Evolutionary New Genes in a Growing Paradigm
Author Contributions
Funding
Conflicts of Interest
References
- Long, M.; Betran, E.; Thornton, K.; Wang, W. The origin of new genes: Glimpses from the young and old. Nat. Rev. Genet. 2003, 4, 865–875. [Google Scholar] [CrossRef]
- Long, M.; VanKuren, N.W.; Chen, S.; Vibranovski, M.D. New gene evolution: Little did we know. Annu. Rev. Genet. 2013, 47, 307–333. [Google Scholar] [CrossRef]
- Kuhn, T.S. The Structure of Scientific Revolution; University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
- Li, H.; Chen, C.; Wang, Z.; Wang, K.; Li, Y.; Wang, W. Pattern of New Gene Origination in a Special Fish Lineage, the Flatfishes. Genes 2021, 12, 1819. [Google Scholar] [CrossRef] [PubMed]
- Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010, 20, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.E.; Vibranovski, M.D.; Krinsky, B.H.; Long, M. Age-dependent chromosomal distribution of male-biased genes in Drosophila. Genome Res. 2010, 20, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Assis, R.; Bachtrog, D. Neofunctionalization of young duplicate genes in Drosophila. Proc. Natl. Acad. Sci. USA 2013, 110, 17409–17414. [Google Scholar] [CrossRef] [PubMed]
- Vibranovski, M.D.; Zhang, Y.; Long, M. General gene movement off the X chromosome in the Drosophila genus. Genome Res. 2009, 19, 897–903. [Google Scholar] [CrossRef]
- Kleene, K.C. Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells. Dev. Biol. 2005, 277, 16–26. [Google Scholar] [CrossRef]
- Gallach, M.; Domingues, S.; Betran, E. Gene duplication and the genome distribution of sex-biased genes. Int. J. Evol. Biol. 2011, 2011, 989438. [Google Scholar] [CrossRef]
- Kaessmann, H.; Vinckenbosch, N.; Long, M. RNA-based gene duplication: Mechanistic and evolutionary insights. Nat. Rev. Genet. 2009, 10, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Chen, J.; Liang, J.; Betran, E.; Long, M.; Sharakhov, I.V. Retrogene Duplication and Expression Patterns Shaped by the Evolution of Sex Chromosomes in Malaria Mosquitoes. Genes 2022, 13, 968. [Google Scholar] [CrossRef]
- Eslamieh, M.; Mirsalehi, A.; Markova, D.N.; Betran, E. COX4-like, a Nuclear-Encoded Mitochondrial Gene Duplicate, Is Essential for Male Fertility in Drosophila melanogaster. Genes 2022, 13, 424. [Google Scholar] [CrossRef]
- Su, Q.; He, H.; Zhou, Q. On the Origin and Evolution of Drosophila New Genes during Spermatogenesis. Genes 2021, 12, 1796. [Google Scholar] [CrossRef]
- Ricchio, J.; Uno, F.; Carvalho, A.B. New Genes in the Drosophila Y Chromosome: Lessons from D. willistoni. Genes 2021, 12, 1815. [Google Scholar] [CrossRef]
- Guo, B.; Zou, M.; Sakamoto, T.; Innan, H. Functional Innovation through Gene Duplication Followed by Frameshift Mutation. Genes 2022, 13, 190. [Google Scholar] [CrossRef]
- Ohno, S. Evolution by Gene Duplication; Springer: New York, NY, USA, 1970. [Google Scholar]
- Krinsky, B.H.; Arthur, R.K.; Xia, S.; Sosa, D.; Arsala, D.; White, K.P.; Long, M. Rapid Cis-Trans Coevolution Driven by a Novel Gene Retroposed from a Eukaryotic Conserved CCR4-NOT Component in Drosophila. Genes 2021, 13, 57. [Google Scholar] [CrossRef]
- Luna, S.K.; Chain, F.J.J. Lineage-Specific Genes and Family Expansions in Dictyostelid Genomes Display Expression Bias and Evolutionary Diversification during Development. Genes 2021, 12, 1628. [Google Scholar] [CrossRef]
