New Insight into the Genome-Wide Diversity and Admixture of Six Colombian Sheep Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Statistical Analysis
2.2.1. Genetic Diversity
2.2.2. Population Structure
2.3. Haplotype Sharing
3. Results
3.1. Analysis of Whole-Genome Diversity
3.2. Genetic Relationship and Admixture
3.3. Within Colombian Breeds Genetic Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spangler, G.L.; Rosen, B.D.; Ilori, M.B.; Hanotte, O.; Kim, E.-S.; Sonstegard, T.S.; Burke, J.M.; Morgan, J.L.M.; Notter, D.R.; Van Tassell, C.P. Whole genome structural analysis of Caribbean hair sheep reveals quantitative link to West African ancestry. PLoS ONE 2017, 12, e0179021. [Google Scholar] [CrossRef] [PubMed]
- Revelo, H.A.; López-Alvarez, D.; Landi, V.; Rizzo, L.; Alvarez, L.A. Mitochondrial DNA Variations in Colombian Creole Sheep Confirm an Iberian Origin and Shed Light on the Dynamics of Introduction Events of African Genotypes. Animals 2020, 10, 1594. [Google Scholar] [CrossRef] [PubMed]
- Paim, T.P.; Paiva, S.R.; de Toledo, N.M.; Yamaghishi, M.B.; Carneiro, P.L.S.; Facó, O.; de Araújo, A.M.; Azevedo, H.C.; Caetano, A.R.; Braga, R.M.; et al. Origin and population structure of Brazilian hair sheep breeds. Anim. Genet. 2021, 52, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Bravo, S.; Larama, G.; Quiñones, J.; Paz, E.; Rodero, E.; Sepúlveda, N. Genetic diversity and phylogenetic relationship among araucana creole sheep and Spanish sheep breeds. Small Rumin. Res. 2019, 172, 23–30. [Google Scholar] [CrossRef]
- Vivas, N.; Landi, V.; Flórez, J.M.; Yanez, M.B.; Franco, L.Á.J.R.M.C. Diversidad genética de ovinos criollos colombianos. Rev. MVZ Córdoba 2020, 25, e2185. [Google Scholar] [CrossRef]
- Salinas-Rios, T.; Hernández-Bautista, J.; Mariscal-Méndez, A.; Aquino-Cleto, M.; Martínez-Martínez, A.; Rodríguez-Magadán, H.M. Genetic Characterization of a Sheep Population in Oaxaca, Mexico: The Chocholteca Creole. Animals 2021, 11, 1172. [Google Scholar] [CrossRef]
- Garza, R.P.; Casanova, P.-M.P.I.; Hummel, J.; Martínez, M.L.C.; Delgado, J.V. Características de la lana en las ovejas autóctonas Ibicenca Merino, Merino de Grazalema (España) y Merico Socorro (México). Actas Iberoam. Conserv. Anim. (AICA) 2011, 1, 380–383. [Google Scholar]
- Alonso, R.; Ulloa-Arvizu, R.; Gayosso-Vázquez, A. Mitochondrial DNA sequence analysis of the Mexican Creole sheep (Ovis aries) reveals a narrow Iberian maternal origin. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2017, 28, 793–800. [Google Scholar] [CrossRef]
- Pons, A.L.; Landi, V.; Martinez, A.; Delgado, J.V. The biodiversity and genetic structure of Balearic sheep breeds. J. Anim. Breed. Genet. 2015, 132, 268–276. [Google Scholar] [CrossRef]
- Zeballos, E.S. Descripcion Amena de la República Argentina; Nabu Press: Charleston, SC, USA, 1883. [Google Scholar]
- Periasamy, K.; Pichler, R.; Poli, M.; Cristel, S.; Cetrá, B.; Medus, D.; Basar, M.A.; Ramasamy, S.; Ellahi, M.B. Candidate gene approach for parasite resistance in sheep-variation in immune pathway genes and association with fecal egg count. PLoS ONE 2014, 9, e88337. [Google Scholar] [CrossRef]
- Martínez, C.U.A.; Villalobos, J.M.B.; Gutiérrez, B.E.; Correa, J.C.S.; Méndez, J.V.; Roldán, A.R.J.T.; Agroecosystems, S. Origin, history and current situation of pelibuey sheep in Mexico. Trop. Subtrop. Agroecosyst. 2017, 20, 429–439. [Google Scholar]
- Ortiz Sanchéz, Y.; Martínez Guzmán, M.; Kübler, I.; Ariza, M.F.; Castro Molina, S.; Infante-González, J. Diversidad genética del Ovino Criollo de Pelo Colombiano mediante el uso del marcador molecular de tipo polimorfismos de nucleótido simple (SNP). Rev. Investig. Vet. Perú 2021, 32, e19487. [Google Scholar] [CrossRef]
- Florez, M.; Hernandez, P.; Bustamante, Y.; Vergara, G. Morphostructural characterization and zoometric indices of Sudan females Colombian Creole Hair sheep “OPC”. REVISTA MVZ CORDOBA 2020, 25, e1379. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Kijas, J.W.; Townley, D.; Dalrymple, B.P.; Heaton, M.P.; Maddox, J.F.; McGrath, A.; Wilson, P.; Ingersoll, R.G.; McCulloch, R.; McWilliam, S.; et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 2009, 4, e4668. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef]
