Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Assessments
2.3. Exome Sequencing and Bioinformatic Analysis
2.4. Statistical Methods
3. Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
3.5. Case 5
3.6. Case 6
3.7. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marakhonov, A.V.; Vasilyeva, T.A.; Voskresenskaya, A.A.; Sukhanova, N.V.; Kadyshev, V.V.; Kutsev, S.I.; Zinchenko, R.A. LMO2 gene deletions significantly worsen the prognosis of Wilms’ tumor development in patients with WAGR syndrome. Hum. Mol. Genet. 2019, 28, 3323–3326. [Google Scholar] [CrossRef]
- Turleau, C.; de Grouchy, J.; Dufier, J.L.; Phuc, L.H.; Schmelck, P.H.; Rappaport, R.; Nihoul-Fekete, C.; Diebold, N. Aniridia, male pseudohermaphroditism, gonadoblastoma, mental retardation, and del 11p13. Hum. Genet. 1981, 57, 300–306. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, R.; Perez, J.M.; Balsera, A.M.; Rodriguez, G.G.; Moreno, T.H.; Garcia de Caceres, M.; Serrano, M.G.; Freijo, F.C.; Ruiz, J.R.; Angueira, F.B.; et al. The modifier effect of the BDNF gene in the phenotype of the WAGRO syndrome. Gene 2013, 516, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Han, J.C.; Liu, Q.R.; Jones, M.; Levinn, R.L.; Menzie, C.M.; Jefferson-George, K.S.; Adler-Wailes, D.C.; Sanford, E.L.; Lacbawan, F.L.; Uhl, G.R.; et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N. Engl. J. Med. 2008, 359, 918–927. [Google Scholar] [CrossRef]
- Xu, S.; Han, J.C.; Morales, A.; Menzie, C.M.; Williams, K.; Fan, Y.S. Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet. Genome Res. 2008, 122, 181–187. [Google Scholar] [CrossRef]
- Vasilyeva, T.A.; Marakhonov, A.V.; Minzhenkova, M.E.; Markova, Z.G.; Petrova, N.V.; Sukhanova, N.V.; Koshkin, P.A.; Pyankov, D.V.; Kanivets, I.V.; Korostelev, S.A.; et al. A sporadic case of congenital aniridia caused by pericentric inversion inv(11)(p13q14) associated with a 977?kb deletion in the 11p13 region. BMC Med. Genom. 2020, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Han, J.C.; Thurm, A.; Golden Williams, C.; Joseph, L.A.; Zein, W.M.; Brooks, B.P.; Butman, J.A.; Brady, S.M.; Fuhr, S.R.; Hicks, M.D.; et al. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome. Cortex 2013, 49, 2700–2710. [Google Scholar] [CrossRef] [PubMed]
- Hol, J.A.; Jongmans, M.C.J.; Sudour-Bonnange, H.; Ramírez-Villar, G.L.; Chowdhury, T.; Rechnitzer, C.; Pal, N.; Schleiermacher, G.; Karow, A.; Kuiper, R.P.; et al. Clinical characteristics and outcomes of children with WAGR syndrome and Wilms tumor and/or nephrobla stomatosis: The 30-year SIOP-RTSG experience. Cancer 2021, 127, 628–638. [Google Scholar] [CrossRef]
- Fischbach, B.V.; Trout, K.L.; Lewis, J.; Luis, C.A.; Sika, M. WAGR syndrome: A clinical review of 54 cases. Pediatrics 2005, 116, 984–988. [Google Scholar] [CrossRef]
- Lin, H.; Long, E.; Chen, W.; Liu, Y. Documenting rare disease data in China. Science 2015, 349, 1064. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Wang, Q.; Huang, W.; Dongye, M.; Zhang, X.; Lin, D.; Lin, Z.; Li, J.; Hu, W.; et al. Broadening the Mutation Spectrum in GJA8 and CHMP4B: Novel Missense Variants and the Associated Phenotypes in Six Chinese Han Congenital Cataracts Families. Front. Med. 2021, 8, 713284. [Google Scholar] [CrossRef]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, V.; Herenger, Y.; Kress, A.; Stoetzel, C.; Piton, A.; Dollfus, H.; Muller, J. AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 2018, 34, 3572–3574. [Google Scholar] [CrossRef] [PubMed]
