Population Structure and Genetic Diversity of Chinese Honeybee (Apis Cerana Cerana) in Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction
2.3. Whole Genome Sequencing
2.4. Quality Control of Sequencing Reads
2.5. Mapping and Variation Detection
2.6. Genetic Diversity Analysis
2.7. Correlations between Environmental Variables and Genetic Diversity
3. Results
3.1. Genome Sequencing
3.2. Population Structure Analysis
3.3. Genetic Diversity Analysis
3.4. Mantel Test between Apis Cerana Cerana Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Skelly, D.K.; Joseph, L.N.; Possingham, H.P.; Freidenburg, L.K.; Farrugia, T.J. Evolutionary responses to climate change. Conserv. Biol. 2007, 21, 1353–1355. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.; Lippner, G.; Chen, Y.T.; Fotouhi, B.; Momeni, N. Evolutionary dynamics on any population structure. Nature 2016, 544, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, C.; Li, Y.; Wang, Y.; Ping, J.; Zhou, G. Characterization of Structural Variation in Tibetans Reveals New Evidence of High-altitude Adaptation and Introgression. Genome Biol. 2020, 22, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Kemppainen, P.; Momigliano, P.; Merilä, J. Population Structure Limits Parallel Evolution in Sticklebacks. Mol. Biol. Evol. 2021, 38, 4205–4221. [Google Scholar] [CrossRef]
- Kemppainen, P.; Li, Z.; Rastas, P.; Löytynoja, A.; Fang, B.; Yang, J.; Guo, B.; Shikano, T.; Merilä, J. Genetic population structure constrains local adaptation in sticklebacks. Mol. Ecol. 2021, 30, 1946–1961. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.A.; Tarnita, C.E.; Antal, T. Evolutionary dynamics in structured populations. Philos. Trans. R. Soc. Lond. 2010, 365, 19–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laikre, L.; Hoban, S.; Bruford, M.W.; Segelbacher, G.; Vernesi, C. Post-2020 goals overlook genetic diversity. Science 2020, 367, 1082–1085. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, M.G.C.D.; Carvalho, M.R.S.; Egito, A.A.; Steinberg, R.S.; Bruneli, F.Â.T.; Machado, M.A.; Santos, F.C.; Rosse, I.C.; Fonseca, P.A.S. Genetic Diversity and Population Genetic Structure of a Guzerá (Bos indicus) Meta-Population. Animals 2021, 11, 1125. [Google Scholar] [CrossRef]
- Smith, D.R.; Villafuerte, L.; Otis, G.; Palmer, M.R. Biogeography of Apis cerana F. and A. nigrocincta Smith: Insights from mtDNA studies. Apidologie 2000, 31, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Radloff, S.E.; Hepburn, C.; Hepburn, H.R.; Fuchs, S.; Hadisoesilo, S.; Tan, K.; Engel, M.S. Population structure and classification of Apis cerana. Apidologie 2010, 41, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Rol, A.; Dharam, P. Asiatic Honeybee Apis Cerana; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Zhao, H.; Li, G.; Guo, D.; Wang, Y.; Xu, B. Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. Sci. Total Environ. 2020, 744, 140819. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chao, T.; Fan, Y.; Lou, D.; Wang, G. Population genomics and morphological features underlying the adaptive evolution of the eastern honey bee (Apis cerana). BMC Genom. 2019, 20, 869. [Google Scholar]