- Jombart, T.; Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef]
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. Dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Yu, G. Using ggtree to Visualize Data on Tree-Like Structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef]
- Sievert, C.; Parmer, C.; Hocking, T.; Chamberlain, S.; Ram, K.; Corvellec, M.; Despouy, P. Plotly: Create Interactive Web Graphics via “Plotly. js”. R Package Version 4.5.6. 2016. Available online: https://rdrr.io/cran/plotly/ (accessed on 26 March 2021).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Milanesi, M.; Capomaccio, S.; Vajana, E.; Bomba, L.; Garcia, J.F.; Ajmone-Marsan, P.; Colli, L. BITE: An r package for biodiversity analyses. BioRxiv 2017, 181610. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Neuditschko, M.; Khatkar, M.S.; Raadsma, H.W. NetView: A high-definition network-visualization approach to detect fine-scale population structures from genome-wide patterns of variation. PLoS ONE 2012, 7, e48375. [Google Scholar] [CrossRef]
- Browning, B.L.; Tian, X.; Zhou, Y.; Browning, S.R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021, 108, 1880–1890. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef]
- Browning, B.L.; Browning, S.R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 2013, 194, 459–471. [Google Scholar] [CrossRef]
- Gu, Z.G.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Dorado, J.C.A.; Seis, C.C.d.I.A.R.; Rural, C.M.d.A.y.D.; Agropecuaria, P.N.d.T.d.T. Ovinos Colombianos de Pelo: Alternativa Productiva Para el Sur Del Departamento Del Tolima; Corpoica: Cauca, Colombia, 2002. [Google Scholar]
- Ocampo, R.; Cardona, H.; Martínez, R. Genetic diversity of Colombian sheep by microsatellite markers. Chil. J. Agric. Res. 2016, 76, 40–47. [Google Scholar]
- Grasso, A.N.; Goldberg, V.; Navajas, E.A.; Iriarte, W.; Gimeno, D.; Aguilar, I.; Medrano, J.F.; Rincón, G.; Ciappesoni, G. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep. Genet. Mol. Biol. 2014, 37, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [PubMed]
- Deniskova, T.E.; Dotsev, A.V.; Selionova, M.I.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Barbato, M.; Traspov, A.A.; Brem, G.; et al. Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genet. Sel. Evol. 2018, 50, 29. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Portolano, B.; Di Gerlando, R.; Ciampolini, R.; Tolone, M.; Sardina, M.T. Genome-wide analysis in endangered populations: A case study in Barbaresca sheep. Animal 2017, 11, 1107–1116. [Google Scholar] [CrossRef]
- Purfield, D.C.; McParland, S.; Wall, E.; Berry, D.P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 2017, 12, e0176780. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Biscarini, F.; Auzino, B.; Ragatzu, M.; Spaterna, A.; Ciampolini, R. Genome-wide diversity and runs of homozygosity in the “Braque Français, type Pyrénées” dog breed. BMC Res. Notes 2018, 11, 13. [Google Scholar] [CrossRef]
- Delgado, J.V.; Perezgrovas, R.; Camacho, M.; Fresno, M.; Barba Capote, C. The Wool-Less Canary Sheep and their relationship with the present breeds in America. Anim. Genet. Resour. Inf. 2000, 28, 27–34. [Google Scholar] [CrossRef]
- Peña, S.; Martinez, A.; Castagnasso, E.; Aulicino, M.; Género, E.R.; Giovambattista, G.; Martínez, R. Genetic characterization of four populations of Argentinian creole sheep. BAG-J. Basic Appl. Genet. 2017, 28, 43–55. [Google Scholar]
- McManus, C.; Paiva, S.; Araújo, R. Genetics and breeding of sheep in Brazil. Rev. Bras. Zootec. 2010, 39, 236–246. [Google Scholar] [CrossRef]
- Erazo, P.; Alexandra, Y. Análisis Genómico de Características de Crecimiento Muscular y de Calidad de la Canal en Poblaciones Ovinas de Pelo. Available online: https://repositorio.unal.edu.co/handle/unal/69095 (accessed on 26 March 2021).
