Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects
2.2. Targeted Next Generation Sequencing
2.3. Allele Calling
2.4. De Novo Variant Analysis
2.5. Transmission Disequilibrium Test Analysis
2.6. Variant Annotation
2.7. Rare Variant Analysis
3. Results
3.1. De Novo Variant Analysis
3.2. Coding Rare Variants
3.3. TDT sNCS
3.4. TDT mNCS
3.5. TDT mNCS Chromosome 7 Trios
3.6. TDT mNCS Chromosome 20 Trios
3.7. Chromosome 7 sNCS and mNCS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boulet, S.L.; Rasmussen, S.A.; Honein, M.A. A population-based study of craniosynostosis in metropolitan atlanta, 1989–2003. Am. J. Med. Genet. A 2008, 146A, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.M. Genetic syndromes associated with craniosynostosis. J. Korean Neurosurg. Soc. 2016, 59, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Kolar, J.C. An epidemiological study of nonsyndromal craniosynostoses. J. Craniofac. Surg. 2011, 22, 47–49. [Google Scholar] [CrossRef]
- Lajeunie, E.; Crimmins, D.W.; Arnaud, E.; Renier, D. Genetic considerations in nonsyndromic midline craniosynostoses: A study of twins and their families. J. Neurosurg. 2005, 103, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Lattanzi, W.; Barba, M.; Di Pietro, L.; Boyadjiev, S.A. Genetic advances in craniosynostosis. Am. J. Med. Genet. A 2017, 173, 1406–1429. [Google Scholar] [CrossRef] [Green Version]
- Timberlake, A.T.; Furey, C.G.; Choi, J.; Nelson-Williams, C.; Yale Center for Genome Analysis; Loring, E.; Galm, A.; Kahle, K.T.; Steinbacher, D.M.; Larysz, D.; et al. De novo mutations in inhibitors of wnt, bmp, and ras/erk signaling pathways in non-syndromic midline craniosynostosis. Proc. Natl. Acad. Sci. USA 2017, 114, E7341–E7347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twigg, S.R.; Vorgia, E.; McGowan, S.J.; Peraki, I.; Fenwick, A.L.; Sharma, V.P.; Allegra, M.; Zaragkoulias, A.; Sadighi Akha, E.; Knight, S.J.; et al. Reduced dosage of erf causes complex craniosynostosis in humans and mice and links erk1/2 signaling to regulation of osteogenesis. Nat. Genet. 2013, 45, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.P.; Fenwick, A.L.; Brockop, M.S.; McGowan, S.J.; Goos, J.A.; Hoogeboom, A.J.; Brady, A.F.; Jeelani, N.O.; Lynch, S.A.; Mulliken, J.B.; et al. Mutations in tcf12, encoding a basic helix-loop-helix partner of twist1, are a frequent cause of coronal craniosynostosis. Nat. Genet. 2013, 45, 304–307. [Google Scholar] [CrossRef]
- Justice, C.M.; Yagnik, G.; Kim, Y.; Peter, I.; Jabs, E.W.; Erazo, M.; Ye, X.; Ainehsazan, E.; Shi, L.; Cunningham, M.L.; et al. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near bmp2 and within bbs9. Nat. Genet. 2012, 44, 1360–1364. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.M.; Cuellar, A.; Bala, K.; Sabourin, J.A.; Cunningham, M.L.; Crawford, K.; Phipps, J.M.; Zhou, Y.; Cilliers, D.; Byren, J.C.; et al. A genome-wide association study implicates the bmp7 locus as a risk factor for nonsyndromic metopic craniosynostosis. Hum. Genet. 2020, 139, 1077–1090. [Google Scholar] [CrossRef]
