Genetic Associations of Novel Behaviour Traits Derived from Social Network Analysis with Growth, Feed Efficiency, and Carcass Characteristics in Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Behavioural Traits
2.3. SNA Traits
2.4. Performance Traits
2.5. Genetic Parameter Estimates
3. Results
3.1. Heritability
3.2. Genetic and Phenotypic Correlations
4. Discussion
4.1. Heritability
4.2. Genetic and Phenotypic Correlations
4.3. Implications for Breeding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boumans, I.J.M.M.; de Boer, I.J.M.; Hofstede, G.J.; Bokkers, E.A.M. How social factors and behavioural strategies affect feeding and social interaction patterns in pigs. Physiol. Behav. 2018, 194, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Death, R.B.; Turner, S.P.; Kurt, E.; Evans, G.; Thölking, L.; Looft, H.; Wimmers, K.; Murani, E.; Klont, R.; Foury, A.; et al. Pigs’ aggressive temperament affects pre-slaughter mixing aggression, stress and meat quality. Animal 2010, 4, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Camerlink, I.; Bijma, P.; Kemp, B.; Bolhuis, J.E. Relationship between growth rate and oral manipulation, social nosing, and aggression in finishing pigs. Appl. Anim. Behav. Sci. 2012, 142, 11–17. [Google Scholar] [CrossRef]
- Peden, R.S.E.; Akaichi, F.; Camerlink, I.; Boyle, L.A.; Turner, S.P. Factors influencing farmer willingness to reduce aggression between pigs. Animals 2019, 9, 6. [Google Scholar] [CrossRef]
- Turner, S.P.; D’Eath, R.B.; Roehe, R.; Lawrence, A.B. Selection against aggressiveness in pigs at re-grouping: Practical application and implications for long-term behavioural patterns. Anim. Welf. 2010, 19, 123–132. [Google Scholar]
- Turner, S.P. Breeding against harmful social behaviours in pigs and chickens: State of the art and the way forward. Appl. Anim. Behav. Sci. 2011, 134, 1–9. [Google Scholar] [CrossRef]
- Scheffler, K.; Stamer, E.; Traulsen, I.; Krieter, J. Estimation of genetic parameters for agonistic behaviour of pigs at different ages. J. Agric. Sci. 2016, 154, 732–741. [Google Scholar] [CrossRef]
- Wurtz, K.E.; Siegford, J.M.; Bates, R.O.; Ernst, C.W.; Steibel, J.P. Estimation of genetic parameters for lesion scores and growth traits in group-housed pigs. J. Anim. Sci. 2017, 95, 4310–4317. [Google Scholar] [CrossRef]
- Parois, S.P.; Prunier, A.; Mercat, M.J.; Merlot, E.; Larzul, C. Genetic relationships between measures of sexual development, boar taint, health, and aggressiveness in pigs. J. Anim. Sci. 2015, 93, 3749–3758. [Google Scholar] [CrossRef]
- Desire, S.; Turner, S.P.; Eath, R.B.D.; Lewis, C.R.G.; Roehe, R. Prediction of reduction in aggressive behaviour of growing pigs using skin lesion traits as selection criteria. Animal 2016, 10, 1243–1253. [Google Scholar] [CrossRef]
- Turner, S.P.; Nevison, I.M.; Desire, S.; Camerlink, I.; Roehe, R.; Ison, S.H.; Farish, M.; Jack, M.C.; D’Eath, R.B. Aggressive behaviour at regrouping is a poor predictor of chronic aggression in stable social groups. Appl. Anim. Behav. Sci. 2017, 191, 98–106. [Google Scholar] [CrossRef]
- Webber, Q.M.R.; Wal, E.V. Trends and perspectives on the use of animal social network analysis in behavioural ecology: A bibliometric approach. Anim. Behav. 2019, 149, 77–87. [Google Scholar] [CrossRef]
- Croft, D.P.; Madden, J.R.; Franks, D.W.; James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 2011, 26, 502–507. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Johnston, L.J.; Martin, W. Understanding tail-biting in pigs through social network analysis. Animals 2018, 8, 13. [Google Scholar] [CrossRef]
- Wilder, T.; Krieter, J.; Kemper, N.; Büttner, K. Network analysis of tail-biting in pigs-indirect effect on tail posture. Livest. Sci. 2021, 251, 104668. [Google Scholar] [CrossRef]