- Hou, C.; Li, B.; Luo, Y.; Deng, S.; Diao, Q. First detection of Apis mellifera filamentous virus in Apis cerana cerana in China. J. Invertebr. Pathol. 2016, 138, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.; Wang, H.; Liu, Z.; Xiao, C.; Tang, J.; Meng, F.; Wei, S. Population Genomics Provide Insights into the Evolution and Adaptation of the Eastern Honey Bee (Apis cerana). Mol. Biol. Evol. 2018, 9, 2260–2271. [Google Scholar]
- Meng, J.; Wang, L.; Wang, C.; Zhao, G.; Guo, X. AccPDIA6 from Apis cerana cerana plays important roles in antioxidation. Pestic. Biochem. Physiol. 2021, 175, 104830. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, W.; Cui, X.; Xu, B.; Liu, Q.; Li, H.; Guo, X. Identification of an MGST2 gene and analysis of its function in antioxidant processes in Apis cerana. Arch. Insect Biochem. Physiol. 2021, 106, e21770. [Google Scholar] [CrossRef]
- Fan, W.; Li, G.; Zhang, X.; Wang, Y.; Li, H. The role of melatonin and Tryptophan-5-hydroxylase-1 in different abiotic stressors in Apis cerana cerana. J. Insect Physiol. 2021, 128, 104180. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and taxonomy of honeybees/Friedrich Ruttner. J. N. Y. Entomol. Soc. 1989, 97, 365–367. [Google Scholar]
- Hodges, J. The global organization of animal genetic resources. In World Congress on Genetics Applied to Livestock Production; Animal Production & Health Division, FAO: Rome, Italy, 1990. [Google Scholar]
- Park, D.; Jung, J.W.; Choi, B.S.; Jayakodi, M.; Kwon, H.W. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genom. 2015, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Francioli, L.C.; Menelaou, A.; Pulit, S.L.; van Dijk, F.; Palamara, P.F.; Elbers, C.C.; Neerincx, P.B.T.; Ye, K.; Guryev, V.; Kloosterman, W.P.; et al. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 2014, 46, 818–825. [Google Scholar]
- Xu, X.; Zhu, X.; Zhou, S.; Wu, X.; Zhou, B. Genetic differentiation between Apis cerana cerana populations from Damen Island and adjacent mainland in China. Acta Ecol. Sin. 2013, 33, 122–126. [Google Scholar] [CrossRef]
- Yin, L.; Ji, T. Genetic diversity of the honeybee Apis cerana in Yunnan, China, based on mitochondrial DNA. Genet. Mol. Res. 2013, 12, 2002–2009. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Shi, T.; Huang, S.; Yu, L.; Bi, S. Genetic structure of Mount Huang honey bee (Apis cerana) populations: Evidence from microsatellite polymorphism. Hereditas 2016, 153, 8. [Google Scholar]
- Xie, C.H. SRAP Analysis of Genetic Diversity of Riparian Plant Distylium chinense in Hubei Province. Bull. Bot. Res. 2012, 32, 311–319. [Google Scholar]
- Ping, L.X.; Quan, H.Z.; Chen, F.J.; Liang, H.W.; Lan, L.F. RAPD analysis for the genetic diversity of four populations of Davidia involucrata Baill.in Shennongjia area, Hubei Province. J. Beijing For. Univ. 2006, 28, 66. [Google Scholar]
- Andrews, S. FastQC: A quality control tool for high throughput sequence data. In Babraham Bioinformatics; Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 2019, 211, 289–304. [Google Scholar]
- Pritchard, J.K.; Stephens, M.J.; Donnelly, P.J. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef] [PubMed]