- Peter, C.J.; Saito, A.; Hasegawa, Y.; Tanaka, Y.; Nagpal, M.; Perez, G.; Alway, E.; Espeso-Gil, S.; Fayyad, T.; Ratner, C.; et al. In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf 46/Arl14ep risk gene. Nat. Commun. 2019, 10, 4112. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, B.; Chen, H.M.; Moresco, J.J.; Orelo, B.D.; Yang, B.; Gaspar, J.M.; Keppler-Ross, S.; Yates, J.R.; Hall, D.H.; Maine, E.M.; et al. Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin form ation in C. elegans embryos. Sci. Adv. 2018, 4, eaat6224. [Google Scholar] [CrossRef]
- Glaser, T.; Walton, D.S.; Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 1992, 2, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Bengani, H.; Fish, M.; Brown, A.; Divizia, M.T.; de Marco, R.; Damante, G.; Grainger, R.; van Heyningen, V.; Kleinjan, D.A. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 2013, 93, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T.; Jepeal, L.; Edwards, J.G.; Young, S.R.; Favor, J.; Maas, R.L. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat. Genet. 1994, 7, 463–471. [Google Scholar] [CrossRef]
- Royer-Bertrand, B.; Cisarova, K.; Niel-Butschi, F.; Mittaz-Crettol, L.; Fodstad, H.; Superti-Furga, A. CNV Detection from Exome Sequencing Data in Routine Diagnostics of Rare Genetic Disorders: Opportunit ies and Limitations. Genes 2021, 12, 1427. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, H.; Yuan, X.; Gao, K.; Duan, J. Comparative study of whole exome sequencing-based copy number variation detection tools. BMC Bioinform. 2020, 21, 97. [Google Scholar] [CrossRef] [PubMed]
ID | Ethnicity | Age * | Gender | Region | BCVA | IOP (mmHg) | AL (mm) | Cornea | Lens | Iris | Fundus | Wilms Tumor | Others | Deleted Genes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Asian | 11M | Female | Chr11:19372477-35827981 | NA | 15.3/16.2 | 22.24/22.98 | Clear | Nuclear opacity and peripheral bubbles of the right eye; posterior cortical cataract of the left eye | Aniridia | Large cup-to-disc ratio, macular hypoplasia | Bilateral kidney | Nystagmus, thin lens, glaucoma, developmental delay | NAV2, DBX1, HTATIP2, PRMT3, SLC6A5, NELL1, ANO5, SLC17A6, FANCF, GAS2, LUZP2, ANO3, MUC15, SLC5A12, FIBIN, BBOX1, CCDC34, LGR4, LIN7C, BDNF-AS, BDNF, HSP90AA2P, KIF18A, MIR610, METTL15, KCNA4, FSHB, ARL14EP, MPPED2, DCDC1, DNAJC24, IMMP1L, ELP4, PAX6, RCN1, WT1, WT1-AS, EIF3M, CCDC73, PRRG4, QSER1, DEPDC7, LINC00294, CSTF3, HIPK3, KIAA1549L, CD59, FBXO3, LMO2, CAPRIN1, NAT10, CAT, ELF5, EHF, APIP, PDHX, CD44, SLC1A2, FJX1, TRIM44 |
2 | Asian | 23M | Female | Chr11:26210680-35006316 | NA | 16/35 | 16.63/17.07 | Adherent corneal leukoma | Thin lens with nuclear opacity | Aniridia | Macular hypoplasia | Right kidney | Nystagmus, the surface of the thin lens touches the corneal endothelium, corneal neovascularization, glaucoma, nanophthalmos, atrial septal defect, developmental delay | ANO3, MUC15, SLC5A12, FIBIN, BBOX1, CCDC34, LGR4, LIN7C, BDNF-AS, BDNF, HSP90AA2P, KIF18A, MIR610, METTL15, KCNA4, FSHB, ARL14EP, MPPED2, DCDC1, DNAJC24, IMMP1L, ELP4, PAX6, RCN1, WT1, WT1-AS, EIF3M, CCDC73, PRRG4, QSER1, DEPDC7, LINC00294, CSTF3, HIPK3, KIAA1549L, CD59, FBXO3, LMO2, CAPRIN1, NAT10, CAT, ELF5, EHF, APIP, PDHX |