- Davydov, E.V.; Goode, D.L.; Sirota, M.; Cooper, G.M.; Sidow, A.; Batzoglou, S. Identifying a high fraction of the human genome to be under selective constraint using gerp++. PLoS Comput. Biol. 2010, 6, e1001025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. Plink: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.; Wang, K. Wannovar: Annotating genetic variants for personal genomes via the web. J. Med. Genet. 2012, 49, 433–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; O’Roak, B.J.; Smith, J.D.; Wang, G.; Hooker, S.; Santos-Cortez, R.L.; Li, B.; Kan, M.; Krumm, N.; Nickerson, D.A.; et al. Rare-variant extensions of the transmission disequilibrium test: Application to autism exome sequence data. Am. J. Hum. Genet. 2014, 94, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Leal, S.M. Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data. Am. J. Hum. Genet. 2008, 83, 311–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, A.L.; Kryukov, G.V.; de Bakker, P.I.; Purcell, S.M.; Staples, J.; Wei, L.J.; Sunyaev, S.R. Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet. 2010, 86, 832–838. [Google Scholar] [CrossRef] [Green Version]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. Sift web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Chan, A.P. Provean web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [Green Version]
- Cesario, J.M.; Almaidhan, A.A.; Jeong, J. Expression of forkhead box transcription factor genes foxp1 and foxp2 during jaw development. Gene Expr. Patterns GEP 2016, 20, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.S.; Devotta, A.; Lee, Y.H.; Park, B.Y.; Saint-Jeannet, J.P. Transcription factor ap2 epsilon (tfap2e) regulates neural crest specification in xenopus. Dev. Neurobiol. 2014, 74, 894–906. [Google Scholar] [CrossRef] [Green Version]
- Schock, E.N.; Struve, J.N.; Chang, C.F.; Williams, T.J.; Snedeker, J.; Attia, A.C.; Stottmann, R.W.; Brugmann, S.A. A tissue-specific role for intraflagellar transport genes during craniofacial development. PLoS ONE 2017, 12, e0174206. [Google Scholar] [CrossRef] [PubMed]
- Causeret, F.; Ensini, M.; Teissier, A.; Kessaris, N.; Richardson, W.D.; Lucas de Couville, T.; Pierani, A. Dbx1-expressing cells are necessary for the survival of the mammalian anterior neural and craniofacial structures. PLoS ONE 2011, 6, e19367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdal, A.; Lezot, F.; Pibouin, L.; Hotton, D.; Ghoul-Mazgar, S.; Teillaud, C.; Robert, B.; MacDougall, M.; Blin, C. Msx1 homeogene antisense mrna in mouse dental and bone cells. Connect. Tissue Res. 2002, 43, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Vi-Fane, B.; Fernandes, I.; Davideau, J.L. msx1 and its influence on craniofacial growth. L’ Orthodontie Francaise 2007, 78, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, S.; Trainor, P.A. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020, 137, 115409. [Google Scholar] [CrossRef]