- Liliana, P.H.; Yarimar, R.; Carla, S.; Christopher, P.; Ángel, C.; Lareu, M.V. An overview of Structure: Applications, parameter settings, and supporting software. Front. Genet. 2013, 4, 98. [Google Scholar]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Anks, E.B.; Depristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Evanno, G.S.; Regnaut, S.J.; Goudet, J. Detecting the number of clusters of individuals using the software Structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Dray, S.; Dufour, A.-B. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, M.S.; Anderson, C.D. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods Ecol. Evol. 2011, 2, 229–232. [Google Scholar] [CrossRef]
- Yue-Hui, M.A.; Gui-Fang, X.U.; Wang, D.Y.; Liu, H.L.; Yang, Y. Study on Dynamic Information of Animal Genetic Resources in China. Agric. Ences China 2003, 2, 80–84. [Google Scholar]
- Amin, E.; Brooks, S.A.; Tomas, B.; Ellis, J.D. Population genomics and morphometric assignment of western honey bees (Apis mellifera L.) in the Republic of South Africa. BMC Genom. 2018, 19, 615. [Google Scholar]
- Hao, L.; Zhou, S.; Zhu, X.; Xinjian, X.U.; Cai, Z.; Niu, Q.; Yuan, C.; Chen, D.; Zhou, B. Genetic differentiation and genetic diversity analysis of Apis cerana in northeast China. J. Northeast Agric. Univ. 2019, 50, 35–43. [Google Scholar]
- Ji, Y.; Li, X.; Ji, T.; Tang, J.; Zhou, X. Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Sci. Adv. 2020, 6, eabd3590. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.C.; Myerscough, M.R.; Graham, S.; Oldroyd, B.P. Honey Bee Nest Thermoregulation: Diversity Promotes Stability. Science 2004, 305, 402–404. [Google Scholar] [CrossRef] [Green Version]
- Oldroyd, B.P.; Fewell, J.H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 2007, 22, 408–413. [Google Scholar] [CrossRef]
- Gloag, R.; Ding, G.; Christie, J.R.; Buchmann, G.; Beekman, M.; Oldroyd, B.P. An invasive social insect overcomes genetic load at the sex locus. Nat. Ecol. Evol. 2016, 1, 0011. [Google Scholar] [CrossRef]
- Schneider, S.S.; Degrandihoffman, G.; Smith, D.R. The African honey bee: Factors contributing to a successful biological invasion. Annu. Rev. Entomol. 2004, 49, 351. [Google Scholar] [CrossRef] [Green Version]
- Diniz-Filho, J.A.F.; Soares, T.N.; Lima, J.S.; Dobrovolski, R.; Landeiro, V.L.; Telles, M.P.d.C.; Rangel, T.F.; Bini, L.M. Mantel test in population genetics. Genet. Mol. Biol. 2013, 36, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D.; Nicholls, E.; Botias, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1435. [Google Scholar] [CrossRef]
- Klein, S.; Cabirol, A.; Devaud, J.M.; Ba Rron, A.B.; Lihoreau, M. Why Bees Are So Vulnerable to Environmental Stressors. Trends Ecol. Evol. 2017, 32, 268–278. [Google Scholar] [CrossRef]
Sampling Position | Colony Number | Rearing Mode | Longitude (E) | Latitude (N) | Altitude (m) |
---|---|---|---|---|---|
WF | 9 | barrel breeding | 110°37′41.61″ | 30°12′47.39″ | 1833 |
BD | 10 | crate breeding | 110°19′20.35″ | 30°41′48.58″ | 1208 |
LZ | 9 | barrel breeding | 108°48′49.95″ | 30°19′29.23″ | 1192 |
SQ | 9 | barrel breeding | 108°56′31.13″ | 30°4′1.62″ | 798 |
SNJ | 8 | barrel breeding | 110°21′55.43″ | 31°26′1.29″ | 1464 |
