mandrup, S.; Mandrup, S. PPARdelta is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J. Lipid Res. 2010, 51, 1370–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczepańska, A.A.; Łupicka, M.; Korzekwa, A.J. Do arachidonic acid metabolites affect apoptosis in bovine endometrial cells with silenced PPAR genes? Prostaglandins Other Lipid Mediat. 2019, 143, 106336. [Google Scholar] [CrossRef] [PubMed]
- Lange, P.D.; Lombardi, A.; Silvestri, E.; Goglia, F.; Lanni, A.; Moreno, M.; Moreno, M. Peroxisome Proliferator-Activated Receptor Delta: A Conserved Director of Lipid Homeostasis through Regulation of the Oxidative Capacity of Muscle. PPAR Res. 2008, 2008, 172676. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, Y.; Wang, X.Y.; Qiu, J.; Liang, C.C.; Cheng, G.; Li, A. Bovine Stearoyl-CoA Desaturase 1 Promotes Adipogenesis by Activating the PPARγ Receptor. J. Agric. Food Chem. 2020, 68, 12058–12066. [Google Scholar] [CrossRef]
- Zhang, H.M.; Shen, Z.L.; Yang, Z.D.; Jiang, H.; Chu, S.F.; Mao, Y.J.; Yang, Z.P. Abundance of solute carrier family 27 member 6 (SLC27A6) in the bovine mammary gland alters fatty acid metabolism. Food Funct. 2021, 12, 4909–4920. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Bai, Y.B.; Tian, H.S.; Shi, B.G.; Li, X.P.; Luo, Y.Z.; Raza, S.H.A. Interference with ACSL1 gene in bovine adipocytes: Transcriptome profiling of circRNA related to unsaturated fatty acid production. Genomics 2021, 113, 3967–3977. [Google Scholar] [CrossRef]
- Ma, J.; Chen, T.; Wu, S.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource. Nucleic Acids Res. 2019, 47, D1211–D1217. [Google Scholar] [CrossRef] [Green Version]
Nutrition Component | Content (Mean ± SD, g/100 g) |
---|---|
Ash | 7.66 ± 0.06 |
Crude fat | 2.63 ± 0.20 |
Crude protein | 11.93 ± 0.40 |
Neutral detergent fiber | 76.14 ± 0.79 |
Acid detergent fiber | 10.09 ± 0.62 |
Calcium | 5.22 ± 0.32 |
Phosphorus | 0.07 ± 0.002 |
C16:0 | 0.30 ± 0.05 |
C18:0 | 0.09 ± 0.02 |
c9-C18:1 | 0.07 ± 0.01 |
c9, c12-C18:2n6 | 0.29 ± 0.05 |
c9, c12, c15-C18:3n3 | 0.68 ± 0.11 |
Variable | Absolute Content (Mean ± SD, g/100 g Subcutaneous Fat) | Relative Content (Mean ± SD, g/100 g of Total Fatty Acids) | ||
---|---|---|---|---|
FYs | MYs | FYs | MYs | |
C4:0 | 0.17 ± 0.05 | 0.18 ± 0.08 | 0.24 ± 0.06 | 0.31 ± 0.14 |
C6:0 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.02 | 0.05 ± 0.02 |
C8:0 | 0.004 ± 0.001 | 0.003 ± 0.001 | 0.005 ± 0.001 | 0.006 ± 0.001 |
C10:0 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.008 | 0.03 ± 0.010 |
C11:0 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.004 ± 0.002 | 0.004 ± 0.002 |
C12:0 | 0.02 ± 0.003 | 0.02 ± 0.002 | 0.02 ± 0.003 | 0.03 ± 0.004 |
C13:0 | 0.10 ± 0.03 | 0.07 ± 0.05 | 0.14 ± 0.04 | 0.12 ± 0.08 |
C14:0 | 0.35 ± 0.06 | 0.32 ± 0.06 | 0.50 ± 0.08 | 0.54 ± 0.10 |
