Fluorescent Platforms for RNA Chemical Biology Research
Abstract
:1. Introduction
2. Current Fluorescence-Based Experimental Assays and Methods
2.1. Application of FISH
2.2. RNA Aptamer-Based Fluorescent Assays
2.3. Molecular Beacon-Based Fluorescence Assays
2.4. Enzymatic Labeling-Based Fluorescence Assays
2.5. Forced Intercalation (FIT) Based Fluorescent Probes
2.6. Fluorescent Techniques for Detection of dsRNA
3. RNA Targeted Fluorescence Spectroscopy
3.1. Fluorescence Resonance Energy Transfer (FRET)
3.2. Protein-Induced Fluorescence Enhancement (PIFE)
3.3. Fluorescence Probe in qPCR and RT-PCR
3.4. Fluorescence-Based Assays in Determining RNA-Protein Binding Sites
4. Application in RNA-Based Drug Delivery and Discovery
4.1. Fluorescence Techniques in RNA Therapeutics
4.2. Fast Integrated Nuclease Detection in Tandem (FIND-IT)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caspersson, T.; Schultz, J. Pentose nucleotides in the cytoplasm of growing tissues. Nature 1939, 143, 602–603. [Google Scholar] [CrossRef]
- Moore, P.B.; Steitz, T.A. The Roles of RNA in the Synthesis of Protein. Cold Spring Harb. Perspect. Biol. 2010, 3, a003780. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the regulation of gene expression: Physiology and disease. Non-Coding RNA 2019, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Karijolich, J.; Yu, Y.-T. Spliceosomal snRNA modifications and their function. RNA Biol. 2010, 7, 192–204. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, R.; Wang, Z.; Tian, J.; Chen, X. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes. Chem. Soc. Rev. 2017, 46, 2824–2843. [Google Scholar] [CrossRef] [Green Version]
- Navizet, I.; Liu, Y.-J.; Ferré, N.; Roca-Sanjuán, D.; Lindh, R. The chemistry of bioluminescence: An analysis of chemical functionalities. ChemPhysChem 2011, 12, 3064–3076. [Google Scholar] [CrossRef]
- Ozawa, T.; Yoshimura, H.; Kim, S.B. Advances in fluorescence and bioluminescence imaging. Anal. Chem. 2012, 85, 590–609. [Google Scholar] [CrossRef] [PubMed]
- Gall, J.G. The origin of in situ hybridization–a personal history. Methods 2016, 98, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, D.; Voith von Voithenberg, L.; Kaigala, G.V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018, 1, 15–24. [Google Scholar] [CrossRef]
- Petroni, S.; Caldarola, L.; Scamarcio, R.; Giotta, F.; Latorre, A.; Mangia, A.; Simone, G. FISH testing of HER2 immunohistochemistry 1+ invasive breast cancer with unfavorable characteristics. Oncol. Lett. 2016, 12, 3115–3122. [Google Scholar] [CrossRef] [Green Version]
- Ried, T.; Baldini, A.; Rand, T.C.; Ward, D.C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. USA 1992, 89, 1388–1392. [Google Scholar] [CrossRef] [Green Version]
- Young, A.P.; Jackson, D.J.; Wyeth, R.C. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ. 2020, 8, e8806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zirkel, A.; Papantonis, A. Circular RNAs: Methods and Protocols; Dieterich, C., Papantonis, A., Eds.; Springer: New York, NY, USA, 2018; pp. 69–75. [Google Scholar]
- Little, S.C.; Gregor, T. Single mRNA molecule detection in Drosophila. In RNA Detection; Humana Press: New York, NY, USA, 2018; pp. 127–142. [Google Scholar]
- Stapel, L.C.; Broaddus, C.; Vastenhouw, N.L. Detection and automated analysis of single transcripts at subcellular resolution in zebrafish embryos. In RNA Detection: Methods and Protocols; Gaspar, I., Ed.; Humana Press: New York, NY, USA, 2018; pp. 143–162. [Google Scholar]
