Role of Chromatin Replication in Transcriptional Plasticity, Cell Differentiation and Disease
Abstract
:1. Introduction
2. Chromatin Replication
3. The Structure of Post-Replicative Chromatin
4. Post-Replicative Chromatin Restoration
5. Consequences of Post-Replicative Chromatin Restoration in Gene Expression Control
6. Impact of Chromatin Replication in Development and Disease
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemon, B.; Tjian, R. Orchestrated response: A symphony of transcription factors for gene control. Genes Dev. 2000, 14, 2551–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The Human Transcription Factors. Cell 2018, 172, 650–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: An ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 2012, 13, 436–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, S.L.; Shipony, Z.; Greenleaf, W.J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 2019, 20, 207–220. [Google Scholar] [CrossRef]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Van Steensel, B.; Furlong, E.E.M. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 2019, 20, 327–337. [Google Scholar] [CrossRef]
- Pombo, A.; Dillon, N. Three-dimensional genome architecture: Players and mechanisms. Nat. Rev. Mol. Cell Biol. 2015, 16, 245–257. [Google Scholar] [CrossRef]
- Bonev, B.; Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 2016, 17, 661–678. [Google Scholar] [CrossRef]
- Marchal, C.; Sima, J.; Gilbert, D.M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 2019, 20, 721–737. [Google Scholar] [CrossRef]
- Murray, A.W.; Szostak, J.W. Chromosome Segregation in Mitosis and Meiosis. Annu. Rev. Cell Biol. 1985, 1, 289–315. [Google Scholar] [CrossRef] [PubMed]
- Stewart-Morgan, K.R.; Petryk, N.; Groth, A. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 2020, 22, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, I.; Molliex, A.; Navarro, P. Mitotic memories of gene activity. Curr. Opin. Cell Biol. 2021, 69, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kadauke, S.; Blobel, G.A. Mitotic bookmarking by transcription factors. Epigenet. Chromatin 2013, 6, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palozola, K.C.; Lerner, J.; Zaret, K.S. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 2018, 20, 55–64. [Google Scholar] [CrossRef]
- Jones, M.L.; Baris, Y.; Taylor, M.R.G.; Yeeles, J.T.P. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J. 2021, 40, e108819. [Google Scholar] [CrossRef]
- Sun, J.; Shi, Y.; Georgescu, R.E.; Yuan, Z.; Chait, B.T.; Li, H.; O’Donnell, M.E. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 2015, 22, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Yeeles, J.T.P.; Janska, A.; Early, A.; Diffley, J.F.X. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication. Mol. Cell 2016, 65, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Burgers, P.M.J.; Kunkel, T.A. Eukaryotic DNA Replication Fork. Annu. Rev. Biochem. 2017, 86, 417–438. [Google Scholar] [CrossRef]
- Gomez-Gonzalez, B.; Aguilera, A. Transcription-mediated replication hindrance: A major driver of genome instability. Genes Dev. 2019, 33, 1008–1026. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Long, C.; Chen, X.; Huang, C.; Chen, S.; Zhu, B. Partitioning of Histone H3–H4 Tetramers during DNA Replication–Dependent Chromatin Assembly. Science 2010, 328, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Annunziato, A.T. Split Decision: What Happens to Nucleosomes during DNA Replication? J. Biol. Chem. 2005, 280, 12065–12068. [Google Scholar] [CrossRef] [Green Version]
- Gasser, R.; Koller, T.; Sogo, J.M. The Stability of Nucleosomes at the Replication Fork. J. Mol. Biol. 1996, 258, 224–239. [Google Scholar] [CrossRef] [PubMed]