C14:0iso | 0.05 ± 0.02 | 0.05 ± 0.02 | 0.07 ± 0.02 | 0.08 ± 0.03 |
c9-C14:1 | 0.12 ± 0.01 | 0.02 ± 0.01 ** | 0.17 ± 0.02 | 0.04 ± 0.01 ** |
C15:0 | 0.20 ± 0.03 | 0.19 ± 0.03 | 0.28 ± 0.03 | 0.31 ± 0.04 |
C15:0iso | 0.17 ± 0.05 | 0.18 ± 0.04 | 0.24 ± 0.07 | 0.30 ± 0.07 |
C15:0ai | 0.07 ± 0.01 | 0.09 ± 0.01 * | 0.10 ± 0.02 | 0.14 ± 0.03 * |
c10-C15:1 | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.03 |
C16:0 | 11.08 ± 1.44 | 8.46 ± 0.99 ** | 15.83 ± 1.72 | 14.10 ± 1.61 |
C16:0iso | 0.15 ± 0.02 | 0.18 ± 0.01 * | 0.21 ± 0.04 | 0.30 ± 0.03 ** |
c9-C16:1 | 0.93 ± 0.05 | 0.82 ± 0.10 * | 1.33 ± 0.07 | 1.36 ± 0.14 |
C17:0 | 0.30 ± 0.08 | 0.37 ± 0.12 | 0.43 ± 0.10 | 0.61 ± 0.16 * |
C17:0iso | 0.16 ± 0.03 | 0.18 ± 0.03 | 0.23 ± 0.04 | 0.30 ± 0.04 * |
C17:0ai | 0.25 ± 0.03 | 0.28 ± 0.06 | 0.36 ± 0.05 | 0.47 ± 0.11 * |
c10-C17:1 | 0.12 ± 0.03 | 0.13 ± 0.08 | 0.17 ± 0.04 | 0.22 ± 0.12 |
C18:0 | 21.93 ± 0.99 | 17.92 ± 0.98 ** | 31.41 ± 0.75 | 29.86 ± 0.67 ** |
C18:0iso | 0.13 ± 0.03 | 0.14 ± 0.02 | 0.18 ± 0.04 | 0.23 ± 0.04 * |
c9-C18:1 | 13.43 ± 0.32 | 12.30 ± 0.32 ** | 19.22 ± 0.20 | 20.51 ± 0.62 ** |
t11-C18:1 | 0.42 ± 0.08 | 0.45 ± 0.07 | 0.59 ± 0.11 | 0.75 ± 0.13 * |
c9, c12-C18:2n-6 | 9.22 ± 0.28 | 8.07 ± 0.37 ** | 13.20 ± 0.33 | 13.44 ± 0.40 |
c9, t11-C18:2 | 0.23 ± 0.09 | 0.21 ± 0.04 | 0.33 ± 0.13 | 0.34 ± 0.07 |
t11, c15-C18:2 | 0.70 ± 0.23 | 0.70 ± 0.18 | 1.00 ± 0.31 | 1.17 ± 0.33 |
c6, c9, c12-C18:3n-6 | 0.14 ± 0.07 | 0.14 ± 0.07 | 0.20 ± 0.06 | 0.23 ± 0.06 |
c9, c12, c15-C18:3n-3 | 0.54 ± 0.04 | 0.43 ± 0.04 ** | 0.77 ± 0.05 | 0.72 ± 0.07 |
c9, t11, c15-C18:3 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 |
C20:0 | 0.05 ± 0.01 | 0.04 ± 0.02 | 0.07 ± 0.01 | 0.07 ± 0.03 |
c11-C20:1 | 0.28 ± 0.07 | 0.22 ± 0.07 | 0.41 ± 0.11 | 0.37 ± 0.11 |
c11, c14-C20:2 | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.09 ± 0.01 | 0.10 ± 0.03 |
C21:0 | 0.41 ± 0.12 | 0.35 ± 0.08 | 0.59 ± 0.18 | 0.58 ± 0.14 |
c5, c8, c11, c14-C20:4n-6 | 2.94 ± 0.33 | 2.62 ± 0.34 | 4.22 ± 0.53 | 4.37 ± 0.50 |
c11, c14, c17-C20:3n-3 | 0.002 ± 0.001 | 0.003 ± 0.002 | 0.003 ± 0.001 | 0.005 ± 0.002 * |
c5, c8, c11, c14, c17-C20:5n-3 | 0.63 ± 0.04 | 0.55 ± 0.05 * | 0.89 ± 0.04 | 0.92 ± 0.08 |
C22:0 | 0.10 ± 0.05 | 0.08 ± 0.05 | 0.14 ± 0.06 | 0.14 ± 0.08 |
C23:0 | 0.11 ± 0.03 | 0.11 ± 0.04 | 0.16 ± 0.04 | 0.18 ± 0.06 |
C24:0 | 2.62 ± 0.52 | 2.41 ± 0.20 | 3.75 ± 0.79 | 4.01 ± 0.36 |
c4, c7, c10, c13, c16, c19-C22:6n-3 | 0.021 ± 0.002 | 0.016 ± 0.002 ** | 0.031 ± 0.002 | 0.027 ± 0.003 * |
c11-C24:1 | 1.51 ± 0.26 | 1.45 ± 0.38 | 2.17 ± 0.38 | 2.42 ± 0.64 |
SFAs | 38.44 ± 1.26 | 31.67 ± 0.92 ** | 55.04 ± 0.77 | 52.79 ± 0.54 ** |
UFAs | 31.40 ± 0.49 | 28.32 ± 0.56 ** | 44.96 ± 0.70 | 47.21 ± 0.50 ** |
MUFAs | 16.87 ± 0.24 | 15.47 ± 0.19 ** | 24.15 ± 0.26 | 25.81 ± 0.52 ** |