- Titlow, J.S.; Yang, L.; Parton, R.M.; Palanca, A.; Davis, I. Super-resolution single molecule FISH at the Drosophila neuromuscular junction. In Rna Detection; Humana Press: New York, NY, USA, 2018; Volume 1649, pp. 163–175. [Google Scholar]
- Rosa, S.; Duncan, S.; Dean, C. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 2016, 7, 13031. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, A. ECHO probes: A concept of fluorescence control for practical nucleic acid sensing. Chem. Soc. Rev. 2011, 40, 5815–5828. [Google Scholar] [CrossRef] [PubMed]
- Oomoto, I.; Suzuki-Hirano, A.; Umeshima, H.; Han, Y.-W.; Yanagisawa, H.; Carlton, P.; Harada, Y.; Kengaku, M.; Okamoto, A.; Shimogori, T. ECHO-liveFISH: In vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucleic AcidsRes. 2015, 43, e126. [Google Scholar] [CrossRef] [Green Version]
- Germer, K.; Leonard, M.; Zhang, X. RNA aptamers and their therapeutic and diagnostic applications. Int. J. Biochem. Mol. Biol. 2013, 4, 27–40. [Google Scholar] [PubMed]
- Trachman, R.J., 3rd; Truong, L.; Ferré-D’Amaré, A.R. Structural principles of fluorescent RNA aptamers. Trends Pharmacol. Sci. 2017, 38, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Filonov, G.S.; Moon, J.D.; Svensen, N.; Jaffrey, S.R. Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 2014, 136, 16299–16308. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, J. RNA fluorescence with light-Up aptamers. Front. Chem. 2016, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Ormö, M.; Cubitt, A.B.; Kallio, K.; Gross, L.A.; Tsien, R.Y.; Remington, S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273, 1392–1395. [Google Scholar] [CrossRef] [Green Version]
- Dolgosheina, E.V.; Jeng, S.C.Y.; Panchapakesan, S.S.S.; Cojocaru, R.; Chen, P.S.K.; Wilson, P.D.; Hawkins, N.; Wiggins, P.A.; Unrau, P.J. RNA mango aptamer-fluorophore: A bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 2014, 9, 2412–2420. [Google Scholar] [CrossRef]
- Abdolahzadeh, A.; Dolgosheina, E.V.; Unrau, P.J. RNA detection with high specificity and sensitivity using nested fluorogenic Mango NASBA. RNA 2019, 25, 1806–1813. [Google Scholar] [CrossRef]
- Cawte, A.D.; Unrau, P.J.; Rueda, D.S. Live cell imaging of single RNA molecules with fluorogenic Mango II arrays. Nat. Commun. 2020, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, S.; Kramer, F.R. Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 1996, 14, 303–308. [Google Scholar] [CrossRef]
- Kim, Y.; Sohn, D.; Tan, W. Molecular beacons in biomedical detection and clinical diagnosis. Int. J. Clin. Exp. Pathol. 2008, 1, 105–116. [Google Scholar]
- Bratu, D.P. Molecular beacons light the way: Imaging native mRNAs in living cells. Discov. Med. 2003, 3, 44–47. [Google Scholar] [PubMed]
- Yang, Y.; Chen, M.; Krueger, C.J.; Tsourkas, A.; Chen, A.K. Quantifying gene expression in living cells with ratiometric bimolecular beacons. In RNA Detection: Methods and Protocols; Gaspar, I., Ed.; Springer: New York, NY, USA, 2018; pp. 231–242. [Google Scholar]
- Chen, C.-Y.; Chang, C.-C.; Yen, C.-F.; Chiu, M.T.-K.; Chang, W.-H. Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis. Proc. Natl. Acad. Sci. USA 2009, 106, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kim, S. RNA Imaging; Humana Press: New York, NY, USA, 2016; pp. 129–138. [Google Scholar]
- Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Ying, L.; Ou, M.; Wang, K. A DNA tetrahedron-based molecular beacon for tumor-related mRNA detection in living cells. Chem. Commun. 2015, 52, 2346–2349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, S.; Feng, J.; Zou, R.; Xiang, L.; Cai, C. MoS2-loaded G-quadruplex molecular beacon probes for versatile detection of MicroRNA through hybridization chain reaction signal amplification. Talanta 2019, 202, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Prigodich, A.E.; Randeria, P.S.; Briley, W.E.; Kim, N.J.; Daniel, W.L.; Giljohann, D.A.; Mirkin, C.A. Multiplexed nanoflares: mRNA detection in live cells. Anal. Chem. 2012, 84, 2062–2066. [Google Scholar] [CrossRef] [Green Version]
- Muthmann, N.; Hartstock, K.; Rentmeister, A. Chemo-enzymatic treatment of RNA to facilitate analyses. Wiley Interdiscip. Rev. RNA 2020, 11, e1561. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Dong, J.; Hu, X.; Gong, W.; Li, J.; Shen, J.; Tian, H.; Wang, J. A covalent approach for site-specific RNA labeling in mammalian cells. Angew. Chem. 2015, 127, 4680–4685. [Google Scholar] [CrossRef]
- Alexander, S.C.; Busby, K.N.; Cole, C.M.; Zhou, C.Y.; Devaraj, N.K. Site-specific covalent labeling of RNA by enzymatic transglycosylation. J. Am. Chem. Soc. 2015, 137, 12756–12759. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Alexander, S.C.; Devaraj, N.K. Fluorescent turn-on probes for wash-free mRNA imaging via covalent site-specific enzymatic labeling. Chem. Sci. 2017, 8, 7169–7173. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Plant, J.J.; Rangel, A.E.; Meek, K.N.; Anamisis, A.J.; Hollien, J.; Heemstra, J.M. Fluorescent RNA labeling using self-alkylating ribozymes. ACS Chem. Biol. 2014, 9, 1680–1684. [Google Scholar] [CrossRef]
- Holstein, J.M.; Stummer, D.; Rentmeister, A. Enzymatic modification of 5′-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels–Alder reaction. Chem. Sci. 2014, 6, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Hövelmann, F.; Gaspar, I.; Ephrussi, A.; Seitz, O. Brightness Enhanced DNA FIT-Probes for wash-free RNA imaging in tissue. J. Am. Chem. Soc. 2013, 135, 19025–19032. [Google Scholar] [CrossRef] [PubMed]
- Chamiolo, J.; Fang, G.; Hövelmann, F.; Friedrich, D.; Knoll, A.; Loewer, A.; Seitz, O. Comparing agent-based delivery of DNA and PNA forced intercalation (FIT) probes for multicolor mRNA imaging. ChemBioChem 2018, 20, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.E.; Rasmussen, J.; Kumar, R.; Wengel, J.; Jacobsen, J.P.; Petersen, M. NMR studies of fully modified locked nucleic acid (LNA) hybrids: Solution structure of an LNA: RNA hybrid and characterization of an LNA: DNA hybrid. Bioconjugate Chem. 2004, 15, 449–457. [Google Scholar] [CrossRef]
- Hövelmann, F.; Gaspar, I.; Chamiolo, J.; Kasper, M.; Steffen, J.; Ephrussi, A.; Seitz, O. LNA-enhanced DNA FIT-probes for multicolour RNA imaging. Chem. Sci. 2015, 7, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Haralampiev, I.; Schade, M.; Chamiolo, J.; Jolmes, F.; Prisner, S.; Witkowski, P.T.; Behrent, M.; Hövelmann, F.; Wolff, T.; Seitz, O.; et al. A fluorescent RNA forced-intercalation probe as a pan-selective marker for influenza a virus infection. ChemBioChem 2017, 18, 1589–1592. [Google Scholar] [CrossRef]