- Garnier-Géré, P.; Chikhi, L. Population Subdivision, Hardy–Weinberg Equilibrium and the Wahlund Effect. In eLS; John Wiley & Sons, Ltd.: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Carson, A.; Elliott, M.; Groom, J.; Winter, A.; Bowles, D. Geographical isolation of native sheep breeds in the UK—Evidence of endemism as a risk factor to genetic resources. Livest. Sci. 2009, 123, 288–299. [Google Scholar] [CrossRef]
- Caicedo Velásquez, C. Evaluación Del Crecimiento y la Canal Del Ovino de Pelo Colombiano (OPC) en Cruces Absorbentes Con Ovinos Pelibuey, en Una Población Del Valle Del Cauca; Universidad Nacional de Colombia Sede Palmira: Palmira, Colombia, 2018. [Google Scholar]
- Flórez Murillo, J.; Hernández Pérez, M.; Bustamante-Yánez, M.; Vergara Garay, O. Caracterización morfoestructural e índices zoométricos de hembras Ovino de Pelo Criollo Colombiano “OPC” Sudán. Rev. MVZ Córdoba 2020, 25, e1379. [Google Scholar] [CrossRef]
- Primo, A.T. El ganado bovino ibérico en las Américas: 500 años después. Arch. Zootec. 1992, 41, 13. [Google Scholar]
- Martínez, A.M.; Gama, L.T.; Cañón, J.; Ginja, C.; Delgado, J.V.; Dunner, S.; Landi, V.; Martín-Burriel, I.; Penedo, M.C.T.; Rodellar, C.; et al. Genetic Footprints of Iberian Cattle in America 500 Years after the Arrival of Columbus. PLoS ONE 2012, 7, e49066. [Google Scholar] [CrossRef]
- Arcos, J.; Romero, H.; Vanegas, M.; Roveros, E. Ovinos Colombianos de Pelo. Alternativa Productiva Para el Sur del Departamento del Tolima; Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA: Tolima, Colombia, 2002. [Google Scholar]
- Ginja, C.; Gama, L.T.; Cortés, O.; Burriel, I.M.; Vega-Pla, J.L.; Penedo, C.; Sponenberg, P.; Cañón, J.; Sanz, A.; do Egito, A.A.; et al. The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers. Sci. Rep. 2019, 9, 11486. [Google Scholar] [CrossRef]
Breed | Acronym | Type | N(h) | Department (Region) |
---|---|---|---|---|
Ethiopian | OPCE | Hair | 54 (6) | Córdoba, Cesar, Atlántico, Magdalena (Caribbean coast) |
Sudan | OPCS | Hair | 74 (5) | Córdoba, Cesar, Atlántico (Caribbean coast) |
Pelibuey | OPCP | Hair | 59 (3) | Valle del Cauca (Pacific Coast, Colombian southwest) |
Wayúu | OPCW | Hair | 24 (7) | Guajira Peninsula (Caribbean coast) |
Wool Creole | NCL | Wool | 12 (2) | Nariño (Andean region, Colombian southwest) |
Wool Creole | BCL | Wool | 14 (3) | Boyacá; (Andean region, Colombian southwest) |
Acronym | Breed Name | Type | n | Ho | He | MAF | P | Fis |
---|---|---|---|---|---|---|---|---|
OPCE | Etiope | Hair | 54 | 0.35 | 0.37 | 0.28 | ns | −0.06 |
OPCS | Sudan | Hair | 74 | 0.36 | 0.37 | 0.28 | ns | 0.03 |
OPCP | Pelibuey | Hair | 59 | 0.37 | 0.35 | 0.26 | ns | −0.04 |
OPCW | Wayuu | Hair | 24 | 0.35 | 0.36 | 0.28 | ns | 0.05 |
BCL | Wool Creole Boyaca | Wool | 14 | 0.31 | 0.35 | 0.26 | ns | 0.11 |
NCL | Wool Creole Nariño | Wool | 12 | 0.35 | 0.36 | 0.27 | ns | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revelo, H.A.; Landi, V.; López-Alvarez, D.; Palacios, Y.A.; Paiva, S.R.; McManus, C.; Ciani, E.; Alvarez, L.Á. New Insight into the Genome-Wide Diversity and Admixture of Six Colombian Sheep Populations. Genes 2022, 13, 1415. https://doi.org/10.3390/genes13081415
Revelo HA, Landi V, López-Alvarez D, Palacios YA, Paiva SR, McManus C, Ciani E, Alvarez LÁ. New Insight into the Genome-Wide Diversity and Admixture of Six Colombian Sheep Populations. Genes. 2022; 13(8):1415. https://doi.org/10.3390/genes13081415
Chicago/Turabian StyleRevelo, Herman Alberto, Vincenzo Landi, Diana López-Alvarez, Yineth Alexandra Palacios, Samuel R. Paiva, Concepta McManus, Elena Ciani, and Luz Ángela Alvarez. 2022. "New Insight into the Genome-Wide Diversity and Admixture of Six Colombian Sheep Populations" Genes 13, no. 8: 1415. https://doi.org/10.3390/genes13081415
APA StyleRevelo, H. A., Landi, V., López-Alvarez, D., Palacios, Y. A., Paiva, S. R., McManus, C., Ciani, E., & Alvarez, L. Á. (2022). New Insight into the Genome-Wide Diversity and Admixture of Six Colombian Sheep Populations. Genes, 13(8), 1415. https://doi.org/10.3390/genes13081415