PUFAs | 14.53 ± 0.34 | 12.84 ± 0.52 ** | 20.81 ± 0.33 | 21.41 ± 0.31 * |
n-3PUFAs | 1.19 ± 0.08 | 1.00 ± 0.07 ** | 1.70 ± 0.09 | 1.08 ± 0.13 |
n-6PUFAs | 12.30 ± 0.27 | 10.83 ± 0.64 ** | 17.61 ± 0.62 | 18.04 ± 0.70 |
BCFAs | 0.97 ± 0.09 | 1.09 ± 0.11 | 1.39 ± 0.14 | 1.82 ± 0.20 ** |
BHIs | 1.40 ± 0.30 | 1.40 ± 0.28 | 2.00 ± 0.40 | 2.34 ± 0.51 |
n-6/n-3PUFAs | 10.38 ± 0.81 | 10.83 ± 1.10 | 10.38 ± 0.81 | 10.83 ± 1.10 |
PUFAs/SFAs | 0.38 ± 0.01 | 0.41 ± 0.01 ** | 0.38 ± 0.01 | 0.41 ± 0.01 ** |
Accession | Description | p | FC |
---|---|---|---|
XP_014333755.1 | Perilipin-4 (PLIN4) | 1.27 × 10−8 | 2.10 |
XP_005910864.1 | Acyl-CoA-binding protein isoform X2 (ACBP2) | 1.27 × 10−8 | 2.10 |
XP_005896308.1 | Hydroxyacyl-coenzyme A dehydrogenase (HADH) | 1.32 × 10−6 | 2.24 |
XP_005906639.1 | Prostaglandin reductase 1 (PTGR1) | 1.12 × 10−6 | 2.10 |
XP_005900453.1 | Acetyl-CoA acetyltransferase (ACAT2) | 3.19 × 10−6 | 2.19 |
XP_005896285.1 | Elongation of very-long-chain fatty acids protein 6 (ELOVL6) | 2.90 × 10−6 | 2.48 |
XP_005888723.1 | Long-chain-fatty-acid-CoA ligase 5 isoform X1(ACSL5) | 3.44 × 10−4 | 2.19 |
XP_005900434.1 | Fatty acid-binding protein (FABP1) | 8.07 × 10−6 | 2.25 |
XP_005895719.2 | Lipid droplet-associated hydrolase (LDAH) | 7.78 × 10−5 | 2.68 |
XP_014335786.1 | Lipoprotein lipase isoform X1 (LPL) | 2.74 × 10−7 | 2.81 |
XP_005895544.1 | Serum amyloid A protein-like (SAA1) | 5.51 × 10−10 | 4.11 |
XP_014339229.1 | Nucleoside diphosphate kinase (NME4) | 5.39 × 10−6 | 2.14 |
XP_005902329.1 | Perilipin-2 isoform X1 (PLIN2) | 2.35 | 2.02 |
XP_005899116.1 | Polyprenol reductase (SRD5A3) | 4.07 × 10−3 | 2.22 |
XP_005900036.1 | Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 (HACD3) | 9.56 × 10−6 | 2.09 |
XP_005887189.1 | Calcium-binding mitochondrial carrier protein Aralar2 (SLC25A13) | 8.17 × 10−5 | 2.18 |
XP_005892117.1 | Acyl-CoA desaturase (SCD) | 3.85 × 10−6 | 3.50 |
XP_005911054.1 | Peroxisome proliferator-activated receptor delta isoform X1 | 7.69 × 10−6 | 1.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, L.; Pei, J.; Wu, X.; Bao, P.; Guo, X.; Yan, P. Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis. Genes 2022, 13, 790. https://doi.org/10.3390/genes13050790
Xiong L, Pei J, Wu X, Bao P, Guo X, Yan P. Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis. Genes. 2022; 13(5):790. https://doi.org/10.3390/genes13050790
Chicago/Turabian StyleXiong, Lin, Jie Pei, Xiaoyun Wu, Pengjia Bao, Xian Guo, and Ping Yan. 2022. "Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis" Genes 13, no. 5: 790. https://doi.org/10.3390/genes13050790
APA StyleXiong, L., Pei, J., Wu, X., Bao, P., Guo, X., & Yan, P. (2022). Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis. Genes, 13(5), 790. https://doi.org/10.3390/genes13050790