- Büttner, K.; Scheffler, K.; Czycholl, I.; Krieter, J. Social network analysis-centrality parameters and individual network positions of agonistic behavior in pigs over three different age levels. Springerplus 2015, 4, 185. [Google Scholar] [CrossRef]
- Foister, S.; Doeschl-Wilson, A.; Roehe, R.; Arnott, G.; Boyle, L.; Turner, S. Social network properties predict chronic aggression in commercial pig systems. PLoS ONE 2018, 13, e0205122. [Google Scholar] [CrossRef]
- Agha, S.; Fàbrega, E.; Quintanilla, R.; Sánchez, J.P. Social Network Analysis of Agonistic Behaviour and Its Association with Economically Important Traits in Pigs. Animals 2020, 10, 2123. [Google Scholar] [CrossRef]
- Büttner, K.; Czycholl, I.; Mees, K.; Krieter, J. Social network analysis in pigs: Impacts of significant dyads on general network and centrality parameters. Animal 2020, 14, 2. [Google Scholar] [CrossRef]
- Farine, D.R.; Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 2015, 84, 1144–1163. [Google Scholar] [CrossRef]
- Foister, S.; Doeschl-Wilson, A.; Roehe, R.; Arnott, G.; Boyle, L.; Turner, S. Piggy in the middle: The cost-benefit trade-off of a central network position in regrouping aggression. In Proceedings of the 52nd Congress of the International Society for Applied Ethology, Charlottetown, PE, Canada, 30 July–3 August 2018; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- Agha, S.; Foister, S.; Roehe, R.; Turner, S.P.; Doeschl-Wilson, A. Genetic Analysis of Novel Behaviour Traits in Pigs Derived from Social Network Analysis. Genes 2020, 13, 561. [Google Scholar] [CrossRef]
- McGlone, J.J. Agonistic behavior in food animals: Review of research and techniques. J. Anim. Sci. 1986, 62, 1130–1139. [Google Scholar] [CrossRef]
- Desire, S.; Turner, S.P.; D’Eath, R.B.; Doeschl-Wilson, A.B.; Lewis, C.R.G.; Roehe, R. Genetic associations of short- and long-term aggressiveness identified by skin lesion with growth, feed efficiency, and carcass characteristics in growing pigs. J. Anim. Sci. 2015, 93, 3303–3312. [Google Scholar] [CrossRef]
- Turner, S.P.; Roehe, R.; D’Eath, R.B.; Ison, S.H.; Farish, M.; Jack, M.C.; Lundeheim, N.; Rydhmer, L.; Lawrence, A.B. Genetic validation of postmixing skin injuries in pigs as an indicator of aggressiveness and the relationship with injuries under more stable social conditions. J. Anim. Sci. 2009, 87, 3076–3082. [Google Scholar] [CrossRef]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. Inter. J. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Wey, T.; Blumstein, D.T.; Shen, W.; Jordán, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 2008, 75, 333–344. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing. 2019. Available online: Http://Www.R-Project.Org/ (accessed on 1 March 2022).
- Misztal, I.; Tsuruta, D.A.L.S.; Lourenco, Y.; Masuda, I.; Aguilar, A.; Legarra, Z.V. BLUPF90 Family of Programs; The University of Georgia: Athens, GA, USA, 2018. [Google Scholar]
- Raftery, A.E.; Lewis, S.M. How Many Iterations in the Gibbs Sampler? In 1 Introduction Bayesian Statistics, 4; Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 763–773. [Google Scholar]
- Brent, L.J.N.; Heilbronner, S.R.; Horvath, J.E.; Gonzalez-Martinez, J.; Ruiz-Lambides, A.; Robinson, A.G.; Pate Skene, J.H.; Platt, M.L. Genetic origins of social networks in rhesus macaques. Sci. Rep. 2013, 3, 1042. [Google Scholar] [CrossRef]
- Lea, A.J.; Blumstein, D.T.; Wey, T.W.; Martin, J.G.A. Heritable victimization and the benefits of agonistic relationships. Proc. Natl. Acad. Sci. USA 2010, 107, 21587–21592. [Google Scholar] [CrossRef]
