A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility
Abstract
:1. Mitochondrial DNA (mtDNA)
2. Paternal Inheritance of Mitochondrial Genome (mtDNA)
3. Mitochondrial Genome Mutations/Variations in Humans
Mitochondrial Genome Abnormalities | Disease | References | |
---|---|---|---|
Complex 1 NADH dehydrogenase | 4216 T>C in MT-ND 1 (missense variant) | Diabetes mellitus type 2 (T2D) | [51,52] |
Leber’s Hereditary Optic Neuropathy (LHON) | [53] | ||
Male-specific infection, leading to complicated sepsis and death | [35] | ||
5178 C>A in MT-ND2 | T2D | [51] | |
rs2853826 and rs414676521 in MT-ND3 | Earlier age at onset in males, Machado–Joseph disease, breast cancer, T2D, Parkinson’s disease, esophageal cancer, gastric cancer, LHON | [39] | |
120271 T>C and 12096 T>A in MT-ND4 | Schizophrenia (SCZ), age-related muscular degeneration (AMD), mesial temporal lobe epilepsy (MTLE), cystic fibrosis | [43,44,45,46,54] | |
rs28358280 in MT-ND4L | Body mass index | [47] | |
rs2853495 in MT-ND4L | Ulcerative colitis and pancreatic cancer | [55,56] | |
rs869096886 in MT-ND4L | SCZ | [57] | |
rs2857285 in MT-ND4L | Ovarian cancer | [48] | |
11777C>A in MT-ND4L | Late-onset encephalopathy | [58] | |
13708 G>A in MT-ND 5 gene | SCZ, increase in the susceptibility to multiple sclerosis, enhanced expression of LHON, increase in the risk of Alzheimer’s disease specifically in the male patients, breast cancer | [36,38,53,59,60,61,62] | |
14439G>A in MT-ND 6 gene (missense variant) | Mitochondrial respiratory chain disease | [49] | |
14459 G>A in MT-ND 6 gene | Leigh syndrome | [63] | |
14459G>A, 14495A>G; 14482C>A and 14568C>T in MT- ND 6 | LHON disease among patients from Germany, France, and Italy | [42] | |
Complex III MT-CYB | rs2853506 (15218A>G) | Epileptogenesis | [64] |
rs2853508 | Breast cancer | [65,66] | |
rs41518645 | LHON | [67] | |
Complex IV | Mutations in MT-CO III genes | Recurrent myoglobinuria, LHON, severe encephalopathy, isolated myopathy | [68] |
the rRNA: RNR 1 (12 S), RNR2 (16 S) | 1709G>A, 15851A>G | Parkinson’s disease | [60,69] |
tRNAs | Variant at position, 15928 | Alzheimer’ disease | [70,71] |
8344 A>G in tRNA Lys gene | Myoclonus epilepsy and ragged–red fiber (MERRE) diseases | [72] | |
8363 G>A in tRNA Lys gene | Correlated with autism spectrum disorders (ASD) | [73] | |
8326 A>G in tRNA Lys, 15995 G>A in tRNA pro | Cystic fibrosis | [74] | |
ATP Synthetase 6 gene (ATPase 6) | 9176 T>C | Mild myopathic change | [75] |
8839G>C | Retinitis pigmentosa syndrome (NARP) | [76] | |
8914C>T | Mitochondrial encephalomyopathies | [77] | |
8593 A>G | Leigh syndrome with a deficiency in mitochondrial energy production | [78] | |
ATP Synthetase 8 gene (ATP 8) | Mutations in MT-ATP8 | LHON, MELAS, Leigh syndrome, NARP | [76,79] |
COII gene | 7750 C>A | SCZ | [80] |
4. Mitochondrial Genome Mutations/Variations and Male Infertility
Mitochondrial Genome Abnormalities | Description | Effect on Male Infertility | References |
---|---|---|---|
4977 bp deletion | Most common deletion, located between 8483 bp and 13459 bp and characterized by the presence of two 13-bp repeated sequences (5′-ACCTCCCTCA CCA-3′) | Removal of seven genes and five tRNAs in mitochondrial DNA (mtDNA) associated with asthenozoospermia. | [90,93,111,112,113] |
7599 bp deletion | Located between 8642 and 16243-bp and characterized by the presence of 7 nucleotides’ direct repeat (5′CATCAAC-3′) on both sides | -Removal of several mitochondrial genes: ATP8 (lost with 7599 bp only), ATP6, cytochrome oxidase (COX) III, cytochrome b (CYB), NADH dehydrogenase (ND) 3,4, 4L, 5, and 6. -Reduction in the obtained energy, which in turn has a negative effect on sperm flagellum movement and leads to asthenozoospermia. | [91,92] |
7345 bp deletion | Located between 9009 and 1654-bp | ||
4216 T>G | Located on MT-ND1 gene | Negative correlation with sperm motility. | [107] |
3243A>G | Positive correlation with the mt DNA copy number in embryo after ICSI as an adaptation for inefficient ATP production via oxidative phosphorylation due to mutated mtDNA. | [114] | |
A point mutation in the ND1 gene at locus 4216 | Association with recurrent pregnancy loss. | [115] | |
Copy-number variations (CNV) | mtDNA copy number affects implantation rate after ICSI. | [116] | |
11719G>A | Located on MT-ND4 gene | Association with male infertility. | [109] |
11251A>G | |||
9055 G>A | Association with poor sperm quality. | [99] | |
11696G>A (missense variant) | Association with reduced sperm motility. | [102] | |
11719 G>A | Association with poor semen quality. | [99] | |