- McKnight, S.L.; Miller, O.L., Jr. Electron microscopic analysis of chromatin replication in the cellular blastoderm drosophila melanogaster embryo. Cell 1977, 12, 795–804. [Google Scholar] [CrossRef]
- Jackson, V.; Chalkley, R. A new method for the isolation of replicative chromatin: Selective deposition of histone on both new and old DNA. Cell 1981, 23, 121–134. [Google Scholar] [CrossRef]
- Alabert, C.; Barth, T.K.; Reverón-Gómez, N.; Sidoli, S.; Schmidt, A.; Jensen, O.N.; Imhof, A.; Groth, A. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 2015, 29, 585–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, A.N.; Meier, K.; Seitz, V.; Kremmer, E.; Brehm, A.; Imhof, A. Monomethylation of Lysine 20 on Histone H4 Facilitates Chromatin Maturation. Mol. Cell. Biol. 2009, 29, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Wang, W.; Chen, S.; Zhu, B. A model for mitotic inheritance of histone lysine methylation. EMBO Rep. 2011, 13, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Petryk, N.; Dalby, M.; Wenger, A.; Stromme, C.B.; Strandsby, A.; Andersson, R.; Groth, A. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 2018, 361, 1389–1392. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Gan, H.; Serra-Cardona, A.; Zhang, L.; Gan, S.; Sharma, S.; Johansson, E.; Chabes, A.; Xu, R.-M.; Zhang, Z. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 2018, 361, 1386–1389. [Google Scholar] [CrossRef] [Green Version]
- Ziane, R.; Camasses, A.; Radman-Livaja, M. The asymmetric distribution of RNA polymerase II and nucleosomes on replicated daughter genomes is caused by differences in replication timing between the lagging and the leading strand. Genome Res. 2022, 32, 337–356. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Henikoff, S. Transcriptional Reg5ulators Compete with Nucleosomes Post-replication. Cell 2016, 165, 580–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasseur, P.; Tonazzini, S.; Ziane, R.; Camasses, A.; Rando, O.J.; Radman-Livaja, M. Dynamics of Nucleosome Positioning Maturation following Genomic Replication. Cell Rep. 2016, 16, 2651–2665. [Google Scholar] [CrossRef] [Green Version]
- Fennessy, R.T.; Owen-Hughes, T. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res. 2016, 44, 7189–7203. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, M.P.; MacAlpine, H.K.; MacAlpine, D.M. Nascent chromatin occupancy profiling reveals locus- and factor-specific chromatin maturation dynamics behind the DNA replication fork. Genome Res. 2019, 29, 1123–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart-Morgan, K.R.; Reverón-Gómez, N.; Groth, A. Transcription Restart Establishes Chromatin Accessibility after DNA Replication. Mol. Cell 2019, 75, 284–297.e6. [Google Scholar] [CrossRef] [PubMed]
- Reverón-Gómez, N.; González-Aguilera, C.; Stewart-Morgan, K.R.; Petryk, N.; Flury, V.; Graziano, S.; Johansen, J.V.; Jakobsen, J.S.; Alabert, C.; Groth, A. Accurate Recycling of Parental Histones Reproduces the Histone Modification Landscape during DNA Replication. Mol. Cell 2018, 72, 239–249.e5. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Corces, V.G. Genome-Wide Mapping of Protein–DNA Interactions on Nascent Chromatin. Methods Mol. Biol. 2018, 1766, 231–238. [Google Scholar] [CrossRef]
- Gruszka, D.T.; Xie, S.; Kimura, H.; Yardimci, H. Single-molecule imaging reveals control of parental histone recycling by free histones during DNA replication. Sci. Adv. 2020, 6, eabc0330. [Google Scholar] [CrossRef]