3 | Asian | 18M | Male | Chr11:30032154-36680772 | NA | 18/17 | NA | Adherent corneal leukoma | Thin lens with nuclear opacity and peripheral bubbles | Aniridia | Macular hypoplasia | Left kidney | Nystagmus, the surface of the thin lens touches the corneal endothelium, corneal neovascularization, developmental delay | KCNA4, FSHB, ARL14EP, MPPED2, DCDC1, DNAJC24, IMMP1L, ELP4, PAX6, RCN1, WT1, WT1-AS, EIF3M, CCDC73, PRRG4, QSER1, DEPDC7, LINC00294, CSTF3, HIPK3, KIAA1549L, CD59, FBXO3, LMO2, CAPRIN1, NAT10, CAT, ELF5, EHF, APIP, PDHX, CD44, SLC1A2, FJX1, TRIM44, LDLRAD3, COMMD9, PRR5L, TRAF6, RAG1, RAG2, IFTAP |
4 | Asian | 16M | Female | Chr11:30358107-43941573 | NA | 14.3/12 | NA | Adherent corneal leukoma | Cortical opacity | Aniridia | Macular hypoplasia | N | Nystagmus, the surface of the thin lens touches the corneal endothelium, corneal neovascularization, developmental delay | ARL14EP, MPPED2, DCDC1, DNAJC24, IMMP1L, ELP4, PAX6, RCN1, WT1, WT1-AS, EIF3M, CCDC73, PRRG4, QSER1, DEPDC7, LINC00294, CSTF3, HIPK3, KIAA1549L, CD59, FBXO3, LMO2, CAPRIN1, NAT10, CAT, ELF5, EHF, APIP, PDHX, CD44, SLC1A2, FJX1, TRIM44, LDLRAD3, COMMD9, PRR5L, TRAF6, RAG1, RAG2, IFTAP, LRRC4C, API5, TTC17, HSD17B12, ALKBH3 |
5 | Asian | 3M | Female | Chr11:30431595-36680772 | NA | 12.2/14.6 | 15.83/13.98 | Clear | Nuclear opacity | Aniridia | Large cup-to-disc ratio; macular hypoplasia | Bilateral kidney | Nystagmus, glaucoma onset after cataract extraction, nanophthalmos, developmental delay | MPPED2, DCDC1, DNAJC24, IMMP1L, ELP4, PAX6, RCN1, WT1, WT1-AS, EIF3M, CCDC73, PRRG4, QSER1, DEPDC7, LINC00294, CSTF3, HIPK3, KIAA1549L, CD59, FBXO3, LMO2, CAPRIN1, NAT10, CAT, ELF5, EHF, APIP, PDHX, CD44, SLC1A2, FJX1, TRIM44, LDLRAD3, COMMD9, PRR5L, TRAF6, RAG1, RAG2, IFTAP |
6 | Asian | 10Y | Male | Chr11:31784958-33773171 | 0.1/0.15 | 13.3/14.2 | 15.55/15.42 | Clear | Subcapsular opacity | Aniridia | Macular hypoplasia | N | Nystagmus, nanophthalmos, hypospadias, obesity | ELP4, PAX6, RCN1, WT1, WT1-AS, EIF3M, CCDC73, PRRG4, QSER1, DEPDC7, LINC00294, CSTF3, HIPK3, KIAA1549L, CD59, FBXO3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, X.; Qin, T.; Wang, D.; Lin, X.; Zhu, Y.; Tan, H.; Zhao, L.; Li, J.; Lin, Z.; et al. Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases. Genes 2022, 13, 1431. https://doi.org/10.3390/genes13081431
Wang Q, Zhang X, Qin T, Wang D, Lin X, Zhu Y, Tan H, Zhao L, Li J, Lin Z, et al. Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases. Genes. 2022; 13(8):1431. https://doi.org/10.3390/genes13081431
Chicago/Turabian StyleWang, Qiwei, Xulin Zhang, Tingfeng Qin, Dongni Wang, Xiaoshan Lin, Yuanyuan Zhu, Haowen Tan, Lanqin Zhao, Jing Li, Zhuoling Lin, and et al. 2022. "Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases" Genes 13, no. 8: 1431. https://doi.org/10.3390/genes13081431
APA StyleWang, Q., Zhang, X., Qin, T., Wang, D., Lin, X., Zhu, Y., Tan, H., Zhao, L., Li, J., Lin, Z., Lin, H., & Chen, W. (2022). Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases. Genes, 13(8), 1431. https://doi.org/10.3390/genes13081431