YS | 4 | wall hole breeding | 115°58′23.89″ | 30°59′36.18″ | 399 |
SY | 9 | crate breeding | 111°6′15.09″ | 32°57′30.09″ | 1292 |
TS | 5 | barrel breeding | 114°19′34.19″ | 29°34′43.23″ | 110 |
SZ | 9 | barrel breeding | 113°24′24.08″ | 31°26′20.08″ | 108 |
Sampling Location | Sample ID | Clean Reads | Q30 (%) | Mapped (%) | Ave-Depth | SNP-Number | Accession Number |
---|---|---|---|---|---|---|---|
SY | SY1 | 45,364,082 | 91.48 | 93.37 | 25 | 378,329 | SAMN23443044 |
SY2 | 35,194,090 | 93.20 | 92.85 | 20 | 381,604 | SAMN23443045 | |
SY3 | 39,560,538 | 92.29 | 94.01 | 23 | 383,098 | SAMN23443046 | |
SY4 | 43,425,588 | 91.00 | 92.99 | 25 | 379,006 | SAMN23443047 | |
SY5 | 39,156,848 | 90.57 | 91.86 | 22 | 377,414 | SAMN23443048 | |
SY6 | 37,591,654 | 90.80 | 91.76 | 21 | 374,457 | SAMN23443049 | |
SY7 | 37,202,598 | 91.63 | 93.52 | 22 | 375,448 | SAMN23443050 | |
SY8 | 35,763,896 | 91.73 | 93.58 | 21 | 377,506 | SAMN23443051 | |
SY9 | 40,626,320 | 90.93 | 92.64 | 23 | 376,364 | SAMN23443052 | |
TS | TS1 | 49,050,420 | 92.38 | 93.37 | 29 | 383,607 | SAMN23443053 |
TS2 | 42,171,754 | 93.03 | 93.08 | 24 | 384,279 | SAMN23443054 | |
TS3 | 43,492,762 | 92.86 | 94.28 | 25 | 376,482 | SAMN23443055 | |
TS4 | 44,082,932 | 90.87 | 91.91 | 24 | 384,675 | SAMN23443056 | |
TS5 | 41,638,824 | 92.94 | 92.85 | 24 | 381,053 | SAMN23443057 | |
BD | BD1 | 35,060,548 | 92.64 | 91.92 | 20 | 378,334 | SAMN23443058 |
BD2 | 40,674,004 | 92.45 | 92.04 | 23 | 383,033 | SAMN23443059 | |
BD3 | 43,630,338 | 92.73 | 92.30 | 25 | 383,190 | SAMN23443060 | |
BD4 | 34,968,120 | 91.54 | 92.14 | 19 | 375,924 | SAMN23443061 | |
BD5 | 39,744,324 | 85.99 | 90.62 | 22 | 376,272 | SAMN23443062 | |
BD6 | 36,715,404 | 89.96 | 91.57 | 20 | 376,435 | SAMN23443063 | |
BD7 | 35,171,312 | 92.86 | 92.61 | 20 | 382,123 | SAMN23443064 | |
BD8 | 36,710,574 | 92.00 | 93.52 | 20 | 377,951 | SAMN23443065 | |
BD9 | 35,435,816 | 91.20 | 92.73 | 20 | 376,754 | SAMN23443066 | |
BD10 | 35,898,376 | 91.15 | 93.70 | 20 | 382,417 | SAMN23443067 | |
SZ | SZ1 | 34,454,834 | 87.28 | 90.80 | 19 | 375,325 | SAMN23443068 |
SZ2 | 37,622,316 | 91.01 | 93.16 | 22 | 383,291 | SAMN23443069 | |
SZ3 | 41,510,880 | 92.48 | 92.79 | 24 | 381,838 | SAMN23443070 | |
SZ4 | 34,251,782 | 92.26 | 92.58 | 20 | 379,841 | SAMN23443071 | |
SZ5 | 33,690,250 | 89.19 | 93.6 | 20 | 374,548 | SAMN23443072 | |
SZ6 | 39,078,406 | 90.92 | 93.02 | 23 | 375,130 | SAMN23443073 | |
SZ7 | 43,829,002 | 91.25 | 92.31 | 24 | 378,748 | SAMN23443074 | |
SZ8 | 37,989,126 | 91.58 | 92.84 | 21 | 377,272 | SAMN23443075 | |
SZ9 | 33,996,270 | 90.77 | 92.92 | 20 | 376,068 | SAMN23443076 | |
SQ | SQ1 | 37,304,926 | 92.57 | 92.21 | 21 | 381,208 | SAMN23443077 |
SQ2 | 38,685,758 | 93.03 | 93.69 | 22 | 381,085 | SAMN23443078 | |
SQ3 | 34,725,076 | 92.25 | 94.08 | 21 | 380,394 | SAMN23443079 | |
SQ4 | 34,891,042 | 92.77 | 93.41 | 20 | 380,657 | SAMN23443080 | |
SQ5 | 33,717,048 | 92.93 | 93.08 | 19 | 380,598 | SAMN23443081 | |
SQ6 | 34,039,492 | 93.15 | 94.11 | 19 | 381,039 | SAMN23443082 | |
SQ7 | 34,107,926 | 90.90 | 91.77 | 19 | 376,245 | SAMN23443083 | |
SQ8 | 33,680,292 | 91.45 | 92.74 | 18 | 372,788 | SAMN23443084 | |
SQ9 | 36,811,506 | 91.60 | 93.48 | 21 | 379,179 | SAMN23443085 | |