11994 C>T (missense variant) | Negative correlation with sperm motility. | [117] | |
12506T>A | Located on MT-ND5 gene | Negative correlation with sperm motility. | [107] |
13708 G>A (missense variant) | |||
14172 T>C | Located on MT-ND6 gene | Significant difference between the total fertilization failure group and control. | [118] |
14368 C>T | |||
G15301A | Located on MT-CYB | These SNPs showed a statistically significant link to male infertility. | [110] |
A 15326G | |||
A 15487 T | |||
15 bp deletion of cytochrome c oxidase III | Location 9390 to 9413 | This deletion linked to human male infertility. | [106] |
5. Mitochondrial Genome Mutations/Variations and Fertilization/Pregnancy Outcomes
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martin, W.F.; Müller, M. Origin of Mitochondria and Hydrogenosomes; Springer: New York, NY, USA, 2007; 306p. [Google Scholar] [CrossRef]
- Andersson, S.G.E.; Zomorodipour, A.; Andersson, J.O.; Sicheritz-Pontén, T.; Alsmark, U.C.M.; Podowski, R.M.; Näslund, A.K.; Eriksson, A.-S.; Winkler, H.H.; Kurland, C.G. The Genome Sequence of Rickettsia Prowazekii and the Origin of Mitochondria. Nature 1998, 396, 133–140. [Google Scholar] [CrossRef]
- St. John, J.C.; Sakkas, D.; Barratt, C.L.R. A Role for Mitochondrial DNA and Sperm Survival. J. Androl. 2000, 21, 189–199. [Google Scholar]
- Chiaratti, M.R.; Macabelli, C.H.; Neto, J.D.A.; Grejo, M.P.; Pandey, A.K.; Perecin, F.; Collado, M. Del Maternal Transmission of Mitochondrial Diseases. Genet. Mol. Biol. 2020, 43, e20190095. [Google Scholar] [CrossRef]
- Sasarman, F.; Brunel-Guitton, C.; Antonicka, H.; Wai, T.; Shoubridge, E.A.; Allen, B.; Burelle, Y.; Charron, G.; Coderre, L.; DesRosiers, C.; et al. LRPPRC and SLIRP Interact in a Ribonucleoprotein Complex That Regulates Posttranscriptional Gene Expression in Mitochondria. Mol. Biol. Cell 2010, 21, 1315–1323. [Google Scholar] [CrossRef]
- Kumar, R.; Venkatesh, S.; Kumar, M.; Tanwar, M.; Shasmsi, B.; Gupta, P.; Sharma, R.K.; Talwar, P.; Dada, R. Oxidative Stress and Sperm Mitochondrial DNA Mutation in Idiopathic Oligoasthenozoospermic Men. Indian J. Biochem. Biophys. 2009, 46, 172–177. [Google Scholar]
- Shamsi, M.B.; Kumar, R.; Bhatt, A.; Bamezai, R.N.K.; Kumar, R.; Gupta, N.P.; Das, T.K.; Dada, R. Mitochondrial DNA Mutations in Etiopathogenesis of Male Infertility. Indian J. Urol. 2008, 24, 150. [Google Scholar] [CrossRef]
- Venkatesh, S.; Deecaraman, M.; Kumar, R.; Shamsi, M.B.; Dada, R. Role of Reactive Oxygen Species in the Pathogenesis of Mitochondrial DNA (MtDNA) Mutations in Male Infertility. Indian J. Med. Res. 2009, 129, 127–137. [Google Scholar]
- Farge, G.É.R.; Falkenberg, M. Organization of DNA in Mammalian Mitochondria. Int. J. Mol. Sci. 2019, 20, 2770. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, I.E. Mitochondria, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; 462p. [Google Scholar] [CrossRef]
- Smeitink, J.; Van Den Heuvel, L.; DiMauro, S. The Genetics and Pathology of Oxidative Phosphorylation. Nat. Rev. Genet. 2001, 2, 342–352. [Google Scholar] [CrossRef]
- Sharma, L.; Lu, J.; Bai, Y. Mitochondrial Respiratory Complex I: Structure, Function and Implication in Human Diseases. Curr. Med. Chem. 2009, 16, 1266–1277. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, M.; McClure, N.; Lewis, S.E.M. A Comparison of Mitochondrial and Nuclear DNA Status in Testicular Sperm from Fertile Men and Those with Obstructive Azoospermia. Hum. Reprod. 2002, 17, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Cummins, J.M.; Jequier, A.M.; Martin, R.; Mehmet, D.; Goldblatt, J. Semen Levels of Mitochondrial DNA Deletions in Men Attending an Infertility Clinic Do Not Correlate with Phenotype. Int. J. Androl. 1998, 21, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Valencia, C.A.; Zhang, J.; Lee, N.C.; Slone, J.; Gui, B.; Wang, X.; Li, Z.; Dell, S.; Brown, J.; et al. Biparental Inheritance of Mitochondrial DNA in Humans. Proc. Natl. Acad. Sci. USA 2018, 115, 13039–13044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annis, S.; Fleischmann, Z.; Khrapko, M.; Franco, M.; Wasko, K.; Woods, D.; Kunz, W.S.; Ellis, P.; Khrapko, K. Quasi-Mendelian Paternal Inheritance of Mitochondrial DNA: A Notorious Artifact, or Anticipated Behavior? Proc. Natl. Acad. Sci. USA 2019, 116, 14797–14798. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Sato, K. Maternal Inheritance of Mitochondrial DNA. Autophagy 2012, 8, 424–425. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Sato, K. Maternal Inheritance of Mitochondrial DNA by Diverse Mechanisms to Eliminate Paternal Mitochondrial DNA. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1979–1984. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Chinnery, P.F. Inheritance of Mitochondrial DNA in Humans: Implications for Rare and Common Diseases. J. Intern. Med. 2020, 287, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Eker, C.; Celik, H.G.; Balci, B.K.; Gunel, T. Investigation of Human Paternal Mitochondrial DNA Transmission in ART Babies Whose Fathers with Male Infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 183–192. [Google Scholar] [CrossRef]