- Fowler, J.H.; Dawes, C.T.; Christakis, N.A. Model of genetic variation in human social networks. Proc. Natl. Acad. Sci. USA 2009, 106, 1720–1724. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Longmann Co.: London, UK, 1996. [Google Scholar]
- Kruuk, L.E.B.; Slate, J.; Pemberton, J.M.; Brotherstone, S.; Guinness, F.; Clutton-Brock, T. Antler size in red deer: Heritability and selection but no evolution. Evolution 2002, 56, 1683–1695. [Google Scholar] [CrossRef]
- Nielsen, B.L.; Lawrence, A.B. Effect of individual housing on the feeding behaviour of growing pigs. Appl. Anim. Behav. Sci. 1995, 44, 271–272. [Google Scholar] [CrossRef]
- Turner, S.P.; Nath, M.; Horgan, G.W.; Edwards, S.A. Measuring chronic social tension in groups of growing pigs using inter-individual distances. Appl. Anim. Behav. Sci. 2013, 146, 26–36. [Google Scholar] [CrossRef]
- Nielsen, B.L.; Lawrence, A.B.; Whittemore, C.T. Effects of single-space feeder design on feeding behaviour and performance of growing pigs. Anim. Sci. 1995, 61, 575–579. [Google Scholar] [CrossRef]
- Schirmann, K.; von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [PubMed]
- Borchers, M.R.; Chang, Y.M.; Tsai, I.C.; Wadsworth, B.A.; Bewley, J.M. A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 2016, 99, 7458–7466. [Google Scholar] [CrossRef] [PubMed]
- Riekert, M.; Klein, A.; Adrion, F.; Hoffmann, C.; Gallmann, E. Automatically detecting pig position and posture by 2D camera imaging and deep learning. Comput. Electron. Agric. 2020, 174, 105391. [Google Scholar] [CrossRef]
Measures | Definition | Interpretation |
---|---|---|
Degree centrality | The number of edges attached to a node. | The number of animals that a particular animal directly engaged with. |
Weighted degree centrality | The sum of weights associated with every edge incident to the corresponding node. | The sum of the duration of the reciprocal fights that the focal animal was involved in. |
Betweenness centrality | The number of shortest paths that pass through the considered node. | Measures the importance of the animal in connecting different subgroups of the pen engaging in aggression. |
Closeness centrality | The average of the shortest path length between that node and all other nodes in the network. | Measures how ‘close’ an animal is to all other animals in a pen in terms of engaging in aggression. Animals that engage in aggression directly with many of their pen mates have high closeness centrality. |
Eigenvector centrality | The connectivity of a node within its network, according to the degree centrality of the node and the degree centrality of the nodes that it connects with. | Takes into consideration both the degree centrality of the focal individual and the degree centrality of its opponents. |
Clustering coefficient | The proportion of an individual node’s connections that are also directly connected with each other relative to the number of theoretically possible connections. | Quantifies what proportion of animals that the focal individual directly engages with also interact with each other, relative to the number of all possible aggressive interactions. |
Category | Trait | Mean | SD | Max | Min |
---|---|---|---|---|---|
SNA | Degree centrality | 0.12 | 0.13 | 1.00 | 0 |
Weighted degree centrality | 2.30 | 5.92 | 58.4 | 0 | |
Closeness centrality | 0.02 | 0.02 | 0.08 | 0 | |
Eigenvector centrality | 0.17 | 0.31 | 1.00 | 0 | |
Betweenness centrality | 0.06 | 0.10 | 0.63 | 0 | |
Clustering coefficient | 0.09 | 0.21 | 1.00 | 0 | |
Performance | TDG | 887.5 | 117.4 | 1198.1 | 523.4 |
LDG | 695.9 | 75.10 | 889.5 | 435.2 | |
DFI | 2.28 | 0.29 | 3.12 | 1.38 | |
FE | 0.003 | 0.001 | 0.004 | 0.002 | |
FBW | 120.11 | 12.03 | 155.00 | 84.00 | |