LZ | LZ1 | 45,157,874 | 90.92 | 93.42 | 26 | 381,808 | SAMN23443086 |
LZ2 | 38,943,458 | 91.03 | 94.00 | 23 | 375,544 | SAMN23443087 | |
LZ3 | 34,314,032 | 91.65 | 90.42 | 19 | 377,757 | SAMN23443088 | |
LZ4 | 40,019,910 | 92.68 | 93.60 | 22 | 384,578 | SAMN23443089 | |
LZ5 | 37,750,664 | 90.86 | 93.84 | 21 | 380,767 | SAMN23443090 | |
LZ6 | 34,197,778 | 93.31 | 93.75 | 19 | 379,718 | SAMN23443091 | |
LZ7 | 35,764,696 | 90.72 | 94.67 | 21 | 383,465 | SAMN23443092 | |
LZ8 | 43,571,554 | 92.81 | 94.36 | 26 | 385383 | SAMN23443093 | |
LZ9 | 41,338,220 | 90.69 | 92.72 | 24 | 383,021 | SAMN23443094 | |
WF | WF1 | 34,728,332 | 90.23 | 93.40 | 21 | 384,993 | SAMN23443095 |
WF2 | 35,853,818 | 91.49 | 92.29 | 21 | 377,900 | SAMN23443096 | |
WF3 | 45368726 | 92.98 | 94.14 | 27 | 384,826 | SAMN23443097 | |
WF4 | 39,606,164 | 92.60 | 92.86 | 23 | 383,232 | SAMN23443098 | |
WF5 | 37,016,136 | 92.73 | 94.09 | 22 | 382,531 | SAMN23443099 | |
WF6 | 37591406 | 92.62 | 93.61 | 22 | 384,982 | SAMN23443100 | |
WF7 | 35,029,444 | 93.10 | 93.96 | 21 | 384,174 | SAMN23443101 | |
WF8 | 47,641,082 | 92.68 | 93.11 | 28 | 385,814 | SAMN23443102 | |
WF9 | 37,455,550 | 92.96 | 93.83 | 22 | 382,697 | SAMN23443103 | |
YS | YS1 | 34,459,110 | 92.31 | 93.27 | 20 | 379,546 | SAMN23443104 |
YS2 | 35,456,232 | 92.76 | 94.21 | 21 | 381,627 | SAMN23443105 | |
YS3 | 33,847,564 | 91.76 | 92.57 | 22 | 375,780 | SAMN23443106 | |
YS4 | 58,232,870 | 93.03 | 92.19 | 32 | 386,355 | SAMN23443107 | |
SNJ | SNJ1 | 39,745,496 | 92.83 | 93.67 | 24 | 381,098 | SAMN23443108 |
SNJ2 | 57,018,614 | 92.93 | 93.63 | 34 | 384,589 | SAMN23443109 | |
SNJ3 | 33,734,502 | 93.25 | 93.29 | 19 | 379,347 | SAMN23443110 | |
SNJ4 | 40,561,776 | 91.05 | 91.85 | 23 | 377,471 | SAMN23443111 | |
SNJ5 | 42,923,914 | 93.43 | 94.12 | 25 | 382,094 | SAMN23443112 | |
SNJ6 | 35,246,256 | 91.85 | 94.30 | 21 | 375,640 | SAMN23443113 | |
SNJ7 | 37,636,436 | 91.44 | 92.80 | 22 | 374,102 | SAMN23443114 | |
SNJ8 | 37,286,210 | 91.73 | 92.64 | 21 | 379,204 | SAMN23443115 | |
Average | - | 38,752,984 | 91.81 | 93.03 | 22 | ||
Total | 72 | 2,790,214,878 | - | - | 27,361,052 |
BD | LZ | SNJ | SQ | SY | SZ | TS | WF | YS | |
---|---|---|---|---|---|---|---|---|---|
MAF | 0.1974 | 0.1996 | 0.2110 | 0.1983 | 0.1987 | 0.2043 | 0.2339 | 0.2007 | 0.2543 |
He | 0.2828 | 0.2855 | 0.2988 | 0.2840 | 0.2846 | 0.2909 | 0.3257 | 0.2870 | 0.3477 |
Ho | 0.3011 | 0.3049 | 0.3230 | 0.3003 | 0.3025 | 0.3094 | 0.3680 | 0.3085 | 0.4126 |
PIC | 0.2334 | 0.2354 | 0.2452 | 0.2343 | 0.2349 | 0.2393 | 0.2654 | 0.2365 | 0.2812 |
Pi | 0.2962 | 0.3007 | 0.3175 | 0.2991 | 0.2998 | 0.3064 | 0.3614 | 0.3023 | 0.3720 |
Sampling Position | SY | TS | BD | SZ | SQ | LZ | WF | YS | SNJ |
---|---|---|---|---|---|---|---|---|---|
SY | 0 | 0.024002 | 0.012418 | 0.018460 | 0.009056 | 0.011001 | 0.012641 | 0.037860 | 0.018846 |
TS | 0.024002 | 0 | 0.027504 | 0.027132 | 0.021796 | 0.023319 | 0.025201 | 0.025201 | 0.036935 |
BD | 0.012418 | 0.027504 | 0 | 0.027189 | 0.012009 | 0.014491 | 0.015311 | 0.043329 | 0.023939 |
SZ | 0.018460 | 0.027132 | 0.027189 | 0 | 0.023536 | 0.025641 | 0.025987 | 0.037562 | 0.034366 |
SQ | 0.009056 | 0.021796 | 0.012009 | 0.023536 | 0 | 0.007060 | 0.011214 | 0.038803 | 0.021860 |