- Steinberg, E.R.; Sestelo, A.J.; Ceballos, M.B.; Wagner, V.; Palermo, A.M.; Mudry, M.D. Sperm Morphology in Neotropical Primates. Animals 2019, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Kenchington, E.; Zouros, E.; Rodakis, G.C. Evidence That the Large Noncoding Sequence Is the Main Control Region of Maternally and Paternally Transmitted Mitochondrial Genomes of the Marine Mussel (Mytilus Spp.). Genetics 2004, 167, 835–850. [Google Scholar] [CrossRef] [Green Version]
- Cogswell, A.T.; Kenchington, E.L.R.; Zouros, E. Segregation of Sperm Mitochondria in Two- and Four-Cell Embryos of the Blue Mussel Mytilus Edulis: Implications for the Mechanism of Doubly Uniparental Inheritance of Mitochondrial DNA. Genome 2011, 49, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Sato, K. Degradation of Paternal Mitochondria by Fertilization-Triggered Autophagy in C. elegans Embryos. Science 2011, 334, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Song, W.H.; Yi, Y.J.; Sutovsky, M.; Meyers, S.; Sutovsky, P. Autophagy and Ubiquitin-Proteasome System Contribute to Sperm Mitophagy after Mammalian Fertilization. Proc. Natl. Acad. Sci. USA 2016, 113, E5261–E5270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryzhkova, A.I.; Sazonova, M.A.; Sinyov, V.V.; Galitsyna, E.V.; Chicheva, M.M.; Melnichenko, A.A.; Grechko, A.V.; Postnov, A.Y.; Orekhov, A.N.; Shkurat, T.P. Mitochondrial Diseases Caused by MtDNA Mutations: A Mini-Review. Ther. Clin. Risk Manag. 2018, 14, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, A.S. Understanding Mitochondrial Myopathies: A Review. PeerJ 2018, 6, e4790. [Google Scholar] [CrossRef] [Green Version]
- Skladal, D.; Bernier, F.P.; Halliday, J.L.; Thorburn, D.R. Birth Prevalence of Mitochondrial Respiratory Chain Defects in Children. J. Inherit. Metab. Dis. 2000, 23, 138. [Google Scholar]
- Darin, N.; Oldfors, A.; Moslemi, A.R.; Holme, E.; Tulinius, M. The Incidence of Mitochondrial Encephalomyopathies in Childhood: Clinical Features and Morphological, Biochemical, and DNA Abnormalities. Ann. Neurol. 2001, 49, 377–383. [Google Scholar] [CrossRef]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial Diseases. Nat. Rev. Dis. Prim. 2016, 2, 16080. [Google Scholar] [CrossRef]
- Frazier, A.E.; Thorburn, D.R.; Compton, A.G. Mitochondrial Energy Generation Disorders: Genes, Mechanisms, and Clues to Pathology. J. Biol. Chem. 2019, 294, 5386–5395. [Google Scholar] [CrossRef] [Green Version]
- Piomboni, P.; Focarelli, R.; Stendardi, A.; Ferramosca, A.; Zara, V. The Role of Mitochondria in Energy Production for Human Sperm Motility. Int. J. Androl. 2012, 35, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.B.; Chinnery, P.F. The Dynamics of Mitochondrial DNA Heteroplasmy: Implications for Human Health and Disease. Nat. Rev. Genet. 2015, 16, 530–542. [Google Scholar] [CrossRef]
- Crispim, D.; Canani, L.H.; Gross, J.L.; Tschiedel, B.; Souto, K.E.P.; Roisenberg, I. The European-Specific Mitochondrial Cluster J/T Could Confer an Increased Risk of Insulin-Resistance and Type 2 Diabetes: An Analysis of the m.4216T > C and m.4917A > G Variants. Ann. Hum. Genet. 2006, 70, 488–495. [Google Scholar] [CrossRef]
- Gomez, R.; O’Keeffe, T.; Chang, L.Y.; Huebinger, R.M.; Minei, J.P.; Barber, R.C. Association of Mitochondrial Allele 4216C with Increased Risk for Complicated Sepsis and Death after Traumatic Injury. J. Trauma Inj. Infect. Crit. Care 2009, 66, 850–857. [Google Scholar] [CrossRef]
- Yu, X.; Koczan, D.; Sulonen, A.M.; Akkad, D.A.; Kroner, A.; Comabella, M.; Costa, G.; Corongiu, D.; Goertsches, R.; Camina-Tato, M.; et al. MtDNA Nt13708A Variant Increases the Risk of Multiple Sclerosis. PLoS ONE 2008, 3, e1530. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.D.; Starikovskaya, E.; Derbeneva, O.; Hosseini, S.; Allen, J.C.; Mikhailovskaya, I.E.; Sukernik, R.I.; Wallace, D.C. The Role of MtDNA Background in Disease Expression: A New Primary LHON Mutation Associated with Western Eurasian Haplogroup. J. Hum. Genet. 2002, 110, 130–138. [Google Scholar] [CrossRef]