- Hammond, C.M.; Strømme, C.B.; Huang, H.; Patel, D.J.; Groth, A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 2017, 18, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Klimovskaia, I.M.; Young, C.; Strømme, C.B.; Ménard, P.; Jasencakova, Z.; Mejlvang, J.; Ask, K.; Ploug, M.; Nielsen, M.; Jensen, O.N.; et al. Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication. Nat. Commun. 2014, 5, 3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Franco, A.A.; Santos, H.; Nelson, D.M.; Kaufman, P.D.; Adams, P.D. Defective S Phase Chromatin Assembly Causes DNA Damage, Activation of the S Phase Checkpoint, and S Phase Arrest. Mol. Cell 2003, 11, 341–351. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Feng, J.; Leng, H.; Li, S.; Xiao, J.; Liu, S.; Xu, Z.; Xu, J.; Li, D.; et al. The Histone Chaperone FACT Contributes to DNA Replication-Coupled Nucleosome Assembly. Cell Rep. 2016, 16, 3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annunziato, A.T.; Seale, R.L. Presence of nucleosomes within irregularly cleaved fragments of newly replicated chromatin. Nucleic Acids Res. 1984, 12, 6179–6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusick, M.E.; DePamphilis, M.L.; Wassarman, P.M. Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes. J. Mol. Biol. 1984, 178, 249–271. [Google Scholar] [CrossRef]
- Jackson, V. Deposition of newly synthesized histones: Hybrid nucleosomes are not tandemly arranged on daughter DNA strands. Biochemistry 1988, 27, 2109–2120. [Google Scholar] [CrossRef]
- Jackson, V.; Chalkley, R. Histone segregation on replicating chromatin. Biochemistry 1985, 24, 6930–6938. [Google Scholar] [CrossRef]
- Petryk, N.; Reverón-Gómez, N.; González-Aguilera, C.; Dalby, M.; Andersson, R.; Groth, A. Genome-wide and sister chromatid-resolved profiling of protein occupancy in replicated chromatin with ChOR-seq and SCAR-seq. Nat. Protoc. 2021, 16, 4446–4493. [Google Scholar] [CrossRef]
- Li, Z.; Hua, X.; Serra-Cardona, A.; Xu, X.; Zhang, Z. Efficient and strand-specific profiling of replicating chromatin with enrichment and sequencing of protein-associated nascent DNA in mammalian cells. Nat. Protoc. 2021, 16, 2698–2721. [Google Scholar] [CrossRef]
- Gan, H.; Serra-Cardona, A.; Hua, X.; Zhou, H.; Labib, K.; Yu, C.; Zhang, Z. The Mcm2-Ctf4-Polα Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands. Mol. Cell 2018, 72, 140–151.e3. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Hua, X.; Serra-Cardona, A.; Xu, X.; Gan, S.; Zhou, H.; Yang, W.-S.; Chen, C.-L.; Xu, R.-M.; Zhang, Z. DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. Sci. Adv. 2020, 6, eabb5820. [Google Scholar] [CrossRef] [PubMed]
- Clément, C.; Orsi, G.A.; Gatto, A.; Boyarchuk, E.; Forest, A.; Hajj, B.; Miné-Hattab, J.; Garnier, M.; Gurard-Levin, Z.A.; Quivy, J.-P.; et al. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat. Commun. 2018, 9, 3181. [Google Scholar] [CrossRef] [PubMed]
- Richet, N.; Liu, D.; Legrand, P.; Velours, C.; Corpet, A.; Gaubert, A.; Bakail, M.; Moal-Raisin, G.; Guerois, R.; Compper, C.; et al. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res. 2015, 43, 1905–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Strømme, C.B.; Saredi, G.; Hödl, M.; Strandsby, A.; Aguilera, C.G.; Chen, S.; Groth, A.; Patel, D.J. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks. Nat. Struct. Mol. Biol. 2015, 22, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Bellelli, R.; Belan, O.; Pye, V.E.; Clement, C.; Maslen, S.L.; Skehel, J.M.; Cherepanov, P.; Almouzni, G.; Boulton, S.J. POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication. Mol. Cell 2018, 72, 112–126.e5. [Google Scholar] [CrossRef] [Green Version]
- Foltman, M.; Evrin, C.; De Piccoli, G.; Jones, R.C.; Edmondson, R.D.; Katou, Y.; Nakato, R.; Shirahige, K.; Labib, K. Eukaryotic Replisome Components Cooperate to Process Histones during Chromosome Replication. Cell Rep. 2013, 3, 892–904. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Pugh, B.F. Nucleosome positioning and gene regulation: Advances through genomics. Nat. Rev. Genet. 2009, 10, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Van Rechem, C.; Ji, F.; Chakraborty, D.; Black, J.C.; Sadreyev, R.I.; Whetstine, J.R. Collective regulation of chromatin modifications predicts replication timing during cell cycle. Cell Rep. 2021, 37, 109799. [Google Scholar] [CrossRef]