LZ | 0.011001 | 0.023319 | 0.014491 | 0.025641 | 0.007060 | 0 | 0.013782 | 0.040189 | 0.023538 |
WF | 0.012641 | 0.025201 | 0.015311 | 0.025987 | 0.011214 | 0.013782 | 0 | 0.041681 | 0.02456 |
YS | 0.037862 | 0.025201 | 0.043329 | 0.0375621 | 0.038803 | 0.040189 | 0.041681 | 0 | 0.051650 |
SNJ | 0.018846 | 0.036935 | 0.023939 | 0.034366 | 0.021860 | 0.023538 | 0.024560 | 0.051650 | 0 |
Sampling Position | Altitude (m) | Annual Minimum Temperature (°C) | Annual Maximum Temperature (°C) | Annual Preipitation (mm) | Longitude (E) | Longitude (N) |
---|---|---|---|---|---|---|
SY | 292 | 10 | 21.01 | 769.6 | 111.104 | 32.958 |
TS | 110 | 14 | 23.01 | 1500 | 114.326 | 29.579 |
BD | 1208 | 14 | 23 | 1000 | 110.322 | 30.697 |
SZ | 108 | 12 | 18 | 967.5 | 113.407 | 31.439 |
SQ | 798 | 11 | 18 | 1450 | 108.942 | 30.067 |
LZ | 1192 | 11 | 18 | 1450 | 108.814 | 30.325 |
WF | 1833 | 11 | 21 | 1400 | 110.628 | 30.213 |
YS | 399 | 13 | 23 | 1403 | 115.973 | 30.993 |
SNJ | 1464 | 9 | 19 | 1170.2 | 110.365 | 31.441 |
Sampling Position | SY | TS | BD | SZ | SQ | LZ | WF | YS | SNJ |
---|---|---|---|---|---|---|---|---|---|
SY | 0 | 484.269 | 261.475 | 274.807 | 380.713 | 363.952 | 307.734 | 497.882 | 181.129 |
TS | 484.269 | 0 | 405.175 | 224.318 | 523.178 | 538.449 | 364.013 | 198.809 | 427.997 |
BD | 261.475 | 405.175 | 0 | 305.630 | 149.914 | 150.551 | 61.141 | 521.081 | 82.178 |
SZ | 274.807 | 224.318 | 305.630 | 0 | 453.694 | 456.169 | 298.541 | 233.457 | 284.364 |
SQ | 380.713 | 523.178 | 149.914 | 453.694 | 0 | 31.114 | 163.273 | 660.899 | 207.017 |
LZ | 363.952 | 538.449 | 150.551 | 456.169 | 31.114 | 0 | 175.022 | 669.051 | 196.382 |
WF | 307.734 | 364.013 | 61.141 | 298.541 | 163.273 | 175.022 | 0 | 497.988 | 136.839 |
YS | 497.882 | 198.809 | 521.081 | 233.457 | 660.899 | 669.051 | 497.988 | 0 | 513.726 |
SNJ | 181.129 | 427.997 | 82.178 | 284.364 | 207.017 | 196.382 | 136.839 | 513.726 | 0 |
Altitude (m) | Annual Minimum Temperature (°C) | Annual Maximum Temperature (°C) | Annual Precipitation (mm) | Longitude (E) | Longitude (N) | |
---|---|---|---|---|---|---|
p-value | 0.01978 | 0.2730 | 0.1353 | 0.7359 | 0.0015 | 0.07572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, F.; Chen, X.; Lv, J.; Shi, X.; Feng, X.; Wang, Z.; Li, X. Population Structure and Genetic Diversity of Chinese Honeybee (Apis Cerana Cerana) in Central China. Genes 2022, 13, 1007. https://doi.org/10.3390/genes13061007
Fang F, Chen X, Lv J, Shi X, Feng X, Wang Z, Li X. Population Structure and Genetic Diversity of Chinese Honeybee (Apis Cerana Cerana) in Central China. Genes. 2022; 13(6):1007. https://doi.org/10.3390/genes13061007
Chicago/Turabian StyleFang, Fang, Xiasang Chen, Jie Lv, Xinyan Shi, Xiaojuan Feng, Zhen Wang, and Xiang Li. 2022. "Population Structure and Genetic Diversity of Chinese Honeybee (Apis Cerana Cerana) in Central China" Genes 13, no. 6: 1007. https://doi.org/10.3390/genes13061007
APA StyleFang, F., Chen, X., Lv, J., Shi, X., Feng, X., Wang, Z., & Li, X. (2022). Population Structure and Genetic Diversity of Chinese Honeybee (Apis Cerana Cerana) in Central China. Genes, 13(6), 1007. https://doi.org/10.3390/genes13061007