- Maruszak, A.; Canter, J.A.; Styczyńska, M.; Zekanowski, C.; Barcikowska, M. Mitochondrial Haplogroup H and Alzheimer’s Disease—Is There a Connection? Neurobiol. Aging 2009, 30, 1749–1755. [Google Scholar] [CrossRef]
- Jin, E.H.; Sung, J.K.; Lee, S.I.; Hong, J.H. Mitochondrial NADH Dehydrogenase Subunit 3 (MTND3) Polymorphisms Are Associated with Gastric Cancer Susceptibility. Int. J. Med. Sci. 2018, 15, 1329. [Google Scholar] [CrossRef] [Green Version]
- Van Der Walt, J.M.; Nicodemus, K.K.; Martin, E.R.; Scott, W.K.; Nance, M.A.; Watts, R.L.; Hubble, J.P.; Haines, J.L.; Koller, W.C.; Lyons, K.; et al. Mitochondrial Polymorphisms Significantly Reduce the Risk of Parkinson Disease. Am. J. Hum. Genet. 2003, 72, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Pezzotti, A.; Kraft, P.; Hankinson, S.E.; Hunter, D.J.; Buring, J.; Cox, D.G. The Mitochondrial A10398G Polymorphism, Interaction with Alcohol Consumption, and Breast Cancer Risk. PLoS ONE 2009, 4, e5356. [Google Scholar] [CrossRef] [Green Version]
- Achilli, A.; Iommarini, L.; Olivieri, A.; Pala, M.; Hooshiar Kashani, B.; Reynier, P.; La Morgia, C.; Valentino, M.L.; Liguori, R.; Pizza, F.; et al. Rare Primary Mitochondrial DNA Mutations and Probable Synergistic Variants in Leber’s Hereditary Optic Neuropathy. PLoS ONE 2012, 7, e42242. [Google Scholar] [CrossRef]
- Valdivieso, Á.G.; Marcucci, F.; Taminelli, G.; Guerrico, A.G.; Álvarez, S.; Teiber, M.L.; Dankert, M.A.; Santa-Coloma, T.A. The Expression of the Mitochondrial Gene MT-ND4 Is Downregulated in Cystic Fibrosis. Biochem. Biophys. Res. Commun. 2007, 356, 805–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurses, C.; Azakli, H.; Alptekin, A.; Cakiris, A.; Abaci, N.; Arikan, M.; Kursun, O.; Gokyigit, A.; Ustek, D. Mitochondrial DNA Profiling via Genomic Analysis in Mesial Temporal Lobe Epilepsy Patients with Hippocampal Sclerosis. Gene 2014, 538, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.S.; Elsas, L.J.; Nikoskelainen, E.K. Mitochondrial DNA Mutation Associated with Leber’s Hereditary Optic Neuropathy. Science 1988, 242, 1427–1430. [Google Scholar] [CrossRef]
- Restrepo, N.A.; Mitchell, S.L.; Goodloe, R.J.; Murdock, D.G.; Haines, J.L.; Crawford, D.C. Mitochondrial Variation and the Risk of Age-Related Macular Degeneration across Diverse Populations. In Pacific Symposium on Biocomputing Co-Chairs; World Scientific: Singapore, 2015; pp. 243–254. [Google Scholar] [CrossRef] [Green Version]
- Flaquer, A.; Baumbach, C.; Kriebel, J.; Meitinger, T.; Peters, A.; Waldenberger, M.; Grallert, H.; Strauch, K. Mitochondrial Genetic Variants Identified to Be Associated with BMI in Adults. PLoS ONE 2014, 9, e105116. [Google Scholar] [CrossRef]
- Earp, M.A.; Brooks-Wilson, A.; Cook, L.; Le, N. Inherited Common Variants in Mitochondrial DNA and Invasive Serous Epithelial Ovarian Cancer Risk. BMC Res. Notes 2013, 6, 425. [Google Scholar] [CrossRef] [Green Version]
- Uehara, N.; Mori, M.; Tokuzawa, Y.; Mizuno, Y.; Tamaru, S.; Kohda, M.; Moriyama, Y.; Nakachi, Y.; Matoba, N.; Sakai, T.; et al. New MT-ND6 and NDUFA1 Mutations in Mitochondrial Respiratory Chain Disorders. Ann. Clin. Transl. Neurol. 2014, 1, 361–369. [Google Scholar] [CrossRef]
- Ronchi, D.; Cosi, A.; Tonduti, D.; Orcesi, S.; Bordoni, A.; Fortunato, F.; Rizzuti, M.; Sciacco, M.; Collotta, M.; Cagdas, S.; et al. Clinical and Molecular Features of an Infant Patient Affected by Leigh Disease Associated to m.14459G > A Mitochondrial DNA Mutation: A Case Report. BMC Neurol. 2011, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Teng, L.; Zhang, S.; Ding, Y. Mitochondrial ND1 T4216C and ND2 C5178A Mutations Are Associated with Maternally Transmitted Diabetes Mellitus. Mitochondrial DNA A 2020, 32, 59–65. [Google Scholar] [CrossRef]
- Crispín-Trebejo, B.; Robles-Cuadros, M.C.; Bernabé-Ortiz, A. Association between Depression and Glycemic Control among Type 2 Diabetes Patients in L Ima, P Eru. Asia-Pac. Psychiatry 2015, 7, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Lodi, R.; Montagna, P.; Cortelli, P.; Iotti, S.; Cevoli, S.; Carelli, V.; Barbiroli, B. ‘Secondary’ 4216/ND1 and 13708/ND5 Leber’s Hereditary Optic Neuropathy Mitochondrial DNA Mutations Do Not Further Impair in Vivo Mitochondrial Oxidative Metabolism When Associated with the 11778/ND4 Mitochondrial DNA Mutation. Brain 2000, 123, 1896–1902. [Google Scholar] [CrossRef] [Green Version]