- Aguiar, D.P.; Sghari, S.; Creuzet, S. The facial neural crest controls fore- and midbrain patterning by regulating foxg1 expression through smad1 activity. Development 2014, 141, 2494–2505. [Google Scholar] [CrossRef] [Green Version]
- Tsang, K.Y.; Tsang, S.W.; Chan, D.; Cheah, K.S. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Res. Part. C Embryo Today Rev. 2014, 102, 52–73. [Google Scholar] [CrossRef]
- Sanchez-Lara, P.A.; Carmichael, S.L.; Graham, J.M., Jr.; Lammer, E.J.; Shaw, G.M.; Ma, C.; Rasmussen, S.A. Fetal constraint as a potential risk factor for craniosynostosis. Am. J. Med. Genet. A 2010, 152A, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Legare, J.M.; Seaborg, K.; Laffin, J.; Giampietro, P.F. Diaphanospondylodysostosis and ischiospinal dysostosis, evidence for one disorder with variable expression in a patient who has survived to age 9 years. Am. J. Med. Genet. A 2017, 173, 2808–2813. [Google Scholar] [CrossRef] [PubMed]
- Sewda, A.; White, S.R.; Erazo, M.; Hao, K.; Garcia-Fructuoso, G.; Fernandez-Rodriguez, I.; Heuze, Y.; Richtsmeier, J.T.; Romitti, P.A.; Reva, B.; et al. Nonsyndromic craniosynostosis: Novel coding variants. Pediatr Res. 2019, 85, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xie, L.; Wang, Z.; Wang, J.; Xu, H.; Han, X.; Bai, D.; Deng, P. Zbp1 (dai/dlm-1) promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of wnt/beta-catenin signaling. Bone Res. 2020, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justice, C.M.; Kim, J.; Kim, S.D.; Kim, K.; Yagnik, G.; Cuellar, A.; Carrington, B.; Lu, C.L.; Sood, R.; Boyadjiev, S.A.; et al. A variant associated with sagittal nonsyndromic craniosynostosis alters the regulatory function of a non-coding element. Am. J. Med. Genet. A 2017, 173, 2893–2897. [Google Scholar] [CrossRef] [Green Version]
Gene | Variant | Chr:Bp | Rs ID | Sift | PolyPhen2 | Provean | MAF | Suture | P-O Pairs |
---|---|---|---|---|---|---|---|---|---|
DLG1 | c.521G>C (p.Pro174Arg) | 3:196,888,572 | rs375133714 | 0.026 | 0.15 | −1.27 | 0.00010 | sagittal | 1 |
BBS9 | c.1760G>A (p.Arg587Gln) | 7:33,407,445 | rs149042169 | 0.68 | 0 | −0.08 | 0.00013 | sagittal | 1 |
BMPER | c.1663C>T (p.Arg555Trp) | 7: 34,125,622 | rs10249320 | 0.01 | 1 | −4.55 | 0.00815 | metopic | 1 |
CASS4 | c.110T>C (p.Ile37Thr) | 20:55,012,293 | rs958032346 | 0 | 0.96 | −4.32 | NA | metopic | 1 |
RTFDC1 | c.109T>G (p.Cys37Trp) | 20:55,048,398 | unknown | 0 | 1 | −10.63 | NA | metopic | 1 |
FAM209A | c.165G>T (p.Trp55Cys) | 20:55,100,029 | rs139125762 | 0 | 1 | −12.21 | 0.00022 | metopic | 1 |
FAM209A | c.409A>G (p.Met137Val) | 20:55,101,019 | rs149932128 | 0.14 | 0 | −2.33 | 0.00303 | metopic | 1 |
SPO11 | c.547A>G (p.Arg183Gly) | 20:55,909,842 | rs137997364 | 0.39 | 0 | −2.3 | 0.00079 | metopic | 2 |
RBM38 | c.478G>A (p.Ala160Thr) | 20:55,982,660 | rs766651552 | 0.4 | 0 | −0.54 | 0.00003 | metopic | 1 |
