Identification and Characterization of PTE-2, a Stowaway-like MITE Activated in Transgenic Chinese Cabbage Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Identification of Activated PTE-2 by In Silico Analysis
2.3. MITE Insertion Polymorphism (MIP) PCR Analysis
2.4. Detection of the Other PTE-2 Elements at Different Loci
2.5. Confirmation of PTE-2 Structure and Classification
3. Results
3.1. In Silico Detection of Activated MITE with NGS Analysis
3.2. MIP PCR Analysis of PTE-2 in Transgenic Chinese Cabbage Lines
3.3. MIP PCR Analysis of PTE-2 Copy Elements at Different Loci in Transgenic Chinese Cabbage Lines
3.4. Structural Characterization of PTE-2
3.5. Flanking Sequence Duplication of PTE-2-Excised Site
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jangam, D.; Feschotte, C.; Betrán, E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 2017, 33, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Feschotte, C.; Jiang, N.; Wessler, S.R. Plant transposable elements: Where genetics meets genomics. Nat. Rev. Genet. 2002, 3, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Fattash, I.; Rooke, R.; Wong, A.; Hui, C.; Luu, T.; Bhardwaj, P.; Yang, G. Miniature inverted-repeat transposable elements: Discovery, distribution, and activity. Genome 2013, 56, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Q.; Zhang, Y.; Lu, C.; Kuang, H. P-MITE: A database for plant miniature inverted-repeat transposable elements. Nucleic. Acids. Res. 2013, 42, D1176–D1181. [Google Scholar] [CrossRef] [Green Version]
- Bureau, T.E.; Wessler, S.R. Tourist: A large family of small inverted repeat frequently associated with maize genes. Plant Cell. 1992, 4, 1283–1294. [Google Scholar]
- Bureau, T.E.; Wessler, S.R. Stowaway: A new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell. 1994, 6, 907–916. [Google Scholar]
- Nouroz, F.; Noreen, S.; Heslop-Harrison, J.S. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica. Mol. Genet. Genom. 2015, 290, 2297–2312. [Google Scholar] [CrossRef]
- Windsor, A.J. Transposons in Arabidopsis: Structure, Activity, Genome Restructuring. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 2001. Available online: https://escholarship.mcgill.ca/concern/theses/1831cm61c (accessed on 8 June 2022).
- Horváth, V.; Merenciano, M.; González, J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 2017, 33, 832–841. [Google Scholar] [CrossRef]
- Hirochika, H.; Sugimoto, K.; Otsuki, Y.; Tsugawa, H.; Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 1996, 93, 7783–7788. [Google Scholar] [CrossRef] [Green Version]
- Peschke, V.M.; Phillips, R.L. Activation of the maize transposable element suppressor-mutator (spm) in tissue culture. Theor. Appl. Genet. 1991, 81, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Hansey, C.; Kaeppler, S. TCUP: A novel hAT transposon active in maize tissue culture. Front. Plant. Sci. 2012, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Hirochika, H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 1993, 12, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.M.; Lister, C.; Crawford, N.; Dean, C. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell. 1998, 10, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Guo, W.L.; Wang, X.R.; Wang, X.L.; Zhuang, T.T.; Clarke, J.L.; Liu, B. Unintended consequence of plant transformation: Biolistic transformation caused transpositional activation of an endogenous retrotransposon Tos17 in rice ssp. japonica cv. Matsumae. Plant Cell Rep. 2009, 28, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Jeon, Y.J.; Park, J.S.; Park, Y.D. Discovery of PTE-1, Tourist-like miniature inverted repeat transposable element (MITE), and its activation in transgenic Brassica rapa ssp. pekinensis plants. Hortic. Environ. Biotechnol. 2019, 60, 955–965. [Google Scholar] [CrossRef]