- Martorell, L.; Segués, T.; Folch, G.; Valero, J.; Joven, J.; Labad, A.; Vilella, E. New Variants in the Mitochondrial Genomes of Schizophrenic Patients. Eur. J. Hum. Genet. 2006, 14, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Bamlet, W.R.; De Andrade, M.; Boardman, L.A.; Cunningham, J.M.; Thibodeau, S.N.; Petersen, G.M. Mitochondrial Genetic Polymorphisms and Pancreatic Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1455–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dankowski, T.; Schröder, T.; Möller, S.; Yu, X.; Ellinghaus, D.; Bär, F.; Fellermann, K.; Lehnert, H.; Schreiber, S.; Franke, A.; et al. Male-Specific Association between MT-ND4 11719 A/G Polymorphism and Ulcerative Colitis: A Mitochondria-Wide Genetic Association Study. BMC Gastroenterol. 2016, 16, 118. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, V.F.; Giamberardino, S.N.; Crowley, J.J.; Vawter, M.P.; Saxena, R.; Bulik, C.M.; Yilmaz, Z.; Hultman, C.M.; Sklar, P.; Kennedy, J.L. Examining the Role of Common and Rare Mitochondrial Variants in Schizophrenia. PLoS ONE 2018, 13, e0191153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschauer, M.; Bamberg, C.; Claus, D.; Zierz, S.; Turnbull, D.M.; Taylor, R.W. Late-Onset Encephalopathy Associated with a C11777A Mutation of Mitochondrial DNA. Neurology 2003, 60, 1357–1359. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, F. The Role of Mitochondrial Dysfunction in Psychiatric Disease. Dev. Disabil. Res. Rev. 2010, 16, 136–143. [Google Scholar] [CrossRef]
- Brown, M.D.; Shoffner, J.M.; Kim, Y.L.; Jun, A.S.; Graham, B.H.; Cabell, M.F.; Gurley, D.S.; Wallace, D.C. Mitochondrial DNA Sequence Analysis of Four Alzheimer’s and Parkinson’s Disease Patients. Am. J. Med. Genet. 1996, 61, 283–289. [Google Scholar] [CrossRef]
- Brandon, M.; Baldi, P.; Wallace, D.C. Mitochondrial Mutations in Cancer. Oncogene 2006, 25, 4647–4662. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Pesini, E.; Lapena, A.-C.; Díez-Sánchez, C.; Pérez-Martos, A.; Montoya, J.; Alvarez, E.; Díaz, M.; Urriés, A.; Montoro, L.; López-Pérez, M.J. Human MtDNA Haplogroups Associated with High or Reduced Spermatozoa Motility. Am. J. Hum. Genet. 2000, 67, 682–696. [Google Scholar] [CrossRef] [Green Version]
- Kirby, D.M.; Kahler, S.G.; Freckmann, M.; Reddihough, D.; Thorburn, D.R. Leigh Disease Caused by the Mitochondrial DNA G14459A Mutation in Unrelated Families. Ann. Neurol. 2000, 48, 102–104. [Google Scholar] [CrossRef]
- Khurana, D.S.; Valencia, I.; Goldenthal, M.J.; Legido, A. Mitochondrial Dysfunction in Epilepsy. In Seminars in Pediatric Neurology; WB Saunders: Philadelphia, PA, USA, 2013; Volume 20, pp. 176–187. [Google Scholar]
- Fasterius, E.; Uhlén, M.; Al-Khalili Szigyarto, C. Single-Cell RNA-Seq Variant Analysis for Exploration of Genetic Heterogeneity in Cancer. Sci. Rep. 2019, 9, 9524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blein, S.; Bardel, C.; Danjean, V.; McGuffog, L.; Healey, S.; Barrowdale, D.; Lee, A.; Dennis, J.; Kuchenbaecker, K.B.; Soucy, P. An Original Phylogenetic Approach Identified Mitochondrial Haplogroup T1a1 as Inversely Associated with Breast Cancer Risk in BRCA2 Mutation Carriers. Breast Cancer Res. 2015, 17, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchionda, L.; Damseh, N.S.; Abu Libdeh, B.Y.; Nasca, A.; Elpeleg, O.; Zanolini, A.; Ghezzi, D. A Novel Mutation in TTC19 Associated with Isolated Complex III Deficiency, Cerebellar Hypoplasia, and Bilateral Basal Ganglia Lesions. Front. Genet. 2014, 5, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horváth, A.; Horáková, E.; Dunaj Íková, P.; Verner, Z.K.; Pravdová, E.K.; Lapetová, I.; Cuninková, L.; Lukeš, J. Downregulation of the Nuclear-Encoded Subunits of the Complexes III and IV Disrupts Their Respective Complexes but Not Complex I in Procyclic Trypanosoma Brucei. Mol. Microbiol. 2005, 58, 116–130. [Google Scholar] [CrossRef]
- Chagnon, P.; Gee, M.; Filion, M.; Robitaille, Y.; Belouchi, M.; Gauvreau, D. Phylogenetic Analysis of the Mitochondrial Genome Indicates Significant Differences between Patients with Alzheimer Disease and Controls in a French-Canadian Founder Population. Am. J. Med. Genet. 1999, 85, 20–30. [Google Scholar] [CrossRef]
- Boulet, L.; Karpati, G.; Shoubridge, E.A. Distribution and Threshold Expression of the TRNA (Lys) Mutation in Skeletal Muscle of Patients with Myoclonic Epilepsy and Ragged-Red Fibers (MERRF). Am. J. Hum. Genet. 1992, 51, 1187. [Google Scholar]
- Grossman, L.I.; Shoubridge, E.A. Mitochondrial Genetics and Human Disease. Bioessays 1996, 18, 983–991. [Google Scholar] [CrossRef]
- Choi, B.-O.; Hwang, J.H.; Cho, E.M.; Jeong, E.H.; Hyun, Y.S.; Jeon, H.J.; Seong, K.M.; Cho, N.S.; Chung, K.W. Mutational Analysis of Whole Mitochondrial DNA in Patients with MELAS and MERRF Diseases. Exp. Mol. Med. 2010, 42, 446–455. [Google Scholar] [CrossRef]
