Prediction of Synaptically Localized RNAs in Human Neurons Using Developmental Brain Gene Expression Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compilation of Training Data Instances
2.2. Sequence and Expression Features
2.3. Feature Selection
2.4. Model Training
2.5. Model Testing
2.6. Performance Metrics
2.7. Prediction and Analysis of Candidate RNAs Localized to Human Synapses
3. Results
3.1. Prediction of Synaptically Localized RNAs Using Sequence and Expression Features
3.2. Relevant Expression Features Learned by PredSynRNA
3.3. Evaluation of Model Performance on an Independent Test Dataset
3.4. Prediction and Prioritization of Candidate Human RNAs Localized to Synapses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richter, J. RNA and the Synapse. RNA 2015, 21, 716–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, J.; Zhang, T.; Bloch, L. Dendritic MRNAs Encode Diversified Functionalities in Hippocampal Pyramidal Neurons. BMC Neurosci. 2006, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhou, J.-F.; Tai, H.-C. The Study of Postmortem Human Synaptosomes for Understanding Alzheimer’s Disease and Other Neurological Disorders: A Review. Neurol. Ther. 2017, 6, 57–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramham, C.; Wells, D. Dendritic MRNA: Transport, Translation and Function. Nat. Rev. Neurosci. 2007, 8, 776–789. [Google Scholar] [CrossRef]
- Mikl, M.; Vendra, G.; Doyle, M.; Kiebler, M. RNA Localization in Neurite Morphogenesis and Synaptic Regulation: Current Evidence and Novel Approaches. J. Comp. Physiol. A 2010, 196, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Setou, M.; Inokuchi, K. Transcriptome Analysis Reveals the Population of Dendritic RNAs and Their Redistribution by Neural Activity. Neurosci. Res. 2007, 57, 411–423. [Google Scholar] [CrossRef]
- Meer, E.; Wang, D.O.; Kim, S.; Barr, I.; Guo, F.; Martin, K. Identification of a Cis-Acting Element That Localizes MRNA to Synapses. Proc. Natl. Acad. Sci. USA 2012, 109, 4639–4644. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Wu, B.; Buxbaum, A.; Das, S.; Tsai, A.; English, B.; Grimm, J.; Lavis, L.; Singer, R. Glutamate-Induced RNA Localization and Translation in Neurons. Proc. Natl. Acad. Sci. USA 2016, 113, E6877–E6886. [Google Scholar] [CrossRef] [Green Version]
- Bassell, G.; Kelic, S. Binding Proteins for MRNA Localization and Local Translation, and Their Dysfunction in Genetic Neurological Disease. Curr. Opin. Neurobiol. 2004, 14, 574–581. [Google Scholar] [CrossRef]
- Dictenberg, J.B.; Singer, R.H. Dendritic RNA Transport: Dynamic Spatio-Temporal Control of Neuronal Gene Expression. In Encyclopedia of Neuroscience; Academic Press: Oxford, UK, 2008. [Google Scholar]
- Chen, X.; Wu, X.; Wu, H.; Zhang, M. Phase Separation at the Synapse. Nat. Neurosci. 2020, 23, 301–310. [Google Scholar] [CrossRef]
- de Robertis, E.; de Iraldi, A.P.; Rodriguez, G.; Gomez, C.J. On the isolation of nerve endings and synaptic vesicles. J. Cell Biol. 1961, 9, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, E.G.; Whittaker, V.P. The Isolation of Nerve Endings from Brain: An Electron Microscopic Study of Cell Fragments Derived by Homogenization and Centrifugation. J. Anat. 1962, 96, 79. [Google Scholar] [PubMed]
- Whittaker, V.P.; Michaelson, I.A.; Kirkland, R.J. The Separation of Synaptic Vesicles from Nerve-Ending Particles (‘Synaptosomes’). Biochem. J. 1964, 90, 293–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, M.; Choi, S.-H.; Jamieson, C.; Geschwind, D.; Martin, K. Identification of Process-Localized MRNAs from Cultured Rodent Hippocampal Neurons. J. Neurosci. 2006, 26, 13390–13399. [Google Scholar] [CrossRef] [Green Version]