- Kolevzon, N.; Hashoul, D.; Naik, S.; Rubinstein, A.; Yavin, E. Single point mutation detection in living cancer cells by far-red emitting PNA–FIT probes. Chem. Commun. 2015, 52, 2405–2407. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.B.; Samanta, D.; Cheng, H.F.; Nathan, L.I.; Mirkin, C.A. Forced intercalation (FIT)-aptamers. J. Am. Chem. Soc. 2019, 141, 13744–13748. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.-Y.; Yates, M.V.; Mulchandani, A.; Chen, W. Visualizing the dynamics of viral replication in living cells via Tat peptide delivery of nuclease-resistant molecular beacons. Proc. Natl. Acad. Sci. USA 2008, 105, 17522–17525. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, P.J.; Nix, B.; Tsourkas, A.; Bao, G. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res. 2004, 32, e57. [Google Scholar] [CrossRef] [Green Version]
- Wile, B.M.; Ban, K.; Yoon, Y.-S.; Bao, G. Molecular beacon–enabled purification of living cells by targeting cell type–specific mRNAs. Nat. Protoc. 2014, 9, 2411–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishna, M.S.; Toh, D.-F.K.; Meng, Z.; Ong, A.A.L.; Wang, Z.; Lu, Y.; Xia, K.; Prabakaran, M.; Chen, G. Sequence-and structure-specific probing of RNAs by short nucleobase-modified dsRNA-binding PNAs incorporating a fluorescent light-up uracil analog. Anal. Chem. 2019, 91, 5331–5338. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Sato, Y.; Nishizawa, S. Triplex-forming peptide nucleic acid probe having thiazole orange as a base surrogate for fluorescence sensing of double-stranded RNA. J. Am. Chem. Soc. 2016, 138, 9397–9400. [Google Scholar] [CrossRef]
- West, A. Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 21, pp. 131–241. [Google Scholar]
- Leake, M.C. Biophysics: Tools and Techniques; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Lorenz, M. Visualizing protein-RNA interactions inside cells by fluorescence resonance energy transfer. RNA 2009, 15, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Roszyk, L.; Kollenda, S.; Hennig, S. Using a specific RNA–protein interaction to quench the fluorescent RNA spinach. Acs Chem. Biol. 2017, 12, 2958–2964. [Google Scholar] [CrossRef]
- Haacke, S.; Burghardt, I. Ultrafast Dynamics at the Nanoscale: Biomolecules and Supramolecular Assemblies; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zelger-Paulus, S.; Hadzic, M.C.A.S.; Sigel, R.K.O.; Börner, R. RNA Spectroscopy: Methods and Protocols; Arluison, V., Wien, F., Eds.; Springer: New York, NY, USA, 2020; pp. 1–16. [Google Scholar]
- Sreenivasan, R.; Shkel, I.A.; Chhabra, M.; Drennan, A.; Heitkamp, S.; Wang, H.C.; Sridevi, M.A.; Plaskon, D.; McNerney, C.; Callies, K.; et al. Fluorescence-detected conformational changes in duplex DNA in open complex formation by Escherichia coli RNA polymerase: Upstream wrapping and downstream bending precede clamp opening and insertion of the downstream duplex. Biochemistry 2020, 59, 1565–1581. [Google Scholar] [CrossRef]
- Zhao, M.; Steffen, F.D.; Börner, R.; Schaffer, M.F.; Sigel, R.K.O.; Freisinger, E. Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Res. 2017, 46, e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekar, R.B.; Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 2003, 160, 629–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morten, M.J.; Lopez, S.G.; Steinmark, I.E.; Rafferty, A.; Magennis, S.W. Stacking-induced fluorescence increase reveals allosteric interactions through DNA. Nucleic Acids Res. 2018, 46, 11618–11626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myong, S.; Cui, S.; Cornish, P.V.; Kirchhofer, A.; Gack, M.U.; Jung, J.U.; Hopfner, K.-P.; Ha, T. Cytosolic viral sensor RIG-I is a 5’-triphosphate–dependent translocase on double-stranded RNA. Science 2009, 323, 1070–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, H.; Myong, S. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions. Chem. Soc. Rev. 2013, 43, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, M.; Koh, H.-R.; Patel, S.S.; Ha, T. Fluorescent lifetime trajectories of a single fluorophore reveal reaction intermediates during transcription initiation. J. Am. Chem. Soc. 2009, 131, 9630–9631. [Google Scholar] [CrossRef] [Green Version]