- Graf, W.D.; Marin-Garcia, J.; Gao, H.G.; Pizzo, S.; Naviaux, R.K.; Markusic, D.; Barshop, B.A.; Courchesne, E.; Haas, R.H. Autism Associated with the Mitochondrial DNA G8363A Transfer RNALys Mutation. J. Child Neurol. 2000, 15, 357–361. [Google Scholar] [CrossRef]
- Wong, L.J.C.; Liang, M.H.; Kwon, H.; Bai, R.K.; Alper, Ö.; Gropman, A. A Cystic Fibrosis Patient with Two Novel Mutations in Mitochondrial DNA: Mild Disease Led to Delayed Diagnosis of Both Disorders. Am. J. Med. Genet. 2002, 113, 59–64. [Google Scholar] [CrossRef]
- Hung, P.; Wang, H. A Previously Undescribed Leukodystrophy in Leigh Syndrome Associated with T9176C Mutation of the Mitochondrial ATPase 6 Gene. Dev. Med. Child Neurol. 2007, 49, 65–67. [Google Scholar] [CrossRef]
- Blanco-Grau, A.; Bonaventura-Ibars, I.; Coll-Cantí, J.; Melià, M.J.; Martinez, R.; Martínez-Gallo, M.; Andreu, A.L.; Pinos, T.; García-Arumí, E. Identification and Biochemical Characterization of the Novel Mutation m. 8839G> C in the Mitochondrial ATP6 Gene Associated with NARP Syndrome. Genes Brain Behav. 2013, 12, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Li, F.; Liu, P.; Liu, Y.; Yang, C.; Song, J.; Zhang, N.; Chen, Z. The Biochemical Characterization of a Missense Mutation m.8914C>T in ATP6 Gene Associated with Mitochondrial Encephalomyopathy. Int. J. Dev. Neurosci. 2018, 71, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Pronicka, E.; Piekutowska-Abramczuk, D.; Pronicki, M. Mitochondrial Diseases in Children Including Leigh Syndrome--Biochemical and Molecular Background. Postepy Biochem. 2008, 54, 161–168. [Google Scholar] [PubMed]
- Houštěk, J.; Pícková, A.; Vojtíšková, A.; Mráček, T.; Pecina, P.; Ješina, P. Mitochondrial Diseases and Genetic Defects of ATP Synthase. Biochim. Biophys. Acta (BBA)—Bioenerg. 2006, 1757, 1400–1405. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, T.; Arai, M.; Miyashita, M.; Arai, M.; Obata, N.; Nohara, I.; Oshima, K.; Niizato, K.; Okazaki, Y.; Doi, N. Schizophrenia: Maternal Inheritance and Heteroplasmy of MtDNA Mutations. Mol. Genet. Metab. 2012, 105, 103–109. [Google Scholar] [CrossRef]
- Krausz, C.; Escamilla, A.R.; Chianese, C. Genetics of Male Infertility: From Research to Clinic. Reproduction 2015, 150, R159–R174. [Google Scholar] [CrossRef]
- Wai, T.; Ao, A.; Zhang, X.; Cyr, D.; Dufort, D.; Shoubridge, E.A. The Role of Mitochondrial DNA Copy Number in Mammalian Fertility. Biol. Reprod. 2010, 83, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, N.; Lunetti, P.; Braccia, C.; Armirotti, A.; Pisanello, F.; De Vittorio, M.; Zara, V.; Ferramosca, A. Comparative Proteomic Analysis of Proteins Involved in Bioenergetics Pathways Associated with Human Sperm Motility. Int. J. Mol. Sci. 2019, 20, 3000. [Google Scholar] [CrossRef] [Green Version]
- Spiropoulos, J.; Turnbull, D.M.; Chinnery, P.F. Can Mitochondrial DNA Mutations Cause Sperm Dysfunction? Mol. Hum. Reprod. 2002, 8, 719–721. [Google Scholar] [CrossRef]
- Ferramosca, A.; Focarelli, R.; Piomboni, P.; Coppola, L.; Zara, V. Oxygen Uptake by Mitochondria in Demembranated Human Spermatozoa: A Reliable Tool for the Evaluation of Sperm Respiratory Efficiency. Int. J. Androl. 2008, 31, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Zara, V. Mitochondria and Fertility: The Mitochondria Critical Role on Spermatozoa Function. JDREAM J. Interdiscip. Res. Appl. Med. 2017, 1, 21–26. [Google Scholar] [CrossRef]
- Nakada, K.; Sato, A.; Yoshida, K.; Morita, T.; Tanaka, H.; Inoue, S.I.; Yonekawa, H.; Hayashi, J.I. Mitochondria-Related Male Infertility. Proc. Natl. Acad. Sci. USA 2006, 103, 15148–15153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, T.; Magnitsky, S.; Ohnishi, T. Characterization of the Complex I-Associated Ubisemiquinone Species: Toward the Understanding of Their Functional Roles in the Electron/Proton Transfer Reaction. Biochim. Biophys. Acta Bioenerg. 2000, 1459, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Ambulkar, P.S.; Waghmare, J.E.; Chaudhari, A.R.; Wankhede, V.R.; Tarnekar, A.M.; Shende, M.R.; Pal, A.K. Large Scale 7436-Bp Deletions in Human Sperm Mitochondrial DNA with Spermatozoa Dysfunction and Male Infertility. J. Clin. Diagn. Res. 2016, 10, GC09. [Google Scholar] [CrossRef]
- Ambulkar, P.S.; Chuadhari, A.R.; Pal, A.K. Association of Large Scale 4977-Bp “Common” Deletions in Sperm Mitochondrial DNA with Asthenozoospermia and Oligoasthenoteratozoospermia. J. Hum. Reprod. Sci. 2016, 9, 35. [Google Scholar] [CrossRef]