HCW | 94.10 | 8.97 | 127.57 | 67.19 | |
BF | 17.97 | 4.34 | 33.10 | 7.10 | |
LD | 62.24 | 8.88 | 89.30 | 35.90 |
Trait | h2 | HPD95% | c2 | HPD95% | Vp | HPD95% | |||
---|---|---|---|---|---|---|---|---|---|
Degree | 0.13 | 0.016 | 0.276 | 0.27 | 0.118 | 0.439 | 0.020 | 0.016 | 0.026 |
Weighted degree | 0.35 | 0.013 | 0.651 | 0.10 | 0.000 | 0.248 | 50.91 | 37.06 | 67.64 |
Betweenness centrality | 0.17 | 0.003 | 0.417 | 0.27 | 0.124 | 0.426 | 0.026 | 0.020 | 0.031 |
Closeness centrality | 0.01 | 0.000 | 0.029 | 0.80 | 0.724 | 0.871 | 0.003 | 0.002 | 0.004 |
Eigenvector centrality | 0.10 | 0.003 | 0.283 | 0.12 | 0.015 | 0.231 | 0.121 | 0.102 | 0.141 |
Clustering coefficient | 0.04 | 0.003 | 0.172 | 0.14 | 0.000 | 0.290 | 0.047 | 0.035 | 0.060 |
Trait | Weighted Degree | Betweenness Centrality | Closeness Centrality | Eigenvector Centrality | Clustering Coefficient |
---|---|---|---|---|---|
Degree | 0.33 (−1, 0.92) | 0.59 (−0.80, 1) | 0.55 (−0.69, 1) | 0.92 (0.57, 1) | −0.73 (−1, 0.65) |
Weighted degree | 0.10 (−0.97, 0.71) | −0.80 (−1, −0.25) | 0.87 (0.42, 1) | −0.92 (−1, −0.59) | |
Betweenness | 0.78 (−0.03, 1) | 0.79 (−0.27, 1) | −0.55 (−1, 0.56) | ||
Closeness | −0.97 (−1, −0.84) | −0.70 (−1, 0.80) | |||
Eigenvector | −0.95 (−1, −0.73) |
Trait | Degree | Weighted Degree | Betweenness Centrality | Closeness Centrality | Eigenvector Centrality | Clustering Coefficient |
---|---|---|---|---|---|---|
TDG | −0.30 (−1, 0.96) | −0.05 (−0.95, 0.78) | −0.87 (−1, −0.57) | −0.70 (−1, −0.07) | 0.31 (−0.40, 0.99) | −0.79 (−1, 0.37) |
LDG | −0.32 (−1, 0.95) | −0.05 (−0.89, 0.76) | −0.86 (−1, −0.50) | −0.61 (−1, 0.18) | 0.18 (−0.61, 0.98) | −0.74 (−1, 0.59) |
DFI | −0.14 (−1, 0.94) | −0.15 (−0.95, 0.53) | −0.37 (−0.96, 0.46) | −0.63 (−1, 0.22) | −0.43 (−1, 0.26) | −0.83 (−1, 0.05) |
FE | −0.07 (−1, 0.80) | −0.08 (−1, 0.71) | 0.34 (−0.47, 0.99) | 0.05 (−0.89, 0.99) | −0.61 (−1, 0.06) | −0.72 (−1, 0.35) |
FBW | −0.30 (−1, 0.96) | −0.12 (−0.94, 0.57) | −0.87 (−1, −0.57) | −0.74 (−1, −0.17) | 0.31 (−0.40, 0.99) | −0.78 (−1, 0.38) |
HCW | −0.31 (−1, 0.93) | −0.20 (−0.95, 0.50) | −0.69 (−1, −0.05) | −0.77 (−1, −0.24) | 0.18 (−0.62, 0.94) | −0.81 (−1, 0.16) |
BF | −0.16 (−1, 0.90) | −0.63 (−0.97, −0.08) | −0.59 (−0.97, 0.12) | 0.71 (−0.08, 1) | −0.26 (−0.93, 0.36) | −0.76 (−1, 0.28) |
LD | −0.13 (−1, 0.94) | 0.23 (−0.70, 0.92) | 0.03 (−0.65, 0.94) | 0.25 (−0.85, 1) | 0.44 (−0.22, 0.99) | −0.79 (−1, 0.13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agha, S.; Turner, S.P.; Lewis, C.R.G.; Desire, S.; Roehe, R.; Doeschl-Wilson, A. Genetic Associations of Novel Behaviour Traits Derived from Social Network Analysis with Growth, Feed Efficiency, and Carcass Characteristics in Pigs. Genes 2022, 13, 1616. https://doi.org/10.3390/genes13091616
Agha S, Turner SP, Lewis CRG, Desire S, Roehe R, Doeschl-Wilson A. Genetic Associations of Novel Behaviour Traits Derived from Social Network Analysis with Growth, Feed Efficiency, and Carcass Characteristics in Pigs. Genes. 2022; 13(9):1616. https://doi.org/10.3390/genes13091616
Chicago/Turabian StyleAgha, Saif, Simon P. Turner, Craig R. G. Lewis, Suzanne Desire, Rainer Roehe, and Andrea Doeschl-Wilson. 2022. "Genetic Associations of Novel Behaviour Traits Derived from Social Network Analysis with Growth, Feed Efficiency, and Carcass Characteristics in Pigs" Genes 13, no. 9: 1616. https://doi.org/10.3390/genes13091616
APA StyleAgha, S., Turner, S. P., Lewis, C. R. G., Desire, S., Roehe, R., & Doeschl-Wilson, A. (2022). Genetic Associations of Novel Behaviour Traits Derived from Social Network Analysis with Growth, Feed Efficiency, and Carcass Characteristics in Pigs. Genes, 13(9), 1616. https://doi.org/10.3390/genes13091616