- Dai, H.; Yoshimatsu, T.F.; Long, M. Retrogene movement within- and between-chromosomes in the evolution of Drosophila genomes. Gene 2006, 385, 96–102. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Y.; Yang, T.; Li, G.; Chen, J.; Gschwend, A.R.; Yu, Y.; Hou, G.; Zi, J.; Zhou, R.; et al. Rapid evolution of protein diversity by de novo origination in Oryza. Nat. Ecol. Evol. 2019, 3, 679–690. [Google Scholar] [CrossRef]
- Grandchamp, A.; Berk, K.; Dohmen, E.; Bornberg-Bauer, E. New Genomic Signals Underlying the Emergence of Human Proto-Genes. Genes 2022, 13, 284. [Google Scholar] [CrossRef]
- Glenfield, C.; Innan, H. Gene Duplication and Gene Fusion Are Important Drivers of Tumourigenesis during Cancer Evolution. Genes 2021, 12, 1376. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.C.; Zhuang, X. Molecular Origins and Mechanisms of Fish Antifreeze Evolution. In Antifreeze Proteins; Ramløv, H., Friis, D., Eds.; Springer: Cham, Switzerland, 2020; Volume 1, pp. 275–313. [Google Scholar]
- Chen, L.; DeVries, A.L.; Cheng, C.H. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. USA 1997, 94, 3811–3816. [Google Scholar] [CrossRef]
- Zhuang, X.; Cheng, C.C. Propagation of a De Novo Gene under Natural Selection: Antifreeze Glycoprotein Genes and Their Evolutionary History in Codfishes. Genes 2021, 12, 1777. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Wacholder, A.; Carvunis, A.R. Evolutionary Characterization of the Short Protein SPAAR. Genes 2021, 12, 1864. [Google Scholar] [CrossRef] [PubMed]
- Levy, A. How evolution builds genes from scratch. Nature 2019, 574, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Carvunis, A.R.; Rolland, T.; Wapinski, I.; Calderwood, M.A.; Yildirim, M.A.; Simonis, N.; Charloteaux, B.; Hidalgo, C.A.; Barbette, J.; Santhanam, B.; et al. Proto-genes and de novo gene birth. Nature 2012, 487, 370–374. [Google Scholar] [CrossRef]
- Davidson, A.R.; Sauer, R.T. Folded proteins occur frequently in libraries of random amino acid sequences. Proc. Natl. Acad. Sci. USA 1994, 91, 2146–2150. [Google Scholar] [CrossRef]
- Keefe, A.D.; Szostak, J.W. Functional proteins from a random-sequence library. Nature 2001, 410, 715–718. [Google Scholar] [CrossRef]
- Bhave, D.; Tautz, D. Effects of the Expression of Random Sequence Clones on Growth and Transcriptome Regulation in Escherichia coli. Genes 2021, 13, 53. [Google Scholar] [CrossRef]
- Castro, J.F.; Tautz, D. The Effects of Sequence Length and Composition of Random Sequence Peptides on the Growth of E. coli Cells. Genes 2021, 12, 1913. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betrán, E.; Long, M. Evolutionary New Genes in a Growing Paradigm. Genes 2022, 13, 1605. https://doi.org/10.3390/genes13091605
Betrán E, Long M. Evolutionary New Genes in a Growing Paradigm. Genes. 2022; 13(9):1605. https://doi.org/10.3390/genes13091605
Chicago/Turabian StyleBetrán, Esther, and Manyuan Long. 2022. "Evolutionary New Genes in a Growing Paradigm" Genes 13, no. 9: 1605. https://doi.org/10.3390/genes13091605
APA StyleBetrán, E., & Long, M. (2022). Evolutionary New Genes in a Growing Paradigm. Genes, 13(9), 1605. https://doi.org/10.3390/genes13091605