- Park, D.; Choi, I.Y.; Kim, N.S. Detection of mPing mobilization in transgenic rice plants. Genes Genom. 2020, 42, 47–54. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.J.; Kim, B.R.; Woo, E.T.; Lee, J.S.; Han, E.H.; Lee, Y.H.; Park, Y.D. Isolation of myrosinase and glutathione S-transferase genes and transformation of these genes to develop phenylethylisothiocyanate enriching Chinese cabbage. Hortic. Sci. Technol. 2011, 29, 623–632. [Google Scholar]
- Shin, Y.H.; Lee, S.H.; Park, Y.D. Development of mite (Tetranychus urticae)-resistant transgenic Chinese cabbage using plant-mediated RNA interference. Hortic. Environ. Biotechnol. 2020, 61, 305–315. [Google Scholar] [CrossRef]
- Lee, G.H.; Shin, N.R.; Park, Y.D. Reverse genetics analysis of the 55-kDa B regulatory subunit of 2A serine/threonine protein phosphatase (PP2A) related to self-incompatibility in Chinese cabbage. Hortic. Environ. Biotechnol. 2020, 61, 127–137. [Google Scholar] [CrossRef]
- Han, Y.; Wessler, S.R. MITE-Hunter: A program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic. Acids. Res. 2010, 38, e199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Chen, J.J.; Zhang, Y.; Hu, Q.; Su, W.Q.; Kuang, H.H. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol. Biol. Evol. 2012, 29, 1005–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G. MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinform. 2013, 14, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Kohany, O.; Gentles, A.J.; Hankus, L.; Jurka, J. Annotation, submission and screening of repetitive elements in Repbase: Repbase Submitter and Censor. BMC Bioinform. 2006, 7, 474. [Google Scholar] [CrossRef] [Green Version]
- McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 2013, 14, 49–61. [Google Scholar] [CrossRef]
- Oliver, K.R.; McComb, J.A.; Greene, W.K. Transposable elements: Powerful contributors to angiosperm evolution and diversity. Genome Biol. Evol. 2013, 5, 1886–1901. [Google Scholar] [CrossRef]
- Biémont, C. A brief history of the status of transposable elements: From junk DNA to major players in evolution. Genetics 2010, 186, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Oliver, K.R.; Greene, W.K. Mobile DNA and the TE-Thrust hypothesis: Supporting evidence from the primates. Mob. DNA 2011, 2, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Nandini, B. Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol. Biol. Rep. 2020, 47, 3155–3167. [Google Scholar]
- Feschotte, C.; Mouches, C. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 2000, 17, 730–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, Y.; Ma, B.; Xiang, Z.; He, N. Amplification of miniature inverted-repeat transposable elements and the associated impact on gene regulation and alternative splicing in mulberry (Morus notabilis). Mob. DNA 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, K.; Shen, Y.; Huang, Z.; Li, M.; Tang, D.; Gu, M.; Cheng, Z. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 2009, 93, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandran, M. Transgene Stability, Transposon Activation and Potential for Gene Tagging in Peanut (Arachis hypogaea L.). Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2013. [Google Scholar]
- Sampath, P.; Murukarthick, J.; Izzah, N.K.; Lee, J.; Choi, H.I.; Shirasawa, K.; Choi, B.S.; Liu, S.; Nou, I.S.; Yang, T.J. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PLoS ONE 2014, 9, e94499. [Google Scholar] [CrossRef] [Green Version]
- Castelletti, S.; Tuberosa, R.; Pindo, M.; Salvi, S. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3 Genes Genom. Genet. 2014, 4, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Magalhaes, J.V.; Liu, J.; Guimarães, C.T.; Lana, Y.G.P.; Alves, V.M.C.; Wang, Y.H.; Schaffert, R.E.; Hoekenga, O.A.; Piñeros, M.A.; Shaff, J.E.; et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 2007, 39, 1156. [Google Scholar] [CrossRef]