- Ainsley, J.; Drane, L.; Jacobs, J.; Kittelberger, K.; Reijmers, L. Functionally Diverse Dendritic MRNAs Rapidly Associate with Ribosomes Following a Novel Experience. Nat. Commun. 2014, 5, 4510. [Google Scholar] [CrossRef] [Green Version]
- Cajigas, I.; Tushev, G.; Will, T.; Dieck, S.; Fuerst, N.; Schuman, E. The Local Transcriptome in the Synaptic Neuropil Revealed by Deep Sequencing and High-Resolution Imaging. Neuron 2012, 74, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Middleton, S.; Eberwine, J.; Kim, J. Comprehensive Catalog of Dendritically Localized MRNA Isoforms from Sub-Cellular Sequencing of Single Mouse Neurons. BMC Biol. 2019, 17, 5. [Google Scholar] [CrossRef] [Green Version]
- Taliaferro, J.M.; Vidaki, M.; Oliveira, R.; Olson, S.; Zhan, L.; Saxena, T.; Wang, E.; Graveley, B.; Gertler, F.; Swanson, M.; et al. Distal Alternative Last Exons Localize MRNAs to Neural Projections. Mol. Cell 2016, 61, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Tushev, G.; Glock, C.; Heumüller, M.; Biever, A.; Jovanovic, M.; Schuman, E. Alternative 3′ UTRs Modify the Localization, Regulatory Potential, Stability, and Plasticity of MRNAs in Neuronal Compartments. Neuron 2018, 98, 495–511. [Google Scholar] [CrossRef] [Green Version]
- Fonkeu, Y.; Kraynyukova, N.; Hafner, A.-S.; Kochen, L.; Sartori, F.; Schuman, E.; Tchumatchenko, T. How MRNA Localization and Protein Synthesis Sites Influence Dendritic Protein Distribution and Dynamics. Neuron 2019, 103, 1109–1122. [Google Scholar] [CrossRef]
- Mayford, M.; Baranes, D.; Podsypanina, K.; Kandel, E. The 3′-Untranslated Region of CaMKIIα Is a Cis-Acting Signal for the Localization and Translation of MRNA in Dendrites. Proc. Natl. Acad. Sci. USA 1996, 93, 13250–13255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.; Yasuda, M.; Coats, J.; Jones, Y.; Martone, M.; Mayford, M. Disruption of Dendritic Translation of CaMKIIα Impairs Stabilization of Synaptic Plasticity and Memory Consolidation. Neuron 2002, 36, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, R.; Shiina, N. Cataloguing and Selection of MRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020, 10, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillman, A.; Majounie, E.; Ding, J.; Gibbs, J.R.; Hernandez, D.; Arepalli, S.; Traynor, B.; Singleton, A.; Galter, D.; Cookson, M. Transcriptomic Profiling of the Human Brain Reveals That Altered Synaptic Gene Expression Is Associated with Chronological Aging. Sci. Rep. 2017, 7, 16890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsyth, J.; Nachun, D.; Gandal, M.; Geschwind, D.; Anderson, A.; Coppola, G.; Bearden, C. Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant–Mediated Risk for Neuropsychiatric Disorders. Biol. Psychiatry 2020, 87, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Parikshak, N.; Luo, R.; Zhang, A.; Won, H.; Lowe, J.; Chandran, V.; Horvath, S.; Geschwind, D. Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism. Cell 2013, 155, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Chin, A.; Lécuyer, E. RNA Localization: Making Its Way to the Center Stage. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2956–2970. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Singhal, N.; Kumar, R.; Kumar, M. MRNALoc: A Novel Machine-Learning Based in-Silico Tool to Predict MRNA Subcellular Localization. Nucleic Acids Res. 2020, 48, W239–W243. [Google Scholar] [CrossRef]
- Wu, K.; Parker, K.; Fazal, F.; Chang, H.; Zou, J. RNA-GPS Predicts High-Resolution RNA Subcellular Localization and Highlights the Role of Splicing. RNA 2020, 26, 851–865. [Google Scholar] [CrossRef]