- Annunziato, A.T.; Hansen, J.C. Role of Histone Acetylation in the Assembly and Modulation of Chromatin Structures. Gene Expr. 2000, 9, 37–61. [Google Scholar] [CrossRef]
- Radman-Livaja, M.; Verzijlbergen, K.F.; Weiner, A.; van Welsem, T.; Friedman, N.; Rando, O.J.; van Leeuwen, F. Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast. PLoS Biol. 2011, 9, e1001075. [Google Scholar] [CrossRef] [Green Version]
- Gruss, C.; Wu, J.; Koller, T.; Sogo, J.M. Disruption of the nucleosomes at the replication fork. EMBO J. 1993, 12, 4533–4545. [Google Scholar] [CrossRef] [PubMed]
- Madamba, E.V.; Berthet, E.B.; Francis, N.J. Inheritance of Histones H3 and H4 during DNA Replication In Vitro. Cell Rep. 2017, 21, 1361–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlissel, G.; Rine, J. The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proc. Natl. Acad. Sci. USA 2019, 116, 20605–20611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, T.M.; Oksuz, O.; Saldaña-Meyer, R.; Descostes, N.; Bonasio, R.; Reinberg, D. Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication. Cell 2019, 179, 953–963.e11. [Google Scholar] [CrossRef] [PubMed]
- Skalska, L.; Begley, V.; Beltran, M.; Lukauskas, S.; Khandelwal, G.; Faull, P.; Bhamra, A.; Tavares, M.; Wellman, R.; Tvardovskiy, A.; et al. Nascent RNA antagonizes the interaction of a set of regulatory proteins with chromatin. Mol. Cell 2021, 81, 2944–2959.e10. [Google Scholar] [CrossRef]
- Popova, L.V.; Nagarajan, P.; Lovejoy, C.M.; Sunkel, B.D.; Gardner, M.L.; Wang, M.; Freitas, M.A.; Stanton, B.Z.; Parthun, M.R. Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Res. 2021, 49, 12136–12151. [Google Scholar] [CrossRef]
- Xu, C.; Corces, V.G. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 2018, 359, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Alabert, C.; Loos, C.; Voelker-Albert, M.; Graziano, S.; Forné, I.; Reveron-Gomez, N.; Schuh, L.; Hasenauer, J.; Marr, C.; Imhof, A.; et al. Domain Model Explains Propagation Dynamics and Stability of Histone H3K27 and H3K36 Methylation Landscapes. Cell Rep. 2020, 30, 1223–1234.e8. [Google Scholar] [CrossRef] [Green Version]
- Margueron, R.; Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet. 2010, 11, 285–296. [Google Scholar] [CrossRef]
- Ninova, M.; Tóth, K.F.; Aravin, A.A. The control of gene expression and cell identity by H3K9 trimethylation. Development 2019, 146, dev181180. [Google Scholar] [CrossRef] [Green Version]
- Serra-Cardona, A.; Duan, S.; Yu, C.; Zhang, Z. H3K4me3 recognition by the COMPASS complex facilitates the restoration of this histone mark following DNA replication. Sci. Adv. 2022, 8, eabm6246. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.N.; Zhao, P.A.; Lyu, X.; Sasaki, T.; Bartlett, D.A.; Singh, A.M.; Tasan, I.; Zhang, M.; Watts, L.P.; Hiraga, S.-I.; et al. Replication timing maintains the global epigenetic state in human cells. Science 2021, 372, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rojas, P.; Mao, J.; Sadurnì, M.M.; Garnier, O.; Xiao, S.; Higgs, M.R.; Garcia, P.; Saponaro, M. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Rep. 2021, 34, 108759. [Google Scholar] [CrossRef]
- Meryet-Figuiere, M.; Alaei-Mahabadi, B.; Ali, M.M.; Mitra, S.; Subhash, S.; Pandey, G.K.; Larsson, E.; Kanduri, C. Temporal separation of replication and transcription during S-phase progression. Cell Cycle 2014, 13, 3241–3248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gylling, H.M.; Gonzalez-Aguilera, C.; Smith, M.A.; Kaczorowski, D.C.; Groth, A.; Lund, A.H. Repeat RNAs associate with replication forks and post-replicative DNA. RNA 2020, 26, 1104–1117. [Google Scholar] [CrossRef]