- Momose, M.; Abe, Y.; Ozeki, Y. Miniature inverted-repeat transposable elements of Stowaway are active in potato. Genetics 2010, 186, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Nishihara, M.; Hikage, T.; Yamada, E.; Nakatsuka, T. A single-base substitution suppresses flower color mutation caused by a novel miniature inverted-repeat transposable element in gentian. Mol. Genet. Genom. 2011, 286, 371–382. [Google Scholar] [CrossRef]
- Wang, D.; Yu, C.; Zhang, J.; Peterson, T. Excision and reinsertion of Ac macrotransposons in maize. Genetics 2022, iyac067. [Google Scholar] [CrossRef]
- Sato, M.; Kawabe, T.; Hosokawa, M.; Tatsuzawa, F. Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3′, 5′ hydroxylase (F3′ 5′ H) promoter. Plant Cell Rep. 2011, 30, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Wicker, T.; Yu, Y.; Haberer, G.; Mayer, K.F.; Marri, P.R.; Rounsley, S.; Chen, M.; Zyccolo, A.M.; Panaud, O.; Wing, R.A.; et al. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat. Commun. 2016, 7, 12790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guffanti, G.; Bartlett, A.; DeCrescenzo, P.; Macciardi, F.; Hunter, R. Transposable elements. Curr. Top Behav. Neurosci. 2019, 42, 221–246. [Google Scholar] [PubMed]
- Yan, Y.; Zhang, Y.; Yang, K.; Sun, Z.; Fu, Y.; Chen, X.; Fang, R. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J. 2011, 65, 820–828. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Q.; Lu, C.; Kuang, H. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in plants. In Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life; Springer: Cham, Switzerland, 2014; pp. 157–168. [Google Scholar] [CrossRef]
Line | UP z | ON y | DN x |
---|---|---|---|
‘CT001’ | 6.3 | 8 | 6 |
‘IGA’6 | 7 | 0.09 | 3 |
cN z | Chr y | Start | End | Strand | Length (bp) | Identity x |
---|---|---|---|---|---|---|
PTE-2 | A06 | 637,582 | 637,854 | + | 273 | 100 |
PTE-2_c1 | A02 | 10,813,956 | 10,814,192 | + | 238 | 86.97 |
PTE-2_c2 | A02 | 16,240,447 | 16,240,682 | + | 237 | 86.08 |
PTE-2_c3 | A02 | 19,985,345 | 19,985,574 | + | 239 | 86.19 |
PTE-2_c4 | A03 | 26,668,867 | 26,669,128 | - | 278 | 82.01 |
PTE-2_c5 | A04 | 3,356,039 | 3,356,288 | - | 252 | 84.92 |
PTE-2_c6 | A06 | 5,906,593 | 5,906,822 | + | 233 | 87.12 |
PTE-2_c7 | A07 | 814,580 | 814,816 | + | 240 | 80.42 |
PTE-2_c8 | A07 | 1,776,244 | 1,776,481 | + | 239 | 88.28 |
PTE-2_c9 | A07 | 7,412,914 | 7,413,154 | + | 244 | 86.07 |
PTE-2_c10 | A07 | 16,535,966 | 16,536,195 | + | 236 | 80.51 |
PTE-2_c11 | A08 | 7,875,571 | 7,875,815 | - | 248 | 86.69 |
PTE-2_c12 | A08 | 8,011,522 | 8,011,748 | - | 229 | 87.77 |
PTE-2_c13 | A09 | 8,224,067 | 8,224,306 | - | 244 | 88.53 |
PTE-2_c14 | A09 | 26,516,545 | 26,516,815 | + | 280 | 82.50 |
A + T (%) | Length (bp) | TSD (5′–3′) | TIR (5′–3′) | MITE Family |
---|---|---|---|---|
78 | 268 | TA | TTCANTCTGTTTCNNAATAAGTG | Stowaway (DTT) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, Y.-J.; Shin, Y.-H.; Cheon, S.-J.; Park, Y.-D. Identification and Characterization of PTE-2, a Stowaway-like MITE Activated in Transgenic Chinese Cabbage Lines. Genes 2022, 13, 1222. https://doi.org/10.3390/genes13071222
Jeon Y-J, Shin Y-H, Cheon S-J, Park Y-D. Identification and Characterization of PTE-2, a Stowaway-like MITE Activated in Transgenic Chinese Cabbage Lines. Genes. 2022; 13(7):1222. https://doi.org/10.3390/genes13071222
Chicago/Turabian StyleJeon, Young-Ji, Yun-Hee Shin, Su-Jeong Cheon, and Young-Doo Park. 2022. "Identification and Characterization of PTE-2, a Stowaway-like MITE Activated in Transgenic Chinese Cabbage Lines" Genes 13, no. 7: 1222. https://doi.org/10.3390/genes13071222
APA StyleJeon, Y. -J., Shin, Y. -H., Cheon, S. -J., & Park, Y. -D. (2022). Identification and Characterization of PTE-2, a Stowaway-like MITE Activated in Transgenic Chinese Cabbage Lines. Genes, 13(7), 1222. https://doi.org/10.3390/genes13071222