- Yan, Z.; Lécuyer, E.; Blanchette, M. Prediction of MRNA Subcellular Localization Using Deep Recurrent Neural Networks. Bioinformatics 2019, 35, i333–i342. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, Z.; Jiang, Y.; Mao, Z.; Wang, D.; Lin, H.; Xu, D. DM3Loc: Multi-Label MRNA Subcellular Localization Prediction and Analysis Based on Multi-Head Self-Attention Mechanism. Nucleic Acids Res. 2021, 49, e46. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Pan, X.; Yang, Y.; Huang, Y.; Shen, H.-B. The LncLocator: A Subcellular Localization Predictor for Long Non-Coding RNAs Based on a Stacked Ensemble Classifier. Bioinformatics 2018, 34, 2185–2194. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.-D.; Huang, Y.; Zhang, Z.-Y.; Zhao, Y.-W.; Wang, D.; Chen, W.; Chou, K.-C.; Lin, H. ILoc-LncRNA: Predict the Subcellular Location of LncRNAs by Incorporating Octamer Composition into General PseKNC. Bioinformatics 2018, 34, 4196–4204. [Google Scholar] [CrossRef] [PubMed]
- Gudenas, B.; Wang, L. Prediction of LncRNA Subcellular Localization with Deep Learning from Sequence Features. Sci. Rep. 2018, 8, 16385. [Google Scholar] [CrossRef] [Green Version]
- Kinsella, R.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A Hub for Data Retrieval across Taxonomic Space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. Jvenn: An Interactive Venn Diagram Viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [Green Version]
- Frankish, A.; Diekhans, M.; Ferreira, A.-M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.; Sisu, C.; Wright, J.; Armstrong, J.; et al. GENCODE Reference Annotation for the Human and Mouse Genomes. Nucleic Acids Res. 2019, 47, D766–D773. [Google Scholar] [CrossRef] [Green Version]
- Hawrylycz, M.; Lein, E.; Guillozet-Bongaarts, A.; Shen, E.; Ng, L.; Miller, J.; van de Lagemaat, L.; Smith, K.; Ebbert, A.; Riley, Z.; et al. An Anatomically Comprehensive Atlas of the Adult Human Brain Transcriptome. Nature 2012, 489, 391–399. [Google Scholar] [CrossRef]
- Cogill, S.; Wang, L. Support Vector Machine Model of Developmental Brain Gene Expression Data for Prioritization of Autism Risk Gene Candidates. Bioinformatics 2016, 32, 3611–3618. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D. Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization. Comput. Sci. Discov. 2015, 8, 14008. [Google Scholar] [CrossRef]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the IJCAI, Montreal, QC, Canada, 20–25 August 1995; Volume 14, pp. 1137–1145. [Google Scholar]
- Nakayama, K.; Ohashi, R.; Shinoda, Y.; Yamazaki, M.; Abe, M.; Fujikawa, A.; Shigenobu, S.; Futatsugi, A.; Noda, M.; Mikoshiba, K.; et al. RNG105/Caprin1, an RNA Granule Protein for Dendritic MRNA Localization, Is Essential for Long-Term Memory Formation. Elife 2017, 6, e29677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, B. Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme. Biochim. Biophys. Acta Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627. [Google Scholar]
- Wei, H.D.; Sherman, B.; Lempicki, R. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44. [Google Scholar] [CrossRef]
- Koopmans, F.; van Nierop, P.; Andres-Alonso, M.; Byrnes, A.; Cijsouw, T.; Coba, M.; Cornelisse, L.N.; Farrell, R.; Goldschmidt, H.; Howrigan, D.; et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 2019, 103, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.; Mukherjee, S.; Ebert, B.; Gillette, M.; Paulovich, A.; Pomeroy, S.; Golub, T.; Lander, E.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [Green Version]