- Kao, S.H.; Chao, H.T.; Wei, Y.H. Multiple Deletions of Mitochondrial DNA Are Associated with the Decline of Motility and Fertility of Human Spermatozoa. Mol. Hum. Reprod. 1998, 4, 657–666. [Google Scholar] [CrossRef]
- Talebi, E.; Karimian, M.; Nikzad, H. Association of Sperm Mitochondrial DNA Deletions with Male Infertility in an Iranian Population. Mitochondrial DNA A 2018, 29, 615–623. [Google Scholar] [CrossRef]
- Guo, Z.; Jin, C.; Yao, Z.; Wang, Y.; Xu, B. Analysis of the Mitochondrial 4977 Bp Deletion in Patients with Hepatocellular Carcinoma. Balk. J. Med. Genet. 2017, 20, 81–85. [Google Scholar] [CrossRef]
- Tanaka, M.; Ozawa, T. Analysis of Mitochondrial DNA Mutations. In Protocols in Molecular Neurobiology; Springer: Totowa, NJ, USA, 1992; pp. 25–53. [Google Scholar] [CrossRef]
- Carra, E.; Sangiorgi, D.; Gattuccio, F.; Rinaldi, A.M. Male Infertility and Mitochondrial DNA. Biochem. Biophys. Res. Commun. 2004, 322, 333–339. [Google Scholar] [CrossRef]
- Chari, M.G.; Colagar, A.H.; Bidmeshkipour, A. A Novel Large-Scale Deletion of The Mitochondrial of Spermatozoa of Men in North Iran. Int. J. Fertil. Steril. 2015, 8, 453. [Google Scholar] [CrossRef]
- Barbagallo, F.; Vignera, S.L.; Cannarella, R.; Aversa, A.; Calogero, A.E.; Condorelli, R.A. Evaluation of Sperm Mitochondrial Function: A Key Organelle for Sperm Motility. J. Clin. Med. 2020, 9, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St. John, J.C.; Jokhi, R.P.; Barratt, C.L.R. Men with Oligoasthenoteratozoospermia Harbour Higher Numbers of Multiple Mitochondrial DNA Deletions in Their Spermatozoa, but Individual Deletions Are Not Indicative of Overall Aetiology. Mol. Hum. Reprod. 2001, 7, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Holyoake, A.J.; McHugh, P.; Wu, M.; O’Carroll, S.; Benny, P.; Sin, I.L.; Sin, F.Y.T. High Incidence of Single Nucleotide Substitutions in the Mitochondrial Genome Is Associated with Poor Semen Parameters in Men. Int. J. Androl. 2001, 24, 175–182. [Google Scholar] [CrossRef]
- Güney, A.I.; Javadova, D.; Kirac, D.; Ulucan, K.; Koc, G.; Ergec, D.; Tavukcu, H.; Tarcan, T. Detection of Y Chromosome Microdeletions and Mitochondrial DNA Mutations in Male Infertility Patients. Genet. Mol. Res. 2012, 11, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh Colagar, A.; Karimi, F. Large Scale Deletions of the Mitochondrial DNA in Astheno, Asthenoterato and Oligoasthenoterato-Spermic Men. Mitochondrial DNA 2014, 25, 321–328. [Google Scholar] [CrossRef]
- Ji, J.; Xu, M.; Huang, Z.; Li, L.; Zheng, H.; Yang, S.; Li, S.; Jin, L.; Ling, X.; Xia, Y.; et al. Mitochondrial DNA Sequencing and Large-Scale Genotyping Identifies MT-ND4 Gene Mutation m.11696G>A Associated with Idiopathic Oligoasthenospermia. Oncotarget 2017, 8, 52975. [Google Scholar] [CrossRef] [Green Version]
- Barbhuiya, P.N.; Gogoi, A.; Ahmed, G.; Mahanta, R. Prevalence of Mitochondrial DNA Nucleotide Substitution Mutations in Male Infertile Cases of Northeast India. J. Infertil. Reprod. Biol. 2016, 4, 11–21. [Google Scholar]
- Khan, A.U.H.; Rathore, M.G.; Allende-Vega, N.; Vo, D.N.; Belkhala, S.; Orecchioni, S.; Talarico, G.; Bertolini, F.; Cartron, G.; Lecellier, C.H.; et al. Human Leukemic Cells Performing Oxidative Phosphorylation (OXPHOS) Generate an Antioxidant Response Independently of Reactive Oxygen Species (ROS) Production. EBioMedicine 2016, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Y.; Wen, S.; Yan, R.; Yang, Q.; Chen, H. Associations of Mitochondrial Haplogroups and Mitochondrial DNA Copy Numbers with End-Stage Renal Disease in a Han Population. Mitochondrial DNA A 2017, 28, 725–731. [Google Scholar] [CrossRef]
- Mughal, I.A.; Irfan, A.; Hameed, A.; Jahan, S. Sperm Mitochondrial DNA 15bp Deletion of Cytochrome c Oxidase Subunit III Is Significantly Associated with Human Male Infertility in Pakistan. J. Pak. Med. Assoc. 2016, 66, 3–7. [Google Scholar] [PubMed]
- Al Smadi, M.A.; Hammadeh, M.E.; Solomayer, E.; Batiha, O.; Altalib, M.M.; Jahmani, M.Y.; Shboul, M.A.; Nusair, B.; Amor, H. Impact of Mitochondrial Genetic Variants in ND1, ND2, ND5, and ND6 Genes on Sperm Motility and Intracytoplasmic Sperm Injection (ICSI) Outcomes. Reprod. Sci. 2021, 28, 1540. [Google Scholar] [CrossRef] [PubMed]
- Dahadhah, F.W.; Jaweesh, M.S.; Al Zoubi, M.S.; Alarjah, M.I.A.; Hammadeh, M.E.; Amor, H. Lack of Association between Single Polymorphic Variants of the Mitochondrial Nicotinamide Adenine Dinucleotide Dehydrogenase 3, and 4L (MT-ND3 and MT-ND4L) and Male Infertility. Andrologia 2021, 53, e14139. [Google Scholar] [CrossRef] [PubMed]