RBM38 | c.661G>A (p.Ala221Thr) | 20:55,982,843 | rs201744631 | 0.2 | 0.02 | −1.48 | 0.00088 | metopic | 1 |
CTCFL | c.1159C>G (p.Ala387Pro) | 20:56,093,714 | rs536304823 | NA | 0.4 | NA | 0.00106 | metopic | 1 |
CTCFL | c.520C>T (p.Ala174Thr) | 20:56,098,742 | rs761924648 | 0.41 | 0.16 | −1.11 | 0.00001 | metopic | 1 |
PCK1 | c.410G>A (p.Arg137His) | 20:56,137,755 | rs150560473 | 0 | 1 | −3.16 | 0.00021 | metopic | 1 |
PCK1 | c.413C>T (p.Thr138Ile) | 20:56,137,758 | rs28359542 | 0.06 | 0.98 | −3.47 | 0.00371 | metopic | 2 |
ZBP1 | c.172C>A (p.Val58Phe) | 20: 56,191,387 | rs34917164 | 0 | 1 | −3.85 | 0.00783 | metopic | 3 |
C20orf85 | c.60T>G (p.Asp20Glu) | 20: 56,726,080 | rs200557259 | 0.01 | 0.03 | −2.74 | 0.00053 | metopic | 1 |
CHR | Variant | BP | T | U | OR | p-Value | Function | Type | Gene | MAF | TFBS Probability |
---|---|---|---|---|---|---|---|---|---|---|---|
20 | rs147839746 | 7117108 | 80 | 11 | 7.273 | 4.72 × 10−13 | Intergenic | DEL | BMP2; LOC101929265 | 0.2178 | 0.9950 |
20 | rs3028890 | 7126056 | 90 | 13 | 6.923 | 3.27 × 10−14 | Intergenic | DEL | LOC101929265 | 0.3203 | 0.78026 |
20 | rs6054770 | 7131752 | 83 | 13 | 6.385 | 9.04 × 10−13 | ncRNA_intronic | SNV | LOC101929265 | 0.2604 | 0.64575 |
20 | rs2207588 | 7147515 | 81 | 12 | 6.75 | 8.37 × 10−13 | ncRNA_intronic | SNV | LOC101929265 | 0.2617 | 0.66931 |
20 | rs71330228 | 7175140 | 10 | 82 | 0.122 | 6.07 × 10−14 | ncRNA_intronic | DEL | LOC101929265 | 0.4127 | 0.77072 |
20 | rs71330230 | 7201677 | 76 | 12 | 6.333 | 8.95 × 10−12 | ncRNA_intronic | SNV | LOC101929265 | 0.1721 | 0.995 |
CHR | Variant | BP | T | U | OR | p-Value | Function | Type | Gene | MAF | TFBS Probability |
---|---|---|---|---|---|---|---|---|---|---|---|
7 | rs11763098 | 33,158,020 | 14 | 55 | 0.2545 | 7.98 × 10−7 | Intergenic | SNV | RP9; BBS9 | 0.4640 | 0.58955 |
7 | rs2006387 | 33,214,278 | 15 | 53 | 0.2830 | 4.06 × 10−6 | Intronic | SNV | BBS9 | 0.4792 | 0.58955 |
7 | rs10262453 | 33,256,039 | 58 | 10 | 5.8 | 5.86 × 10−9 | Intronic | SNV | BBS9 | 0.2989 | 0.58955 |
7 | rs4723276 | 33,259,793 | 58 | 10 | 5.8 | 5.86 × 10−9 | Intronic | SNV | BBS9 | 0.3001 | 1 |
7 | rs12538649 | 33,320,648 | 59 | 11 | 5.364 | 9.63 × 10−9 | Intronic | SNV | BBS9 | 0.2962 | 0.6855 |
7 | rs1978333 | 33,322,230 | 52 | 11 | 4.727 | 2.40 × 10−7 | Intronic | SNV | BBS9 | 0.2945 | 0.60906 |
20 | rs3067084 | 55,794,451 | 0 | 24 | 0 | 9.63 × 10−7 | Intronic | DEL | BMP7 | 0.3822 | 0.66633 |
20 | rs35111023 | 55,793,972 | 0 | 23 | 0 | 1.62 × 10−6 | Intronic | SNV | BMP7 | 0.4132 | 0.93104 |
20 | rs182795 | 55,792,907 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4165 | 0.64591 |
20 | rs1475000 | 55,792,997 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4145 | 0.82852 |
20 | rs172982 | 55,795,918 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4141 | 0.71939 |
20 | rs56404749 | 55,797,901 | 1 | 20 | 0.05 | 3.38 × 10−5 | Intronic | DEL | BMP7 | 0.455 | 0.87 |