- Bush, G.; Luu, P.; Posner, M. Cognitive and Emotional Influences in Anterior Cingulate Cortex. Trends Cogn. Sci. 2000, 4, 215–222. [Google Scholar] [CrossRef]
- Teffer, K.; Semendeferi, K. Chapter 9—Human Prefrontal Cortex: Evolution, Development, and Pathology. Prog. Brain Res. 2012, 195, 191–218. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.S.; Dhikav, V. Hippocampus in Health and Disease: An Overview. Ann. Indian Acad. Neurol. 2012, 15, 239. [Google Scholar] [CrossRef] [PubMed]
- Kropf, E.; Syan, S.; Minuzzi, L.; Frey, B. From Anatomy to Function: The Role of the Somatosensory Cortex in Emotional Regulation. Braz. J. Psychiatry 2019, 41, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttenlocher, P.; Dabholkar, A. Regional Differences in Synaptogenesis in Human Cerebral Cortex. J. Comp. Neurol. 1997, 387, 167–178. [Google Scholar] [CrossRef]
- Tierney, A.; Nelson III, C. Brain Development and the Role of Experience in the Early Years. Zero Three 2009, 30, 9. [Google Scholar]
- Smalheiser, N. Exosomal Transfer of Proteins and RNAs at Synapses in the Nervous System. Biol. Direct 2007, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, S.; Israel, S.; Nagy, C.; Turecki, G. The Emerging Role of Exosomes in Mental Disorders. Transl. Psychiatry 2019, 9, 122. [Google Scholar] [CrossRef]
- Rizzoli, S.; Betz, W. All Change at the Synapse. Nature 2003, 423, 591–592. [Google Scholar] [CrossRef]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1105–1121. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Tammineni, P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1087–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, M.; Kiebler, M. Mechanisms of Dendritic MRNA Transport and Its Role in Synaptic Tagging. EMBO J. 2011, 30, 3540–3552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, J.J.; Gharami, K.; Liao, G.-Y.; Woo, N.; Lau, A.; Vanevski, F.; Torre, E.; Jones, K.; Feng, Y.; Lu, B.; et al. Distinct Role of Long 3′ UTR BDNF MRNA in Spine Morphology and Synaptic Plasticity in Hippocampal Neurons. Cell 2008, 134, 175–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciolli Mattioli, C.; Rom, A.; Franke, V.; Imami, K.; Arrey, G.; Terne, M.; Woehler, A.; Akalin, A.; Ulitsky, I.; Chekulaeva, M. Alternative 3′ UTRs Direct Localization of Functionally Diverse Protein Isoforms in Neuronal Compartments. Nucleic Acids Res. 2019, 47, 2560–2573. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.; Xiang, W.; Feng, W.; Chen, Z.; Li, Y.; Deng, S.; Guo, M.; Zhao, L.; Sun, X.; He, M.; et al. Identification of Key Candidate Proteins and Pathways Associated with Temozolomide Resistance in Glioblastoma Based on Subcellular Proteomics and Bioinformatical Analysis. BioMed Res. Int. 2018, 2018, 5238760. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Guo, X.Q.; Chu, J.F.; Zhang, X.; Yan, Z.R.; Li, Y.Z. Potential Hippocampal Genes and Pathways Involved in Alzheimer’s Disease: A Bioinformatic Analysis. Genet. Mol. Res. 2015, 14, 7218–7232. [Google Scholar] [CrossRef]
- de Bortoli, M.; Castellino, R.; Lu, X.-Y.; Deyo, J.; Sturla, L.M.; Adesina, A.; Perlaky, L.; Pomeroy, S.; Lau, C.; Man, T.-K.; et al. Medulloblastoma Outcome Is Adversely Associated with Overexpression of EEF1D, RPL30, and RPS20 on the Long Arm of Chromosome 8. BMC Cancer 2006, 6, 223. [Google Scholar] [CrossRef] [Green Version]