- Morten, M.J.; Gamsjaeger, R.; Cubeddu, L.; Kariawasam, R.; Peregrina, J.R.; Penedo, C.; White, M.F. High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein. Extremophiles 2017, 21, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Ha, K.S.; Uhm, H.; Park, K.; Lee, J.Y.; Hohng, S.; Kang, C. Transcription reinitiation by recycling RNA polymerase that diffuses on DNA after releasing terminated RNA. Nat. Commun. 2020, 11, 450. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.D.; Goodwin, P.H.; Hsiang, T. Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1,3-glucanase inNicotiana benthamiana infected withColltotrichum destructivum. Plant. Mol. Biol. Report. 2007, 20, 347–356. [Google Scholar] [CrossRef]
- Zhang, G.; Pomplun, S.; Loftis, A.R.; Tan, X.; Loas, A.; Pentelute, B.L. Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 Spike RBD. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- De Jong, O.G.; Kooijmans, S.A.A.; Murphy, D.E.; Jiang, L.; Evers, M.J.W.; Sluijter, J.P.G.; Vader, P.; Schiffelers, R.M. Drug delivery with extracellular vesicles: From imagination to innovation. Acc. Chem. Res. 2019, 52, 1761–1770. [Google Scholar] [CrossRef] [Green Version]
- Usman, W.M.; Pham, T.C.; Kwok, Y.Y.; Vu, L.T.; Ma, V.; Peng, B.; Chan, Y.S.; Wei, L.; Chin, S.M.; Azad, A.; et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 2018, 9, 2359. [Google Scholar] [CrossRef]
- Ding, L.; Li, J.; Wu, C.; Yan, F.; Li, X.; Zhang, S. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J. Mater. Chem. B 2019, 8, 3527–3533. [Google Scholar] [CrossRef]
- Lee, T.J.; Haque, F.; Vieweger, M.; Yoo, J.Y.; Kaur, B.; Guo, P.; Croce, C.M. RNA Nanotechnology and Therapeutics; Humana Press: New York, NY, USA, 2015; pp. 137–152. [Google Scholar]
- Chetnani, B.; Mondragón, A. RNA exerts self-control. Nature 2013, 500, 279–280. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zeng, C.; Zhou, S.; Means, J.; Hines, J. Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2015; Volume 550, pp. 363–383. [Google Scholar]
- Liu, T.Y.; Knott, G.J.; Smock, D.C.J.; Desmarais, J.J.; Son, S.; Bhuiya, A.; Jakhanwal, S.; Prywes, N.; Agrawal, S.; Díaz de León Derby, M.; et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 2021, 17, 982–988. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Dartawan, R.; Rice, W.; Gao, F.; Zhou, J.H.; Sheng, J. Fluorescent Platforms for RNA Chemical Biology Research. Genes 2022, 13, 1348. https://doi.org/10.3390/genes13081348
Du J, Dartawan R, Rice W, Gao F, Zhou JH, Sheng J. Fluorescent Platforms for RNA Chemical Biology Research. Genes. 2022; 13(8):1348. https://doi.org/10.3390/genes13081348
Chicago/Turabian StyleDu, Jinxi, Ricky Dartawan, William Rice, Forrest Gao, Joseph H. Zhou, and Jia Sheng. 2022. "Fluorescent Platforms for RNA Chemical Biology Research" Genes 13, no. 8: 1348. https://doi.org/10.3390/genes13081348
APA StyleDu, J., Dartawan, R., Rice, W., Gao, F., Zhou, J. H., & Sheng, J. (2022). Fluorescent Platforms for RNA Chemical Biology Research. Genes, 13(8), 1348. https://doi.org/10.3390/genes13081348