- Voichek, Y.; Bar-Ziv, R.; Barkai, N. Expression homeostasis during DNA replication. Science 2016, 351, 1087–1090. [Google Scholar] [CrossRef]
- Bar-Ziv, R.; Brodsky, S.; Chapal, M.; Barkai, N. Transcription Factor Binding to Replicated DNA. Cell Rep. 2020, 30, 3989–3995.e4. [Google Scholar] [CrossRef]
- Topal, S.; Vasseur, P.; Radman-Livaja, M.; Peterson, C.L. Distinct transcriptional roles for Histone H3-K56 acetylation during the cell cycle in Yeast. Nat. Commun. 2019, 10, 4372. [Google Scholar] [CrossRef] [Green Version]
- Padovan-Merhar, O.; Nair, G.P.; Biaesch, A.G.; Mayer, A.; Scarfone, S.; Foley, S.W.; Wu, A.R.; Churchman, L.S.; Singh, A.; Raj, A. Single Mammalian Cells Compensate for Differences in Cellular Volume and DNA Copy Number through Independent Global Transcriptional Mechanisms. Mol. Cell 2015, 58, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Trieu, T.-J.; Cheng, J.; Zhou, S.; Tang, Q.; Xie, J.; Liu, J.-L.; Zhao, K.; Habib, S.J.; Chen, X. Differential Histone Distribution Patterns in Induced Asymmetrically Dividing Mouse Embryonic Stem Cells. Cell Rep. 2020, 32, 108003. [Google Scholar] [CrossRef]
- Wooten, M.; Snedeker, J.; Nizami, Z.F.; Yang, X.; Ranjan, R.; Urban, E.; Kim, J.M.; Gall, J.; Xiao, J.; Chen, X. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat. Struct. Mol. Biol. 2019, 26, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Petruk, S.; Cai, J.; Sussman, R.; Sun, G.; Kovermann, S.K.; Mariani, S.A.; Calabretta, B.; McMahon, S.B.; Brock, H.W.; Iacovitti, L.; et al. Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation. Mol. Cell 2017, 66, 247–257.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruk, S.; Mariani, S.A.; De Dominici, M.; Porazzi, P.; Minieri, V.; Cai, J.; Iacovitti, L.; Flomenberg, N.; Calabretta, B.; Mazo, A. Structure of Nascent Chromatin Is Essential for Hematopoietic Lineage Specification. Cell Rep. 2017, 19, 295–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macheret, M.; Halazonetis, T.D. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 2018, 555, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Bektik, E.; Dennis, A.; Pawlowski, G.; Zhou, C.; Maleski, D.; Takahashi, S.; Laurita, K.R.; Deschênes, I.; Fu, J.-D. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit. Int. J. Mol. Sci. 2018, 19, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roccio, M.; Schmitter, D.; Knobloch, M.; Okawa, Y.; Sage, D.; Lutolf, M.P. Predicting stem cell fate changes by differential cell cycle progression patterns. Development 2013, 140, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaveri, L.; Dhawan, J. Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle. Front. Cell Dev. Biol. 2018, 6, 57. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Jiménez, E.; González-Aguilera, C. Role of Chromatin Replication in Transcriptional Plasticity, Cell Differentiation and Disease. Genes 2022, 13, 1002. https://doi.org/10.3390/genes13061002
López-Jiménez E, González-Aguilera C. Role of Chromatin Replication in Transcriptional Plasticity, Cell Differentiation and Disease. Genes. 2022; 13(6):1002. https://doi.org/10.3390/genes13061002
Chicago/Turabian StyleLópez-Jiménez, Elena, and Cristina González-Aguilera. 2022. "Role of Chromatin Replication in Transcriptional Plasticity, Cell Differentiation and Disease" Genes 13, no. 6: 1002. https://doi.org/10.3390/genes13061002
APA StyleLópez-Jiménez, E., & González-Aguilera, C. (2022). Role of Chromatin Replication in Transcriptional Plasticity, Cell Differentiation and Disease. Genes, 13(6), 1002. https://doi.org/10.3390/genes13061002