20 | rs2180780 | 55,800,721 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4541 | 0.66784 |
20 | rs35420824 | 55,813,556 | 0 | 21 | 0 | 4.59 × 10−6 | Intronic | SNV | BMP7 | 0.3167 | 0.70497 |
CHR | Variant | BP | T | U | OR | p-Value | Function | Type | Gene | MAF | TFBS Probability |
---|---|---|---|---|---|---|---|---|---|---|---|
7 | rs11763098 | 33,158,020 | 14 | 55 | 0.2545 | 7.98 × 10−7 | Intergenic | SNV | RP9; BBS9 | 0.4640 | 0.58955 |
7 | rs2006387 | 33,214,278 | 15 | 53 | 0.2830 | 4.06 × 10−6 | Intronic | SNV | BBS9 | 0.4792 | 0.58955 |
7 | rs10262453 | 33,256,039 | 58 | 10 | 5.8 | 5.86 × 10−9 | Intronic | SNV | BBS9 | 0.2989 | 0.58955 |
7 | rs4723276 | 33,259,793 | 58 | 10 | 5.8 | 5.86 × 10−9 | Intronic | SNV | BBS9 | 0.3001 | 1 |
7 | rs12538649 | 33,320,648 | 59 | 11 | 5.364 | 9.63 × 10−9 | Intronic | SNV | BBS9 | 0.2962 | 0.6855 |
7 | rs1978333 | 33,322,230 | 52 | 11 | 4.727 | 2.40 × 10−7 | Intronic | SNV | BBS9 | 0.2945 | 0.60906 |
20 | rs3067084 | 55,794,451 | 0 | 24 | 0 | 9.63 × 10−7 | Intronic | DEL | BMP7 | 0.3822 | 0.66633 |
20 | rs35111023 | 55,793,972 | 0 | 23 | 0 | 1.62 × 10−6 | Intronic | SNV | BMP7 | 0.4132 | 0.93104 |
20 | rs182795 | 55,792,907 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4165 | 0.64591 |
20 | rs1475000 | 55,792,997 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4145 | 0.82852 |
20 | rs172982 | 55,795,918 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4141 | 0.71939 |
20 | rs56404749 | 55,797,901 | 1 | 20 | 0.05 | 3.38 × 10−5 | Intronic | DEL | BMP7 | 0.455 | 0.87 |
20 | rs2180780 | 55,800,721 | 1 | 24 | 0.04167 | 4.23 × 10−6 | Intronic | SNV | BMP7 | 0.4541 | 0.66784 |
20 | rs35420824 | 55,813,556 | 0 | 21 | 0 | 4.59 × 10−6 | Intronic | SNV | BMP7 | 0.3167 | 0.70497 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justice, C.M.; Musolf, A.M.; Cuellar, A.; Lattanzi, W.; Simeonov, E.; Kaneva, R.; Paschall, J.; Cunningham, M.; Wilkie, A.O.M.; Wilson, A.F.; et al. Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis. Genes 2022, 13, 816. https://doi.org/10.3390/genes13050816
Justice CM, Musolf AM, Cuellar A, Lattanzi W, Simeonov E, Kaneva R, Paschall J, Cunningham M, Wilkie AOM, Wilson AF, et al. Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis. Genes. 2022; 13(5):816. https://doi.org/10.3390/genes13050816
Chicago/Turabian StyleJustice, Cristina M., Anthony M. Musolf, Araceli Cuellar, Wanda Lattanzi, Emil Simeonov, Radka Kaneva, Justin Paschall, Michael Cunningham, Andrew O. M. Wilkie, Alexander F. Wilson, and et al. 2022. "Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis" Genes 13, no. 5: 816. https://doi.org/10.3390/genes13050816
APA StyleJustice, C. M., Musolf, A. M., Cuellar, A., Lattanzi, W., Simeonov, E., Kaneva, R., Paschall, J., Cunningham, M., Wilkie, A. O. M., Wilson, A. F., Romitti, P. A., & Boyadjiev, S. A. (2022). Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis. Genes, 13(5), 816. https://doi.org/10.3390/genes13050816