- Bedoyan, J.; Kumar, R.; Sudi, J.; Silverstein, F.; Ackley, T.; Iyer, R.; Christian, S.; Martin, D. Duplication 16p11. 2 in a Child with Infantile Seizure Disorder. Am. J. Med. Genet. Part A 2010, 152, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Demirci, F.Y.; Barmada, M.M.; Richardson, G.; Lopez, O.; Sweet, R.; Kamboh, M.I.; Feingold, E. A Rare Duplication on Chromosome 16p11.2 Is Identified in Patients with Psychosis in Alzheimer’s Disease. PLoS ONE 2014, 9, e111462. [Google Scholar] [CrossRef] [Green Version]
- Vysotskiy, M.; Zhong, X.; Miller-Fleming, T.; Zhou, D.; Cox, N.; Weiss, L. Integration of Genetic, Transcriptomic, and Clinical Data Provides Insight into 16p11. 2 and 22q11. 2 CNV Genes. Genome Med. 2021, 13, 172. [Google Scholar] [CrossRef]
- Brown, N.; Alkhayer, K.; Clements, R.; Singhal, N.; Gregory, R.; Azzam, S.; Li, S.; Freeman, E.; McDonough, J. Neuronal Hemoglobin Expression and Its Relevance to Multiple Sclerosis Neuropathology. J. Mol. Neurosci. 2016, 59, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shephard, F.; Greville-Heygate, O.; Marsh, O.; Anderson, S.; Chakrabarti, L. A Mitochondrial Location for Haemoglobins—Dynamic Distribution in Ageing and Parkinson’s Disease. Mitochondrion 2014, 14, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.K.; Alkhayer, K.; Shelestak, J.; Clements, R.; Freeman, E.; McDonough, J. Erythropoietin Upregulates Brain Hemoglobin Expression and Supports Neuronal Mitochondrial Activity. Mol. Neurobiol. 2018, 55, 8051–8058. [Google Scholar] [CrossRef] [PubMed]
- Vanni, S.; Zattoni, M.; Moda, F.; Giaccone, G.; Tagliavini, F.; Haïk, S.; Deslys, J.-P.; Zanusso, G.; Ironside, J.; Carmona, M.; et al. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases. Front. Neurosci. 2018, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Pan, S.; Zhang, Z.; Jia, L.; Chen, W.-H.; Zhao, X.-M. STAB: A Spatio-Temporal Cell Atlas of the Human Brain. Nucleic Acids Res. 2021, 49, D1029–D1037. [Google Scholar] [CrossRef] [PubMed]
- Eze, U.C.; Bhaduri, A.; Haeussler, M.; Nowakowski, T.J.; Kriegstein, A.R. Single-Cell Atlas of Early Human Brain Development Highlights Heterogeneity of Human Neuroepithelial Cells and Early Radial Glia. Nat. Neurosci. 2021, 24, 584–594. [Google Scholar] [CrossRef]
- Wei, A. PredSynRNA GitHub Repository. Available online: https://github.com/BioDataLearning/PredSynRNA (accessed on 18 August 2022).
Features | Model | ROC-AUC | Accuracy | Sensitivity | Specificity | F1 | MCC |
---|---|---|---|---|---|---|---|
Sequence_full | SVM | 0.644 | 0.615 | 0.529 | 0.688 | 0.556 | 0.220 |
ANN | 0.639 | 0.603 | 0.549 | 0.649 | 0.554 | 0.201 | |
RF | 0.624 | 0.597 | 0.523 | 0.660 | 0.542 | 0.184 | |
Expression_full | SVM | 0.771 | 0.724 | 0.636 | 0.798 | 0.676 | 0.441 |
ANN | 0.764 | 0.698 | 0.649 | 0.739 | 0.659 | 0.398 | |
RF | 0.739 | 0.693 | 0.572 | 0.794 | 0.628 | 0.378 | |
Expression_Sequence_full | SVM | 0.768 | 0.722 | 0.639 | 0.791 | 0.676 | 0.436 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, A.; Wang, L. Prediction of Synaptically Localized RNAs in Human Neurons Using Developmental Brain Gene Expression Data. Genes 2022, 13, 1488. https://doi.org/10.3390/genes13081488
Wei A, Wang L. Prediction of Synaptically Localized RNAs in Human Neurons Using Developmental Brain Gene Expression Data. Genes. 2022; 13(8):1488. https://doi.org/10.3390/genes13081488
Chicago/Turabian StyleWei, Anqi, and Liangjiang Wang. 2022. "Prediction of Synaptically Localized RNAs in Human Neurons Using Developmental Brain Gene Expression Data" Genes 13, no. 8: 1488. https://doi.org/10.3390/genes13081488
APA StyleWei, A., & Wang, L. (2022). Prediction of Synaptically Localized RNAs in Human Neurons Using Developmental Brain Gene Expression Data. Genes, 13(8), 1488. https://doi.org/10.3390/genes13081488