- Dahadhah, F.W.; Saleh Jaweesh, M.; Salim Al Zoubi, M.; Issam Abu Alarjah, M.; Eid Hammadeh, M.; Amor, H. Mitochondrial Nicotinamide Adenine Dinucleotide Hydride Dehydrogenase (NADH) Subunit 4 (MTND4) Polymorphisms and Their Association with Male Infertility. J. Assist. Reprod. Genet. 2021, 38, 2021–2029. [Google Scholar] [CrossRef]
- Saleh Jaweesh, M.; Eid Hammadeh, M.; Dahadhah, F.W.; Salim Al Zoubi, M.; Amor, H. Association between the Single Nucleotide Variants of the Mitochondrial Cytochrome B Gene (MT-CYB) and the Male Infertility. Mol. Biol. Rep. 2022, 49, 3609–3616. [Google Scholar] [CrossRef]
- Kao, S.-H.; Chao, H.-T.; Wei, Y.-H. Mitochondrial Deoxyribonucleic Acid 4977-Bp Deletion Is Associated with Diminished Fertility and Motility of Human Sperm. Biol. Reprod. 1995, 52, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Ieremiadou, F.; Rodakis, G.C. Correlation of the 4977 Bp Mitochondrial DNA Deletion with Human Sperm Dysfunction. BMC Res. Notes 2009, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Al Zoubi, M.S.; Al-Batayneh, K.; Alsmadi, M.; Rashed, M.; Al-Trad, B.; Al Khateeb, W.; Aljabali, A.; Otoum, O.; Al-Talib, M.; Batiha, O. 4,977-Bp Human Mitochondrial DNA Deletion Is Associated with Asthenozoospermic Infertility in Jordan. Andrologia 2020, 52, e13379. [Google Scholar] [CrossRef]
- Monnot, S.; Samuels, D.C.; Hesters, L.; Frydman, N.; Gigarel, N.; Burlet, P.; Kerbrat, V.; Lamazou, F.; Frydman, R.; Benachi, A.; et al. Mutation Dependance of the Mitochondrial DNA Copy Number in the First Stages of Human Embryogenesis. Hum. Mol. Genet. 2013, 22, 1867–1872. [Google Scholar] [CrossRef] [Green Version]
- Vanniarajan, A.; Govindaraj, P.; Carlus, S.J.; Aruna, M.; Aruna, P.; Kumar, A.; Jayakar, R.I.; Lionel, A.C.; Gupta, S.; Rao, L.; et al. Mitochondrial DNA Variations Associated with Recurrent Pregnancy Loss among Indian Women. Mitochondrion 2011, 11, 450–456. [Google Scholar] [CrossRef]
- Diez-Juan, A.; Rubio, C.; Marin, C.; Martinez, S.; Al-Asmar, N.; Riboldi, M.; Díaz-Gimeno, P.; Valbuena, D.; Simón, C. Mitochondrial DNA Content as a Viability Score in Human Euploid Embryos: Less Is Better. Fertil. Steril. 2015, 104, 534–541.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, D.S.; Vanniarajan, A.; Gupta, N.J.; Chakravarty, B.; Singh, L.; Thangaraj, K. A Novel Missense Mutation C11994T in the Mitochondrial ND4 Gene as a Cause of Low Sperm Motility in the Indian Subcontinent. Fertil. Steril. 2006, 86, 1783–1785. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.H.; Huang, X.H.; Geng, X.J.; Li, Q.; Zhang, Y.; Dou, Q. Correlation between Sperm Mitochondrial ND5 and ND6 Gene Variations and Total Fertilisation Failure. Arch. Med. Sci. 2020, 16, 692. [Google Scholar] [CrossRef] [PubMed]
- Lestienne, P.; Reynier, P.; Chrétien, M.F.; Penisson-Besnier, I.; Malthièry, Y.; Rohmer, V. Oligoasthenospermia Associated with Multiple Mitochondrial DNA Rearrangements. Mol. Hum. Reprod. 1997, 3, 811–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vertika, S.; Singh, K.K.; Rajender, S. Mitochondria, Spermatogenesis, and Male Infertility—An Update. Mitochondrion 2020, 54, 26–40. [Google Scholar] [CrossRef]
- Zhang, J.L.; Mao, G.H.; Huang, X.H.; Chang, H.Y.; Zheng, Y.; Cao, X. Association between Sperm Mitochondrial ND2 Gene Variants and Total Fertilization Failure. Syst. Biol. Reprod. Med. 2018, 64, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Whitcomb, B.W.; Huffman, A.; Brandon, N.; Labrie, S.; Tougias, E.; Lynch, K.; Rahil, T.; Sites, C.K.; Richard Pilsner, J. Associations of Sperm Mitochondrial DNA Copy Number and Deletion Rate with Fertilization and Embryo Development in a Clinical Setting. Hum. Reprod. 2019, 34, 163–170. [Google Scholar] [CrossRef]
- Pereira, L.; Gonçalves, J.; Bandelt, H.J. Mutation C11994T in the Mitochondrial ND4 Gene Is Not a Cause of Low Sperm Motility in Portugal. Fertil. Steril. 2008, 89, 738–741. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amor, H.; Hammadeh, M.E. A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes 2022, 13, 1182. https://doi.org/10.3390/genes13071182
Amor H, Hammadeh ME. A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes. 2022; 13(7):1182. https://doi.org/10.3390/genes13071182
Chicago/Turabian StyleAmor, Houda, and Mohamad Eid Hammadeh. 2022. "A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility" Genes 13, no. 7: 1182. https://doi.org/10.3390/genes13071182
APA StyleAmor, H., & Hammadeh, M. E. (2022). A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes, 13(7), 1182. https://doi.org/10.3390/genes13071182